11
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Inducible Repair Systems and Their Implications for Toxicology

&
Pages 311-362 | Published online: 26 Sep 2008

References

  • Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977
  • Ames B. N., Durston W. E., Yamnsaki E., Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2281
  • McCann J., Choi E., Yamasaki E., Ames B. N. Detection of carcinogens as mutagens in the Salmonella/ microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 5135
  • McCann J., Ames B. N. Detection of carcinogens as mutagens in the Salmonella/ microsome test: assay of 300 chemicals; discussion. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 950
  • McCann J., Ames B. N. The Salmonella/ microsome mutagenicity test: Predictive value for animal carcinogenicity. Origins of Human Cancer, Parts A, B, and C. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 1431
  • Ames B. N. Identifying environmental chemicals causing mutations and cancer. Science 1979; 204: 587
  • Boyce R. P., Howard-Flanders P. The release of UV-induced thymine dimers from DNA inE. coli K-12. Proc. Natl. Acad. Sci. U.S.A. 1964; 51: 293
  • Setlow R. B., Carrier W. L. The disappearance of thymine dimers from DNA: an error correcting mechanism. Proc. Natl. Acad. Sci. U.S.A. 1964; 51: 226
  • Molecular Mechanisms for Repair of DNA, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975, Parts A and B
  • DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978
  • Cleaver J. E. Repair processes for photochemical damage in mammalian cells. Adv. Radiat. Biol. 1974; 4: 1
  • Cleaver J. E., Bootsma D. Xeroderma pigmentosum: biochemical and genetic characteristics. Ann. Rev. Genet. 1975; 9: 19
  • Grossman L., Braun A., Feldberg R., Mahler I. Enzymatic repair of DNA. Ann. Rev. Biochem. 1975; 44: 19
  • Hanawalt P. C. Molecular mechanisms involved in DNA repair. Genet Sup. 1975; 79: 179
  • Arlett C. F., Lehmann A. R. Human disorders showing increased sensitivity to the induction of genetic damage. Ann. Rev. Genet. 1978; 12: 95
  • Hart R. W., Hall K. Y., Daniel F. B. DNA repair and mutagenesis in mammalian cells. Photochem. Photobiol. 1978; 28: 131
  • Hewitt R. R., Meyn R. E. Applicability of bacterial models of DNA repair and recovery to UV-irradiated mammalian cells. Adv. Radiat. Biol. 1978; 7: 153
  • Smith K. C. Multiple pathways of DNA repair in bacteria and their roles in mutagenesis. Photochem. Photobiol. 1978; 28: 121
  • Hanawalt P. C., Cooper P. K., Ganesan A. K., Smith C. A. DNA repair in bacteria and mammalian cells. Ann. Rev. Biochem. 1979; 48: 783
  • Lindahl T. DNA glycosylases, endonucleases for Apurinic-Apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 1979; 22: 135
  • Radman M. Phenomenology of an inducible mutagenic DNA repair pathway inEscherichia coli: SOS repair hypothesis. Molecular and Environmental Aspects of Mutagenesis, L. Prokash, F. Sherman, M. Miller, C. Lawrence, H. W. Tabor. Charles C Thomas, Springfield, Ill. 1974; 128
  • Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 355
  • Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in. Escherichia coli, Bacteriol. Rev. 1976; 40: 869
  • Rupert C. S. Enzymatic photoreactivation: Overview. Molecular Mechanisms for Repair of DNA, A Parts, B. P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 73
  • Sutherland B. M. Enzymatic photoreactivation of DNA. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 113
  • Sutherland B. M., Hausrath S. G. Multiple loci affecting photoreactivation in. Escherichia coli, J. Bacteriol. 1979; 138: 333
  • Setlow J. K. The molecular basis of biological effects of ultraviolet radiation and photoreactivation. Topics in Radiation Research, M. Ebert, A. Howard. North-Holland, Amsterdam 1966; 195
  • Grossman L., Riazuddin S. Enzymatic pathways of damaged nucleotide excision. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 205
  • Braun A., Grossman L. An endonuclease fromEscherichia coli that acts preferentially on UV-irradiated DNA and is absent fromuvrA anduvrB mutants. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1838
  • Braun A. G., Radman M., Grossman L. Enzymatic repair of DNA: sites of hydrolysis by theEscherichia coli endonuclease specific for pyrimidine dimers (correndonuclease II). Biochem. 1976; 15: 4116
  • Seeberg E., Rupp W. D. Effect of mutations inlig andpolA on UV-induced strand cutting in auvrC strain ofEscherichia coli. Molecular Mechanisms for Repair of DNA, A Parts, B. P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 439
  • Seeberg E., Nissen-Meyer J., Strike P. Incision of ultraviolet-irradiated DNA by extracts ofE. coli requires three different gene products. Nature (London) 1976; 263: 524
  • Seeberg E. Reconstitution of anEscherichia coli repair endonuclease activity from the separateduvrA+ anduvrB+ /uvrC+ gene products. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 2569
  • Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and therec system in excision-repair in. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 1156
  • Glickman B. The role of DNA polymerase I in pyrimidine dimer excision and repair replication inEscherichia coli K12 following ultraviolet irradiation. Biochim. Biophys. Acta 1974; 335: 115
  • Cooper P. K., Hunt J. G. Alternative pathways for excision and resynthesis inEscherichia coli: DNA polymerase III role. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 255
  • Chase J. W., Masker W. E., Murphy J. B. Pyrimidine dimer excision inEscherichia coli strains deficient in exonucleases V and VII and in the 5′–3′ exonuclease of DNA polymerase I. J. Bacteriol. 1979; 137: 234
  • Van Sluis C. A., Mattern I. E., Paterson M. C. Properties ofuvrE mutants ofEscherichia coli K-12. I. Effects of UV-irradiation on DNA metabolism. Mutat. Res. 1974; 25: 273
  • Kushner S. R., Shepherd J., Edwards G., Maples V. F. uvrD, uvrE, andrecL represent a single gene. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 251
  • Rothman R. H., Clark A. J. Defective excision and postreplication repair of UV-damaged DNA in arecL mutant strain ofE. coli K-12. Mol. Gen. Genet. 1977; 155: 267
  • Rothman R. H. Dimer excision and repair replication patch size in arecL 152 mutant ofEscherichia coli K-12. J. Bacteriol. 1978; 136: 444
  • Cooper P. K., Hanawalt P. C. Heterogeneity of patch size in repair replicated DNA in. Escherichia coli, J. Mol. Biol. 1972; 67: 1
  • Tait R. C., Harris A. L., Smith D. W. DNA repair inEscherichia coli mutants deficient in DNA polymerase I, II and/or III. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 675
  • Youngs D. A., Smith K. C. The involvement of polynucleotide ligase in the repair of UV-induced DNA damage inEscherichia coli K-12 cells. Mol. Gen. Genet. 1977; 152: 37
  • Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain ofEscherichia coli following ultraviolet irradiation. J. Mol. Biol. 1968; 31: 291
  • Caillet-Fauquet P., Defais M., Radman M. Molecular mechanisms of induced mutagenesis: replication in vivo of bacteriophage ØX174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells. J. Mol. Biol. 1977; 117: 95
  • Rupp W. D., Wilde C. E., III, Reno D. L., Howard-Flanders P. Exchange between DNA strands in ultraviolet-irradiated. Escherichia coli, J. Mol. Biol. 1971; 61: 25
  • Ganesan A. K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiatedEscherichia coli K-12. J. Mol. Biol. 1974; 87: 103
  • Howard-Flanders P. Repair by genetic recombination in bacteria: Overview. Molecular Mechanisms for Repair of DNA, A Parts, B. P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 265
  • Radding C. M. Genetic recombination: strand transfer and mismatch repair. Annu. Rev. Biochem. 1978; 47: 847
  • Horii Z., Clark A. J. Genetic analysis of therecFpathway inEscherichia coli K-12: isolation and characterization of mutants. J. Mol. Biol. 1973; 80: 327
  • Clark A. J. Recombination deficient mutants ofE. coli and other bacteria. Annu. Rev. Genet. 1973; 7: 67
