335
Views
436
CrossRef citations to date
0
Altmetric
Research Article

Stress Proteins in Aquatic Organisms: An Environmental Perspective

Pages 49-75 | Published online: 25 Sep 2008

References

  • Amaral M. D., Galego L., Rodriguez‐Pousada C. Stress response ofTetrahymena pyriformis to arsenite and heat shock: differences and similarities. Eur. J. Biochem. 1988; 171: 463
  • Amir‐Shapria D., Leustek T., Dalie B., Weissbach