  • Rothman R. H., Kato T., Clark A. J. The beginning of an investigation of the role ofrecF in pathways of metabolism of ultraviolet-irradiated DNA inEscherichia coli. Molecular Mechanisms for Repair of DNA, A Parts, B. P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 283
  • Ganesan A. K., Seawell P. C. The effect oflexA andrecF mutations on post-replication repair and DNA synthesis inEscherichia coli K-12. Mol. Gen. Genet. 1975; 141: 189
  • Rothman R. H., Clark A. J. The dependence of postreplication repair onuvrB in arecF mutant of. Escherichia coli K-12, Mol. Gen. Genet. 1977; 155: 279
  • Boiteux S., Villani G., Spadari S., Zambrano F., Radman M. Making and correcting errors in DNA synthesis: in vitro studies of mutagenesis. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 73
  • Howard-Flanders P., Boyce R. P., Theriot L. Three loci inEscherichia coli K-12 that control the excision of thymine dimers and certain other mutagen products from host or phage DNA. Genetics 1966; 53: 1119
  • Smith K. C., Meun D. H. C. Repair of radiation-induced damage inEscherichia coli. I. Effect ofrec mutations on post-replication repair of damage due to ultraviolet radiation. J. Mol. Biol. 1970; 51: 459
  • Ganesan A. K., Seawell P. C., Mount D. W. Effect oftsl (thermosensitive suppressor oflex) mutation on postreplication repair inEscherichia coli K-12. J. Bacteriol. 1978; 135: 935
  • Johnson R. C. Gap filling during post-replication repair of DNA in recombination deficient. Escherichia coli, Nature (London) 1977; 267: 80
  • Weinstock G. M., McEntee K., Lehman I. R. ATP-dependent renaturation of DNA catalyzed by therecA protein of. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 126
  • Shibata T., DasGupta C., Cunningham R. P., Radding C. M. PurifiedEscherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 1638
  • McEntee K., Weinstock G. M., Lehman I. R. Initiation of general recombination catalyzed in vitro by therecA protein of. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 2615
  • Cunningham R. P., Shibata T., DasGupta C., Radding C. M. Single strands inducerecA protein to unwind duplex DNA for homologous pairing. Nature (London) 1979; 281: 191
  • Meselson M. S., Radding C. M. A general model for genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 358
  • Clark A. J., Volkert M. R. A new classification of pathways repairing pyrimidine dimer damage in DNA. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 57
  • Sedgwick S. G., Bridges B. A. Requirement for either DNA polymerase I or DNA polymerase III in post-replication repair in excision-proficient. Escherichia coli, Nature (London) 1974; 249: 348
  • Sedgwick S. G. Genetic and kinetic evidence for different types of post-replication repair in. Escherichia coli B. J. Bacteriol. 1975; 123: 154
  • Youngs D. A., Smith K. C. Genetic control of multiple pathways of post-replicational repair inuvrB strains ofEscherichia coli K-12. J. Bacteriol. 1976; 125: 102
  • Barfknecht T. R., Smith K. C. The involvement of DNA polymerase I in the post-replication repair of ultraviolet radiation-induced damage inEscherichia coli K-12. Mol. Gen. Genet. 1978; 167: 37
  • Johnson R. C. Reduction of post-replication repair in twoEscherichia coli mutants with temperature-sensitive polymerase III activity: implications for the post-replication repair pathway. J. Bacteriol. 1978; 136: 125
  • Tomilin N. V., Svetlova M. P. Decreased transfer or pyrimidine dimers from parental to daughter strands in UV-irradiatedEscherichia coli deficient in DNA polymerase III. Mol. Gen. Genet. 1979; 173: 345
  • Wright M., Buttin G., Hurwitz J. The isolation and characterization fromEscherichia coli of an adenosine triphosphate dependent deoxyribonuclease directed byrec B, C genes. J. Biol. Chem. 1971; 246: 6543
  • Oishi M. An ATP-dependent deoxyribonuclease fromEscherichia coli with a possible role in genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 1969; 64: 1292
  • Barbour S. D., Clark A. J. Biochemical and genetic studies of recombination proficiency inEscherichia coli. I. Enzymatic activity associated withrecB+ andrecC+ genes. Proc. Natl. Acad. Sci. U.S.A. 1970; 65: 955
  • Goldmark P. J., Linn S. An endonuclease activity fromEscherichia coli absent from certainrec strains. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 434
  • Tomizawa J., Ogawa H. Structural genes of ATP-depen dent deoxyribonuclease of. E. coli, Nature (London) New Biol. 1972; 239: 14
  • Goldmark P. J., Linn S. Purification and properties of therecBC DNase ofEscherichia coli K-12. J. Biol. Chem. 1972; 247: 1849
  • Bresler S. E., Krivonogov S. V., Lanzov V. A. Scale of the genetic map and genetic control of recombination after conjugation inEscherichia coli K-12: hot spots of recombination. Mol. Gen. Genet. 1978; 166: 337
  • Clark A. J. personal communication 1979
  • Defais M., Caillet-Fauquet P., Fox M. S., Radman M. Induction kinetics of mutagenic DNA repair activity inE. coli following ultraviolet irradiation. Mol. Gen. Genet. 1976; 148: 125
  • Miura A., Tomizawa J. Studies on radiation sensitive mutants ofE. coli. III. Participation of therec system in induction of mutation by ultraviolet irradiation. Mol. Gen. Genet. 1968; 103: 1
  • Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of λ in different genetic systems. Virology 1971; 43: 495
  • Day R. S. III, UV-induced alleviation of K-specific restriction of bacteriophage λ. J. Virol. 1977; 21: 1249
  • Gudas L. J., Mount D. W. Identification of therecA(tif) gene product of. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 5280
  • Oishi M., Smith C. L., Friefeld B. Molecular events and molecules that lead to induction of prophage and SOS functions. Cold Spring Harbor Symp. Quant. Biol. 1978; 23: 897
  • Smith C. L., Oishi M. Early events and mechanisms in the induction of bacterial SOS functions: analysis of the phage repressor inactivation process in vivo. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1657
  • Oishi M., Smith C. L. Inactivation of phage repressor in a permeable cell system: role ofrecBC DNase in induction. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3569
  • Little J. W., Hanawalt P. C. Induction of protein X in. Escherichia coli, Mol. Gen. Genet. 1977; 150: 237
  • Smith K. C., Youngs D. A., Van der Schueren E., Carlson K. M., Sargentini N. J. Excision repair and mutagenesis are complex processes. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 247
  • Roberts J. W., Roberts C. W., Mount D. W. Inactivation and proteolytic cleavage of phage λ repressor in vitro in an ATP-dependent reaction. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 2283
  • Roberts J. W., Roberts C. W., Craig N. L. Escherichia coli recA gene product inactivates phage λ repressor. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 4714
  • Howard-Flanders P., Boyce R. P. DNA repair and genetic recombination: studies on mutants ofEscherichia coli defective in these processes. Rad. Res. Suppl. 1966; 6: 156
  • Mattern I. E., Zwenk H., Rörsch A. The genetic constitution of the radiation-sensitive mutantEscherichia coli Bs-1. Mutat. Res. 1966; 3: 374
  • Donch J., Greenberg J., Green M. H. L. Repression of induction by UV of λ phage byexrA mutations in. Escherichia coli, Genet. Res. 1970; 15: 87
  • Donch J. J., Green M. H. L., Greenberg J. Conditional induction of λ prophage inexrA mutants of. Escherichia coli, Genet. Res. 1971; 17: 161
  • Mount D. W., Low K. B., Edmiston S. J. Dominant mutations(lex) inEscherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. J. Bacteriol. 1972; 112: 886
  • Gudas L. J. The induction of protein X in DNA repair and cell division mutants of. Escherichia coli, J. Mol. Biol. 1976; 104: 567
  • Sedgwick S. G. Inducible error-prone repair in. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 2753
  • Mount D. W., Kosel C. Ultraviolet light-induced mutation in UV-resistant, thermosensitive derivatives oflexA- strains ofEscherichia coli K-12. Mol. Gen. Genet. 1975; 136: 95
  • Mount D. W. A mutant ofEscherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathway. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 300
  • Clark A. J., Margulies A. D. Isolation and characterization of recombination-deficient mutants of. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1965; 53: 451
  • Kirby E. P., Jacob F., Goldthwait D. A. Prophage induction and filament formation in a mutant strain of. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1967; 58: 1903
  • Castellazzi M., George J., Buttin G. Prophage induction and cell division inE. coli. I. Further characterization of the thermosensitive mutationtif-1 whose expression mimics the effect of UV irradiation. Mol. Gen. Genet. 1972; 119: 139
  • Witkin E. M. Thermal enhancement of ultraviolet mutability in atif-l uvrA derivative ofEscherichia coli B/r: evidence that ultraviolet mutagenesis depends upon an inducible function. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1930
  • Witkin E. M. Persistence and decay of thermoinducible error-prone repair activity in nonfilamentous derivatives oftif-l Escherichia coli B/ r: the timing of some critical events in ultraviolet mutagenesis. Mol. Gen. Genet. 1975; 142: 87
  • Castellazzi M., George J., Buttin G. Prophage induction and cell division inE. coli. II. Linked (recA. zab) and unlinked (lex) suppressors oftif-I-mediated induction and filamentation. Mol. Gen. Genet. 1972; 119: 153
  • Weigle J. J. Induction of mutation in a bacterial virus. Proc. Natl. Acad. Sci. U.S.A. 1953; 39: 628
  • Tessman E. S., Ozaki T. The interaction of phage S13 with ultraviolet-irradiated host cells and properties of the ultraviolet-irradiated phage. Virology 1960; 12: 431
  • Caillet-Fauquet P., Defais M. Phage yield during W-reactivation of bacteriophage λ. Mutat. Res. 1977; 45: 161
  • Mount D. W., Kosel C. K., Walker A. Inducible, error-free DNA repair intsl recA mutants of. E. coli, Mol. Gen. Genet. 1976; 146: 37
  • Bresler S. E., Kalinin V. L., Shelegedin V. N. W-reactivation and W-mutagenesis of gamma-irradiated phage lambda. Mutat. Res. 1978; 49: 341
  • Rothman R. H., Margossian L. J., Clark A. J. W-reactivation of phage lambda inrecF, recL, uvrA, anduvrB mutants ofE. coli K-12. Mol. Gen. Genet. 1979; 169: 279
  • Walker G. C., Dobson P. P. Mutagenesis and repair deficiencies ofEscherichia coli umuC mutants are suppressed by the plasmid pKM101. Mol. Gen. Genet. 1979; 172: 17
  • Defais M., Jeggo P., Samson L., Schendel P. F. Effect of the adaptive response on the induction of the SOS pathway inE. coli K-12. Mol. Gen. Genet. 1980; 177: 653
  • Kato T., Rothman R. H., Clark A. J. Analysis of the role of recombination and repair in mutagenesis ofEscherichia coli by UV-irradiation. Genetics 1977; 87: 1
  • Kato T., Shinoura Y. Isolation and characterization of mutants ofEscherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 1977; 156: 121
  • Schendel P. F., Defais M. The role ofumuC gene product in mutagenesis by simple alkylating agents. Mol. Gen. Genet. 1980; 177: 661
  • Young E., Sinsheimer R. Vegetative λ DNA. III. Pulse-labeled components. J. Mol. Biol. 1968; 33: 49
  • Carter B. J., Smith M. G. Intracellular pools of bacteriophage λ deoxyribonucleic acid. J. Mol. Biol. 1970; 50: 713
  • Inman R. B., Schnös M. Structure of branch points in replicating DNA: presence of single-stranded connections in λ DNA branch points. J. Mol. Biol. 1971; 56: 319
  • Takahashi S. The rolling-circle replicative structure of a bacteriophage λ DNA. Biochem. Biophys. Res. Commun. 1974; 61: 607
  • Takahashi S. The starting point and direction of rolling-circle replicative intermediates of coliphage λ DNA. Mol. Gen. Genet. 1975; 142: 137
  • Bastia B., Sueoka N., Cox E. C. Studies on the late replication of phage lambda: rolling-circle replication of the wild type and a partially suppressed strain, Qam29am80. J. Mol. Biol. 1975; 98: 305
  • Ichikawa-Ryo H., Kondo S. Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J. Mol. Biol. 1975; 97: 77
  • Nüsslein V., Otto B., Bonhoeffer F., Schaller H. Function of DNA polymerase III in DNA replication. Nature (London) New Biol. 1971; 234: 285
  • Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutat. Res. 1969; 8: 215
  • Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of ultraviolet-light induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of. Escherichia coli, Mutat. Res. 1970; 9: 349
  • Bridges B. A., Mottershead R. RecA+-dependent mutagenesis occurring before DNA replication in UV- and γ-irradiated Escherichia coli. Mutat. Res. 1971; 13: 1
  • Bresler S. E., Kalinin V. L., Kopylova Y. I., Krivisky A. S., Rybchin V. N., Shelegedin V. N. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages. Mutat. Res. 1975; 29: 1
  • Bresler S. E. Theory of misrepair mutagenesis. Mutat. Res. 1975; 29: 467
  • Witkin E. M. Mutation-proof and mutation-prone modes of survival in derivatives ofEscherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 1967; 20: 17
  • Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXVI. A proofreading function for the 3′-5′ exonuclease activity in deoxyribonucleic acid polymerase. J. Biol. Chem. 1972; 247: 241
  • Coulondre C., Miller J. H. Genetic studies of thelac repressor. IV. Mutagenic specificity in thelacl gene of. Escherichia coli, J. Mol. Biol. 1977; 117: 577
  • Bridges B. A., Mottershead R. P. Mutagenic DNA repair inEscherichia coli. VIII. Involvement of DNA polymerase III in constitutive and inducible mutagenic repair after ultraviolet and gamma irradiation. Mol. Gen. Genet. 1978; 162: 35
  • Radman M., Villani G., Boiteux S., Defais M., Caillet-Fauquet P., Spadari S. On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens. Origins of Human Cancer, Parts A B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 903
  • Villani G., Boiteux S., Radman M. Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3037
  • Youngs D. A., Van der Schueren E., Smith K. C. Separate branches of theuvr gene-dependent excision repair process in ultraviolet-irradiatedEscherichia coli K-12 cells; their dependence upon growth medium and thepolA, recA, recB, andexrA genes. J. Bacteriol. 1974; 117: 717
  • Cooper P. Excision-repair in mutants ofEscherichia coli deficient in DNA polymerase I and/or its associated 5′-3′ exonuclease. Mol. Gen. Genet. 1977; 150: 1
  • Kato T. Effects of chloramphenicol and caffeine on post-replication repair inuvrA umuC anduvrA recF strains ofEscherichia coli K-12. Mol. Gen. Genet. 1977; 156: 115
  • Mount D. W., Walker A. C., Kosel C. Effect oftsl mutations in decreasing radiation sensitivity of arecA strain ofEscherichia coli K-12. J. Bacteriol. 1975; 121: 1203
  • Mount D. W., Walker A. C., Kosel C. Indirect suppression of radiation sensitivity of arecA strain ofEscherichia coli K-12. Molecular Mechanisms for Repair of DNA, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 383
  • Sedliaková M., Prachař J., Mašek F. Dependence of DNA dark repair on protein synthesis in. Escherichia coli, Mol. Gen. Genet. 1977; 153: 23
  • Sedliaková M., Slezáriková V., Mażek F., Brozmanová J. UV-inducible repair: influence on survival, dimer excision, DNA replication and breakdown inEscherichia coli B/r Hcr+ cells. Mol. Gen. Genet. 1978; 160: 81
  • Sedliaková M., Slezáriková V., Piršel M. UV-inducible repair. II. Its role in various defective mutants ofEscherichia coli K-12. Mol. Gen. Genet. 1978; 167: 209
  • Kato T., Shinoura Y. Genetic control of an inducible mutagenic pathway of repair inEscherichia coli. Int. Cong. Genetics 1979; 14, in press
  • Cole R. S. Repair of DNA containing interstrand crosslinks inEscherichia coli: Sequential excision and recombination. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1064
  • Cole R. S., Sinden R. R. Repair of cross-linked DNA inEscherichia coli. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 487
  • Cole R., Levitan D., Sinden R. Removal of psoralen interstrand cross-links from DNA ofEscherichia coli: mechanism and genetic control. J. Mol. Biol. 1976; 103: 39
  • Cole R. S., Sinden R. R., Yoakum G. H., Broyles S. On the mechanism for repair of cross-linked DNA inE. coli treated with psoralen and light. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 287
  • Sinden R. R., Cole R. S. Repair of cross-linked DNA and survival ofEscherichia coli treated with psoralen and light: effects of mutations influencing genetic recombination and DNA metabolism. J. Bacteriol. 1978; 136: 538
  • Ůayama I., Otsuji N. Mutation by mitomycins in the ultraviolet light-sensitive mutant of. Escherichia coli, Mutat. Res. 1973; 18: 117
  • Lawley P. D., Brookes P. Cytotoxicity of alkylating agents towards sensitive and resistant strains ofEscherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acid. Biochem. J. 1968; 109: 433
  • Lawley P. D., Brookes P. Molecular mechanism of cytotoxic action of difunctional alkylating agents and of resistance to this action. Nature (London) 1965; 206: 480
  • Kondo S., Ichikawa H., Iwo K., Kato T. Base-change mutagenesis and prophage induction in strains ofEscherichia coli with different DNA repair capacities. Genetics 1970; 66: 187
  • Seki T., Nozu K., Kondo S. Differential causes of mutation and killing inEscherichia coli after psoralen plus light treatment: monoadducts and cross-links. Photochem. Photobiol. 1978; 27: 19
  • Youngs D. A., Smith K. C. Evidence for excision repair of base damage produced by ionizing radiation. Radiat. Res. 1974; 59: 14
  • Johansen I. The radiobiology of DNA strand breakage. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 459
  • Youngs D. A., Smith K. C. The yield and repair of X-ray-induced single-strand breaks in the DNA ofEscherichia coli K-12 cells. Radiat. Res. 1976; 68: 148
  • Ley R. D., Sedita B. A., Boye E. DNA polymerase I-mediated repair of 365 nm-induced single-stand breaks in the DNA of. Escherichia coli, Photochem. Photobiol. 1978; 27: 323
  • Waldstein E. A. Role of exonucleases V and VIII in adenosine 5′-triphosphate- and deoxynucleotide triphosphate-dependent strand break repair in toluenizedEscherichia coli cells treated with X-rays. J. Bacteriol. 1979; 139: 1
  • Pauling C., Beck L. A. Role of DNA ligase in the repair of single-strand breaks induced in DNA by mild heating of. Escherichia coli, J. Gen. Microbiol. 1975; 87: 181
  • Krisch R. E., Krasin F., Sauri C. J. DNA breakage, repair and lethality after125I decay inrec+ andrecA strains of. Escherichia coli, Int. J. Radiat. Biol. 1976; 29: 37
  • Krasin F., Hutchinson F. Repair of double-strand breaks inEscherichia coli, which requiresrecA function and the presence of a duplicate genome. J. Mol. Biol. 1977; 116: 81
  • Ulmer K. M., Gomez R. F., Sinskey A. J. Ionizing radiation damage to the folded chromosome ofEscherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid. J. Bacteriol. 1979; 138: 486
  • Lerman L. S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961; 3: 18
  • Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 77
  • Georghiou S. Interaction of acridine drugs with DNA and nucleotides. Photochem. Photobiol. 1977; 26: 59
  • Ritchie D. A. Mutagenesis with light and proflavine in phage T4. II. Properties of the mutants. Genet. Res. 1965; 6: 474
  • Calberg-Bacq C. M., Delmelle M., Duchesne J. Inactivation and mutagenesis due to the photo-dynamic action of acridines and related dyes on extracellular bacteriophage T4B. Mutat. Res. 1968; 6: 15
  • Calberg-Bacq C. M., Soquet-Descans F., Piette J. Photodynamic effects of proflavine on bacteriophage øX174 and its isolated DNA. Photochem. Photobiol. 1977; 26: 573
  • Piette J., Calberg-Bacq C. M., Van der Vorst A. Photodynamic effect of proflavine on ØX174 bacteriophage, its DNA replicative form and its isolated single-stranded DNA: inactivation, mutagenesis and repair. Mol. Gen. Genet. 1978; 167: 95
  • Piette J., Calberg-Bacq C. M., Van der Vorst A. Production of breaks in single- and double-stranded forms of bacteriophage ØX174 DNA by proflavine and light treatment. Photochem. Photobiol. 1979; 30: 369
  • Löber G., Kittler L. Selected topics in photochemistry of nucleic acids: recent results and perspectives. Photochem. Photobiol. 1977; 25: 215
  • Ames B. N., Whitfield H. J., Jr. Frameshift mutagenesis in Salmonella. Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 221
  • Ames B. N., Sims P., Grover P. L. Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens. Science 1972; 176: 47
  • Ames B. N., Gurney E. G., Miller J. A., Bartsch H. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 3128
  • Creech H. J., Preston R. K., Peck R. M., O'Connell A. P., Ames B. N. Antitumor and mutagenic properties of a variety of heterocyclic nitrogen and sulfur mustards. J. Med. Chem. 1972; 15: 739
  • Hirota Y. The effect of acridine dyes on mating type factors in. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1960; 46: 57
  • Thielmann H. W., Gersbach H. The nucleotide-permeableEscherichia coli cell, a sensitive DNA repair indicator for carcinogens, mutagens, and antitumor agents binding covalently to DNA. Z. Krebsforsch. 1978; 92: 177
  • Baas P. D., Jansz H. S. Asymetric information transfer during øX174 DNA replication. J. Mol. Biol. 1972; 63: 557
  • Nevers P., Spatz H. Escherichia coli mutantsuvrD anduvrE deficient in gene conversion of λ-heteroduplexes. Mol. Gen. Genet. 1975; 139: 133
  • Wildenberg J., Meselson M. Mismatch repair in heteroduplex DNA. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 2202
  • Berger H., Pardoll D. Evidence that mismatched bases in heteroduplex T4 bacteriophage are recognized. in vivo, J. Bacteriol. 1976; 20: 441
  • Rydberg B. Bromouracil mutagenesis inEscherichia coli, evidence for involvement of mismatch repair. Mol. Gen. Genet. 1977; 152: 19
  • Hutchinson F., Stein J. Mutagenesis of lambda phage: 5-bromouracil and hydroxylamine. Mol. Gen. Genet. 1977; 152: 29
  • Kaudewitz F. Production of bacterial mutants with nitrous acid. Nature (London) 1959; 183: 1829
  • Schuster H. The reaction of nitrous acid with DNA. Biochem. Biophys. Res. Commun. 1960; 2: 320
  • Drake J. W. The Molecular Basis of Mutation. Holden-Day, San Francisco 1970; 106
  • Glickman B., Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1063
  • Glickman B., Van den Elsen P., Radman M. Induced mutagenesis indam mutants ofEscherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol. Gen. Genet. 1978; 163: 307
  • Marinus M. G., Morris N. R. Isolation of deoxyribonucleic acid methylase mutants ofEscherichia coli K-12. J. Bacteriol. 1973; 114: 1143
  • Adams R. Newly synthesized DNA is not methylated. Biochem. Biophys. Acta 1974; 335: 365
  • Wagner R., Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4135
  • Glickman B. W. Spontaneous mutagenesis inEscherichia coli strains lacking 6-methyladenine residues in their DNA: an altered mutational spectrum indam mutants. Mutat. Res. 1979; 61: 153
  • Friedberg E. C., Bonura T., Cone R., Simmons R., Anderson C. Base excision repair of DNA. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 163
  • Linn S. Enzymology of base excision repair. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 175
  • Lindahl T. An N-glycosidase fromEscherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 3649
  • Lindahl T., Karran P., Riazuddin S. DNA glycosylases ofEscherichia coli. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 179
  • Lindahl T. New class of enzymes acting on DNA. Nature (London) 1976; 259: 64
  • Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase fromEscherichia coli. J. Biol. Chem. 1977; 252: 3286
  • Riazuddin S., Lindahl T. Properties of 3-methyladenine-DNA glycosylase fromEscherichia coli. Biochemistry 1978; 17: 2110
  • Karran P., Lindahl T. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues. J. Biol. Chem. 1978; 253: 5877
  • Duncan B. K., Rockstroh P. A., Warner H. R. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J. Bacteriol. 1978; 134: 1039
  • Krych M., Pietrzykowska I., Szyszko J., Shugar D. Genetic evidence fo the nature, and excision repair, of DNA lesions resulting from incorporation of 5-bromouracil. Mol. Gen. Genet. 1979; 171: 135
  • Verly W. G., Paquette Y. An endonuclease for depurinated DNA inEscherichia coli B. Can. J. Biochem. 1972; 50: 217
  • Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 1972; 11: 3618
  • Verly W. G., Paquette Y., Thibodeau L. Nuclease for DNA apurinic sites may be involved in the maintenance of DNA in normal cells. Nature (London) New Biol. 1973; 244: 67
  • Verly W. G., Rassart E. Purification ofEscherichia coli endonuclease specific for apurinic sites in DNA. J. Biol. Chem. 1975; 250: 8214
  • Yajko D. M., Weiss B. Mutations simultaneously affecting endonuclease II and exonuclease III in. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 688
  • Ljungquist S., Lindahl T., Howard-Flanders P. Methyl methane-sulfonate-sensitive mutant ofEscherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J. Bacteriol. 1976; 126: 646
  • Weiss B. Endonuclease II ofEscherichia coli is exonuclease III. J. Biol. Chem. 1976; 251: 1896
  • White B. J., Hochhauser S. J., Cintron N. M., Weiss B. Genetic mapping ofxthA, the structural gene for exonuclease III inEscherichia coli K-12. J. Bacteriol. 1976; 126: 1082
  • Verly W. G. Endonucleases specific for apurinic sites in DNA. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 187
  • Weiss B., Rogers S. G., Taylor A. F. The endonuclease activity of exonuclease III and the repair of uracil-containing DNA inEscherichia coli. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 191
  • Yamamoto Y., Katsuki M., Sekiguchi M., Otsuji N. Escherichia coli gene that controls sensitivity to alkylating agents. J. Bacteriol. 1978; 135: 144
  • Yamamoto Y., Sekiguchi M. Pathways for repair of DNA damaged by alkylating agent inEscherichia coli. Mol. Gen. Genet. 1979; 171: 251
  • Loveless A. Possible relevance of 0–6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature (London) 1969; 223: 206
  • Lawley P. D., Thatcher C. J. Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N-nitro-N-nitrosoguanidine. The influence of cellular thiol concentrations on the extent of methylation and the 6-oxygen atom of guanine as a site of methylation. Biochem. J. 1970; 116: 693
  • Lawley P. D., Orr D. J. Specific excision of methylation products from DNA ofEscherichia coli treated with N-methyl-N-nitro-N-nitrosoguanidine. Chem. Biol. Interact. 1970; 2: 154
  • Lawley P. D., Shah S. A. Reaction of alkylating mutagens and carcinogens with nucleic acid: detection and estimation of a small extent of methylation at 0–6 of guanine in DNA by methyl methanesulphonate. in vitro, Chem. Biol. Interact. 1972; 5: 286
  • Lawley P. D. Comparison of alkylating agent and radiation carcinogenesis: some aspects of the possible involvement of effects on DNA. Biology of Radiation Carcinogenesis, J. M. Yuhas, R. W. Tennant, J. D. Regan. Raven Press, New York 1976; 165
  • Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog. Nucleic Acid Res. Mol. Biol. 1975; 15: 219
  • Singer B. All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature (London) 1976; 264: 333
  • Gerehman L. L., Ludlum D. B. The properties of O6-methylguanine in templates for RNA polymerase. Biochim. Biophys. Acta 1973; 308: 310
  • Lawley P. D., Martin C. N. Molecular mechanisms in alkylation mutagenesis. Induced reversion of bacteriophage T4rII AP72 by ethyl methanesulphonate in relation to extent and mode of ethylation of purines in bacteriophage deoxyribonucleic acid. Biochem. J. 1975; 145: 85
  • Abbott P. J., Saffhill R. DNA synthesis with methylated poly(dA-dT) templates: evidence for a competitive nature to miscoding by O6-methylguanine. Biochim. Biophys. Acta 1979; 562: 51
  • Abbott P. J., Saffhill R. DNA synthesis with methylated poly(dA-dT) templates: possible role of O4-methyl thymine as a pro-mutagenic base. Nucleic Acids Res. 1977; 4: 761
  • Saffhill R., Abbott P. J. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate: evidence that O2-methylthymine does not miscode during DNA synthesis. Nucleic Acids Res. 1971; 5, 1978
  • Singer B., Fraenkel-Conrat H., Kusmlerek J. T. Preparation and template activities of polynucleotides containing O2- and O4-alkyluridine. Proc. Natl. Acad. Sci, U.S.A. 1978; 75: 1722
  • Singer B., Pergolizzl R. G., Grunberger D. Synthesis and coding properties of dinucleoside diphosphates containing alkyl pyrimidines which are formed by the action of carcinogens on nucleic acids. Nucleic Acids Res. 1979; 6: 1709
  • Schendel P. F., Defais M., Jeggo P., Samson L., Cairns J. Pathways of mutagenesis and repair inEscherichia coli exposed to low levels of simple alkylating agents. J. Bacteriol. 1978; 135: 466
  • Cerda-Olmedo E., Hanawalt P. C. Diazomethane as the active agent in nitrosoguanidine mutagenesis and lethality. Mol. Gen. Genet. 1968; 101: 191
  • Neale S. Effect of pH and temperature on nitrosamide-induced mutation in. Escherichia coli, Mutat. Res. 1972; 14: 155
  • Jiménez-Sáchez A., Cerdá-Olmedo E. Mutation and DNA replication inEscherichia coli treated with low concentrations of N-methyl-N-nitro-N-nitrosoguanidine. Mutat. Res. 1975; 28: 337
  • Neale S. Mutagenicity of nitrosamides and nitrosamidines in micro-organisms and plants. Mutat. Res. 1976; 32: 229
  • Samson L., Cairns J. A new pathway for DNA repair inEscherichia coli. Nature (London) 1977; 267: 281
  • Jeggo P., Defais M., Samson L., Schendel P. An adaptive response ofE. coli to low levels of alkylating agent: comparison with previously characterised DNA repair pathways. Mol. Gen. Genet. 1977; 157: 1
  • Jeggo P., Defais M., Samson L., Schendel P. An adaptive response ofE. coli to low levels of alkylating agent. DNA Synthesis Present and Future, I. Molineux, M. Kohiyama. Plenum Press, New York 1978; 1011
  • Schendel P. F., unpublished results
  • Samson L. personal communication 1979
  • Jeggo P., Defais M., Samson L., Schendel P. An adaptive response ofE. coli to low levels of alkylating agent: the role ofpolA in killing adaptation. Mol. Gen. Genet. 1978; 162: 299
  • Miyaki M., Sai G., Katagiri S. Enhancement of DNA polymerase II activity inE. coli after treatment with N-methyl-N-nitro-N-nitrosoguanidine. Biochem. Biophys. Res. Commun. 1977; 76: 136
  • Jeggo P. The adaptive response ofE. coli: a comparison of its two components, killing and mutagenic adaptation. Mutat. Res. 1980, in press
  • Jeggo P. Isolation and characterization ofEscherichia coli K-12 mutants unable to induce the adaptive response to simple alkylating agents. J. Bacteriol. 1979; 139: 783
  • Ishii Y., Kondo S. Comparative analysis of deletion and base-change mutabilities ofEscherichia coli B strains differing in DNA repair capacity (wild-typeuvrA,polA,recA) by various mutagens. Mutat. Res. 1975; 27: 27
  • Hince T. A., Neale S. Physiological modification of alkylating-agent induced mutagenesis. I. Effect of growth rate and repair capacity of nitrosomethylurea-induced mutation ofEscherichia coli. Mutat. Res. 1977; 46: 1
  • Lawley P. D. Methylation of DNA by carcinogens: some applications of chemical analytical methods. Screening Tests in Chemical Carcinogenesis, R. Montesano, H. Bartsch, L. Tomatis. IARC Scientific Publications, LyonFrance 1976; Vol. 12: 181
  • Konrad E. B., Modrich P., Lehman I. R. Genetic and enzymatic characterization of a conditional lethal mutant ofEscherichia coli K-12 with a temperature-sensitive DNA ligase. J. Mol. Biol. 1973; 77: 519
  • Billen D., Hellermann G. R. The role of DNA polymerases in DNA repair inEscherichia coli: DNA polymerase I-dependent repair following chemical alkylation of permeabilized bacteria. Chem. Biol. Interact. 1977; 18: 365
  • Billen D., Hellermann G. R. Enhancement of deoxyribonucleic acid polymerase I-directed repair synthesis in toluene-treatedEscherichia coli after growth in the presence of low levels of N-methyl-N-nitro-N-nitrosoguanidine. J. Bacteriol. 1979; 137: 1439
  • Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nature (London) New Biol. 1971; 230: 122
  • Schendel P. F., Defais M., Jeggo P., Samson L., Cairns J. Pathways involved in repair of alkylation damage inE. coli. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 391
  • Swenson P. A., Schenley R. L. Death through respiratory failure of a fraction of ultravioletirradiatedEscherichia coli B/r cells. J. Bacteriol. 1972; 111: 658
  • Swenson P. A., Schenley R. L. Respiration, growth and viability of repair-deficient mutants ofEscherichia coli after ultraviolet irradiation. Int. J. Radiat. Biol. 1974; 25: 51
  • Sklar R. Enhancement of nitrosoguanidine mutagenesis by chloramphenicol inEscherichia coli K-12. J. Bacteriol. 1978; 136: 460
  • Schendel P. F., Robins P. E. Repair of O6-methylguanine in adapted. Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 6017
  • Robins P., Cairns J. Quantitation of the adaptive response to alkylating agents. Nature (London) 1979; 280: 74
  • Karran P., Lindahl T., Griffin B. Adaptive response to alkylating agents involves alterationin situ of O6-methylguanine residues in DNA. Nature (London) 1979; 280: 76
  • Jeggo P. personal communication 1979
  • Cairns J. personal communication 1979
  • Gaudin D., Yielding K. L. The use of formamide gradients to distinguish between alkali labile regions and single-strand breaks in DNA. Biochem. Biophys. Res. Commun. 1972; 47: 1396
  • Brent T. P., Teebor G. W., Duker N. J. Lesions in alkylated DNA determined by susceptibility to alkali, apurinic endonuclease or N-glycosidase. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 19
  • Lawley P. D. Some chemical aspects of dose-response relationships in alkylation mutagenesis. Mutat. Res. 1974; 23: 283
  • Doll R. (1977) Origins of Human Cancer, Parts A, B, and C. Introduction to meeting on origins of human cancer. 1977, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1
  • Selikoff I. J. Cancer risk of asbestos exposure. Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 1765
  • Benditt E. P. The origins of atherosclerosis. Sci. Am. 1977; 236: 74
  • Peto R. Epidemiology, multistage models, and short-term mutagenicity tests. Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 1403
  • Holliday R. The relationship between cellular aging and genetic defects. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 769
  • Regan J. D., Trosko J. E., Carrier W. L. Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro. Biophys. J. 1968; 8: 319
  • Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature (London) 1968; 218: 652
  • Cleaver J. E., Painter R. B. Evidence for repair replication in HeLa cell DNA damaged by ultraviolet light. Biochim. Biophys. Acta. 1968; 161: 552
  • Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc. Natl. Acad. Sci. U.S.A. 1969; 64: 1035
  • Cleaver J. E., Trosko J. E. Absence of excision of ultraviolet-induced cyclobutane dimers in xeroderma pigmentosum. Photochem. Photobiol. 1970; 11: 547
  • Lieberman M. W., Dipple A. Removal of bound carcinogen during DNA repair in nondividing human lymphocytes. Cancer Res. 1972; 32: 1855
  • Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974; 34: 3318
  • Mattern M. R., Hariharan P. V., Cerutti P. A. Selective excision of gamma ray damaged thymine from the DNA of cultured mammalian cells. Biochim. Biophys. Acta 1975; 395: 48
  • Sarasin A. R., Smith C. A., Hanawalt P. C. Repair of DNA in human cells after treatment with activated aflatoxin B1. Cancer Res. 1977; 37: 1786
  • Ahmed F. E., Setlow R. B. Different rate-limiting steps in excision repair of ultraviolet- and N-acetoxy-2-acetylaminofluorene-damaged DNA in normal human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 1548
  • Shinohara K., Cerutti P. A. Excision repair of benzo(a)pyrene-deoxyguanosine adducts in baby hamster kidney 21/c13 cells and in 2° mouse embryo fibroblasts C57BL/6J. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 979
  • Smith C. A. Removal of T4 endonuclease V sensitive sites and repair replication in confluent human diploid fibroblasts. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 311
  • Ehmann U. K., Cook K. H., Friedberg E. C. Studies on the molecular mechanism of nucleotide excision repair in UV-irradiated human cells in culture. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 315
  • Ahmed F. E., Setlow R. B. Excision repair in mammalian cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 333
  • Ahmed F. E., Setlow R. B. DNA repair in xeroderma pigmentosum cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene. Cancer Res. 1979; 39: 471
  • Brown A. J., Fickel T. H., Cleaver J. E., Lohman P. H. M., Wade M. H., Waters R. Overlapping pathways for repair of damage from ultraviolet light and chemical carcinogens in human fibroblasts. Cancer Res. 1979; 39: 2522
  • Setlow R. B., Regan J. D., Carrler W. L. Different levels of excision repair in mammalian cell lines. Biophys. Soc. Annu. Meet. Abstr. 1972; 12: 19a
  • Ahmed F. E., Setlow R. B. DNA repair in V-79 cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene. Cancer Res. 1977; 37: 3414
  • Ben-Ishai R., Peleg L. Excision-repair in primary cultures of mouse embryo cells and its decline in progressive passages and established cell lines. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 607
  • Kraemer K. H., DeWeerd-Kastelein E. A., Robbins J. H., Keijzer W., Barrett S. F., Petinga R. A., Bootsma D. Five complementation groups in xeroderma pigmentosum. Mutat. Res. 1975; 33: 327
  • Bootsma D. Xeroderma pigmentosum. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 589
  • Welssbach A. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 1977; 46: 25
  • Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehman I. R., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single-strand break. J. Biol. Chem. 1970; 245: 39
  • Sekiguchi M., Hayakawa H., Makino F., Kanaka K., Ohada Y. A human enzyme that liberates uracil from DNA. Biochem. Biophys. Res. Commun. 1976; 73: 293
  • Sirover M. A. Induction of the DNA repair enzyme uracil-DNA glycosylase in stimulated human lymphocytes. Cancer Res. 1979; 39: 2090
  • Verly W. G., Paquette Y. An endonuclease for depurinated DNA in rat liver. Can. J. Biochem. 1973; 51: 1003
  • Ljungquist S., Lindahl T. A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. I. Purification and general properties. J. Biol. Chem. 1974; 249: 1530
  • Kuhnlein U., Penhoet E. F., Linn S. An altered apurinic DNA endonuclease activity in group A and group D xeroderma pigmentosum fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1169
  • Linsley W. S., Penhoet E. F., Linn S. Human endonuclease specific for apurinic/apyrimidinic sites in DNA: partial purification and characterization of multiple forms from placenta. J. Biol. Chem. 1977; 252: 1235
  • Linn S., Kuhnlein U., Deutsch A. Enzymes from human fibroblasts for the repair of AP DNA. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 199
  • Deutsch W. A., Linn S. DNA binding activity from cultured human fibroblasts that is specific for partially depurinated DNA and that inserts purines into apurinic sites. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 141
  • Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of X-ray induced breaks in the DNA of leukaemia cells. Nature (London) 1967; 214: 790
  • Humphrey R. M., Steward D. L., Sedita B. A. DNA-strand breaks and rejoining following exposure of synchronized Chinese hamster cells to ionizing radiation. Mutat. Res. 1968; 6: 459
  • Cleaver J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl. Acad. Sci. U.S.A. 1969; 63: 428
  • Painter R. B., Young B. R. Repair replication in mammalian cells after X-irradiation. Mutat. Res. 1972; 14: 225
  • Fox M., Fox B. W. Repair replication in X-irradiated lymphoma cells in vitro. Int. J. Radiat. Biol. 1973; 23: 333
  • Corry P. M., Cole A. Double-strand rejoining in mammalian DNA. Nature (London) New. Biol. 1973; 245: 100
  • Cole A., Shonka F., Corry P., Cooper W. G. CHO cell repair of single-strand and double-strand DNA breaks induced by γ- and α-radiations. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 665
  • Lange C. S. The repair of DNA double-strand breaks in mammalian cells and the organization of the DNA in their chromosomes. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 677
  • Dugle D. L., Gillespie C. Kinetics of the single-strand repair mechanism in mammalian cells. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 685
  • Elkind M. M. Damage-repair studies of the DNA from X-irradiated Chinese hamster cells. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 689
  • Hutchenson F. Current knowledge of the formation and repair of DNA double-strand breaks. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 699
  • Setlow R. B., Faulcon F. M., Regan J. D. Defective repair of gamma-ray-induced damage in xeroderma pigmentosum cells. Int. J. Radiat. Biol. 1976; 29: 125
  • Ahnström G., Edvardsson K. Repair of DNA breaks induced by gamma rays and fast neutrons in Chinese hamster cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 469
  • Sutherland B. M. Photoreactivating enzyme from human leukocytes. Nature (London) 1974; 248: 109
  • Sutherland B. M., Runge P., Sutherland J. C. DNA photoreactivating enzyme from placental mammals: origin and characteristics. Biochemistry 1974; 13: 4710
  • Sutherland B. M., Rice M., Wagner E. K. Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 103
  • Sutherland B. M., Oliver R. Culture conditions affect photoreactivating enzyme levels in human fibroblasts. Biochim. Biophys. Acta 1976; 442: 358
  • Mortelmans K., Cleaver J. E., Friedberg E. C., Paterson M. C., Smith B. P., Thomas G. H. Photoreactivation of thymine dimers in UV-irradiated human cells: unique dependence on culture conditions. Mutat. Res. 1977; 44: 433
  • Chen J., Huang C. W., Hinman L., Gordon M. P., Deranleau D. A. Photomonomerization of pyrimidine dimers by indoles and proteins. J. Theor. Biol. 1976; 62: 53
  • Meneghini R., Hanawalt P. C. Post-replication repair in human cells: on the presence of gaps opposite dimers and recombination. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 639
  • Meneghini R., Hanawalt P. C. T4-endonuclease V-sensitive sites in DNA from ultravioletirradiated human cells. Biochim. Biophys. Acta 1976; 425: 428
  • Meneghini R., Mench C. F. M. Pyrimidine dimers in DNA strands of mammalian cells synthesized after UV-irradiation. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 493
  • D'Ambrosio S. M., Setlow R. B. On the presence of UV-endonuclease sensitive sites in daughter DNA of UV-irradiated mammalian cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 499
  • Lehmann A. R., Kirk-Bell S. Pyrimidine dimer sites associated with the daughter DNA strands on UV-irradiated human fibroblasts. Photochem. Photobiol. 1978; 27: 397
  • Meyn R. E., Humphrey R. M. Deoxyribonucleic acid synthesis in ultraviolet-light-irradiated Chinese hamster cells. Biophys. J. 1971; 11: 295
  • Buhl S. N., Stillman R. M., Setlow R. B., Regan J. D. DNA chain elongation and joining in normal human and xeroderma pigmentosum cells after ultraviolet irradiation. Biophys. J. 1972; 12: 1183
  • Lehmann A R. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol. 1972; 66: 319
  • Lehmann A. R., Kirk-Bell S. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells: no gaps in DNA synthesized late after ultraviolet irradiation. Eur. J. Biochem. 1972; 31: 438
  • Buhl S. N., Setlow R. B., Regan J. D. Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol. 1972; 22: 417
  • Meyn R. E., Vizard D. L., Hewitt R. R., Humphrey R. M. The fate of pyrimidine dimers in the DNA of ultraviolet-irradiated Chinese hamster cells. Photochem. Photobiol. 1974; 20: 221
  • Lehmann A. R. Post-replication repair of DNA in UV-irradiated mammalian cells. Molecular Mechanisms for DNA Repair, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 617
  • Buhl S. N., Setlow R. B., Regan J. D. Synthesis by UV-irradiated human cells of normalsized DNA at long times after irradiation. Molecular Mechanisms for DNA Repair, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 625
  • Bowden G. T., Giesselbach B., Fusenig N. E. Post-replication repair of DNA in ultraviolet light-irradiated normal and malignant transformed mouse epidermal cell cultures. Cancer Res. 1978; 38: 2709
  • Doniger J. The mechanism of post-replication repair in mammalian cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 505
  • Waters R. Repair of DNA in replicated and unreplicated portions of the human genome. J. Mol. Biol. 1979; 127: 117
  • Higgins N. P., Kato K., Strauss B. A model for replication repair in mammalian cells. J. Mol. Biol. 1976; 101: 417
  • Fujiwara Y., Tatsumi M. Replication bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat. Res. 1976; 37: 91
  • Scudiero D., Strauss B. Increased repair in DNA growing point regions after treatment of human lymphoma cells with N-methyl-N-nitro-N-nitrosoguanidine. Mutat. Res. 1976; 35: 311
  • Tatsumi K., Strauss B. DNA bifilarly substituted with bromodeoxyuridine in the first round of synthesis. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 523
  • Doniger J. DNA replication in ultraviolet light-irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair. J. Mol. Biol. 1978; 120: 433
  • Todd P. Fractionated ultraviolet light irradiation of cultured Chinese hamster cells. Radiat. Res. 1973; 55: 92
  • Todd P., Dalen H., Schroy C. B. Survival of synchronized cultured human liver cells following single and fractionated exposures to ultraviolet light. Radiat. Res. 1977; 69: 573
  • Moustacchi E., Ehmann U. K., Friedberg E. C. Defective recovery of semi-conservative DNA synthesis in Xeroderma pigmentosum cells following split-dose ultraviolet irradiation. Mutat. Res. 1979; 62: 159
  • D'Ambrosio S. M., Setlow R. B. Enhancement of post-replication repair in Chinese hamster cells. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2396
  • Painter R. B. Does ultraviolet light enhance post-replication repair in mammalian cells. Nature (London) 1978; 275: 243
  • Craddock V. M., Ansley C. M. Sequential changes in DNA polymerase α and β during diethyl-nitrosamine-induced carcinogenesis. Biochim. Biophys. Acta 1979; 564: 15
  • Bockstahler L. E., Lytle C. D. Ultraviolet light enhanced reactivation of a mammalian virus. Biochem. Biophys. Res. Commun. 1970; 41: 184
  • Bockstahler L. E., Lytle C. D. X-ray enhanced reactivation of ultraviolet-irradiated human virus. J. Virol. 1971; 8: 601
  • Hellman K. B., Haynes K. F., Bockstahler L. E. Radiation-enchanced survival of a human virus in normal and malignant rat cells. Proc. Soc. Exp. Biol. Med. 1974; 145: 255
  • Lytle C. D., Benane S. G., Bockstahler L. E. Ultraviolet-enhanced reactivation of Herpes virus in human tumor cells. Photochem. Photobiol. 1974; 20: 91
  • Lytle C. D., Benane S. G. Effect of photoreactivating light on virus infection of UV-exposed Potoroo cells. Int. J. Radiat. Biol. 1975; 27: 487
  • Hellman K. B., Lytle C. D., Bockstahler L. E. Radiation-enhanced reactivation of Herpes simplex virus: effect of caffeine. Mutat. Res. 1976; 36: 249
  • Lytle C. D., Day R. S., III, Hellman K. B., Bockstahler L. E. Infection of UV-irradiated xeroderma pigmentosum fibroblasts by Herpes simplex virus: study of capacity and Weigle reactivation. Mutat. Res. 1976; 36: 257
  • Bockstahler L. E., Lytle C. D. Radiation-enhanced reactivation of nuclear replicating mammalian viruses. Photochem. Photobiol. 1977; 25: 477
  • Lytle C. D., Coppey J., Taylor W. D. Enhanced survival of ultraviolet-irradiated Herpes simplex virus in carcinogen-pretreated cells. Nature (London) 1978; 272: 60
  • Sarasin A. R., Hanawalt P. C. Carcinogens enhance survival of UV-irradiated Simian virus 40 in treated monkey kidney cells: induction of a recovery pathway. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 346
  • Sarasin A. R., Hanawalt P. C. Simian virus 40 as a probe for studying DNA repair pathways in mammalian cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 547
  • Summers W. C., Dasgupta U. B. UV-reactivation of Herpes simplex virus is mutagenic and inducible in mammalian cells. DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, C. F. Fox. Academic Press, New York 1978; 563
  • Goth R., Rajewsky M. F. Persistence of O6-ethylguanine in rat brain DNA. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 639
  • Margison G. P., Kleihues P. Chemical carcinogenesis in the nervous system: preferential accumulation of O6-methylguanine in rat brain DNA during repetitive administration of N-methyl-N-nitrosourea. Biochem. J. 1975; 148: 521
  • Nicoll J. W., Swann P. F., Pegg A. E. Effect of dimethylnitrosamine on persistence of methylated guanine in rat liver and kidney DNA. Nature (London) 1975; 254: 261
  • Rogers K. J., Pegg A. E. Formation of O6-methylguanine by alkylation of rat liver, colon and kidney DNA following administration of 1,2-dimethylhydrazine. Cancer Res. 1977; 37: 4082
  • Margison G. P., Margison J. M., Montesano R. Accumulation of O6-methylguanine in non-target-tissue deoxyribonucleic acid and during chronic administration of dimethylnitrosamine. Biochem. J. 1977; 165: 463
  • Nicoll J. W., Swann P. F., Pegg A. E. The accumulation of O6-methylguanine in the liver and kidney DNA of rats treated with dimethylnitrosamine for a short or a long period. Chem. Biol. Interact. 1977; 16: 301
  • Pegg A. E., Hui G. Formation and subsequent removal of O6-methylguanine from deoxyribonucleic acid in rat liver and kidney after small doses of dimethylnitrosamine. Biochem. J. 1978; 173: 739
  • Swenberg J. A., Cooper H. K., Bücheler J., Kleihues P. 1,2-Dimethylhydrazine-induced methylation of DNA bases in various rat organs and the effect of pretreatment with disulfiram. Cancer Res. 1979; 39: 465
  • Pegg A. E. Formation and subsequent repair of alkylation lesions in tissues of rodents treated with nitrosamines. Arch. Toxicol. 1980, in press
  • Kleihues P., Margison G. P. Exhaustion and recovery of repair excision of O6-methylguanine from rat liver DNA. Nature (London) 1976; 259: 153
  • Pegg A. E. Alkylation of rat liver DNA by dimethylnitrosamine: effect of dosage on O6-methyl-guanine levels. J. Natl. Cancer Inst. 1977; 58: 681
  • Pegg A. E. Dimethylnitrosamine inhibits enzymatic removal of O6-methylguanine from DNA. Nature (London) 1978; 274: 182
  • Pegg A. E. Effect of pretreatment with other dialkylnitrosamines on excision from hepatic DNA of O6-methylguanine produced by dimethylnitrosamine. Chem. Biol. Interact. 1978; 22: 109
  • Pegg A. E., Hui G. Removal of methylated purines from rat liver DNA after administration of dimethylnitrosamine. Cancer Res. 1978; 38: 2011
  • Stumpf R., Margison G. P., Montesano R., Pegg A. E. Formation and loss of alkylated purines from DNA of hamster liver after administration of dimethylnitrosamine. Cancer Res. 1979; 39: 50
  • Pegg A. E., Balog B. Formation and subsequent excision of O6-ethylguanine from DNA of rat liver following administration of diethylnitrosamine. Cancer Res. 1979; 39: 5003
  • Montesano R., Brésil H., Margison G. P. Increased excision of O6-methylguanine from rat liver DNA after chronic administration of dimethylnitrosamine. Cancer Res. 1979; 39: 1798
  • Montesano R., Brésil H., Planche-Martel G., Margison G. P., Pegg A. E. The effect of chronic treatment of rats with dimethylnitrosamine on the removal of O6-methylguanine from DNA. Cancer Res. 1980; 40: 452
  • Buckley J. D., O'Conner P. J., Craig A. W. Pretreatment with acetylaminofluorene enhances the repair of O6-methylguanine in DNA. Nature (London) 1979; 281: 403
  • Pegg A. E. Enzymatic removal of O6-methylguanine from DNA by mammalian cell extracts. Biochem. Biophys. Res. Commun. 1978; 84: 166
  • Roberts J. J., Pascoe J. M., Plant J. E., Sturrock J. E., Crathorn A. R. Quantitative aspects of the repair of alkylated DNA in cultured mammalian cells. I. The effect on HeLa and Chinese hamster cell survival of alkylation of cellular macromolecules. Chem. Biol. Interact. 1971; 3: 29
  • Roberts J. J. Repair of alkylated DNA in mammalian cells. Molecular Mechanisms for Repair of DNA, Parts A and B, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 611
  • Goth-Goldstein R. Repair of DNA damage by alkylating carcinogens is defective in xeroderma pigmentosum-derived fibroblasts. Nature (London) 1977; 267: 81
  • Shooter K. V. DNA phosphotriesters as indicators of cumulative carcinogen-induced damage. Nature (London) 1978; 274: 612
  • Warren W., Crathorn A. R., Shooter K. V. The stability of methylated purines and methyl-phosphotriesters in the DNA of V79 cells after treatment with N-methyl-N-nitrosourea. Biochim. Biophys. Acta 1979; 563: 82
  • Bodell W. J., Singer B., Thomas G. H., Cleaver J. E. Evidence for removal at different rates of O-ethyl pyrimidines and ethylphosphotriesters in two human fibroblast lines. Nucleic Acids Res. 1979; 6: 2819
  • Altamirano-Dimas M., Sklar R., Strauss B. Selectivity of the excision of alkylation products in a xeroderma pigmentosum-derived lymphoblastoid line. Mutat. Res. 1979; 60: 197
  • Baker R. M., Van Voorhis W. C., Spencer L. A. HeLa cell variants that differ in sensitivity to monofunctional alkylating agents, with independence of cytotoxic and mutagenic responses. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5249
  • O'Neill J. P., Hsie A. W. Chemical mutagenesis of mammalian cells can be quantitated. Nature (London) 1977; 269: 815
  • Margison G. P., Margison J. M., Montesano R. Methylated purines in the deoxyribonucleic acid of various syrian-golden-hamster tissues after administration of a hepatocarcinogenic dose of dimethylnitrosamine. Biochem. J. 1976; 157: 627
  • Miller J. A., Miller E. C. Ultimate chemical carcinogens as reactive mutagenic electrophiles. Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 605
  • Trosko J. E., Chu E. H. Y. The role of DNA repair and somatic mutation in carcinogenesis. Adv. Cancer Res. 1975; 21: 391
  • Jose J. G. The role of DNA damage, its repair and its misrepair in the etiology of cataract: a review. Ophthalmic Res. 1978; 10: 52
  • Jose J. G. Photomutagenesis by chlorinated phenothiazine tranquilizers. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 469
  • Alvares A. P., Bichers D. R., Kappas A. Polychlorinated biphenyls: a new type of inducer of cytochrome P-448 in the liver. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1321
  • Czygan P., Greim H., Garro A. J., Hutterer F., Schaffner F., Popper H., Rosenthal P., Cooper D. Y. Microsomal metabolism of dimethylnitrosamine and the cytochrome P-450 dependency of its activation to a mutagen. Cancer Res. 1973; 33: 2983
  • Litterst C. L., Van Loon E. J. Time-course of induction of microsomal enzymes following treatment with polychlorinated biphenyl. Bull. Environ. Contam. Toxicol. 1974; 11: 206
  • Allen J. R., Cartens L. A., Abrahamson L. J., Marlar R. J. Response of rats and nonhuman primates to 2,5,2′,5′-tetrachlorobiphenyl. Environ. Res. 1975; 9: 265
  • Allen J. R., Norback D. H. Carcinogenic potential of the polychlorinated biphenyls. Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 173
  • Levin W., Lu A. Y. H., Ryan D., Wood A. W., Kapitulnik J., West S., Huang M.-T., Conney A. H., Thakker D. R., Holder G., Yagi H., Jerina D. M. Properties of the liver microsomal monoxygenase system and epoxide hydrase: factors influencing the metabolism and mutagenicity of benzo(a)pyrene. Origins of Human Cancer, Parts A, B, and C, H. H. Hiatt, J. D. Watson, J. A. Winsten. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1977; 659
  • Littlefield N. A., Farmer J. H., Sheldon W. G., Gaylor D. W. Effects of dose and time in a long term low dose carcinogenic study. J. Environ. Pathol. Toxicol. 1979; 3: 17
  • Cairns J. Mutation selection and the natural history of cancer. Nature (London) 1975; 255: 197
  • Hollstein M., McCann J., Angelosanto F. A., Nichols W. W. Short-term tests for carcinogens and mutagens. Mutat. Res. 1979; 65: 133
  • Hooper K. personal communication

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.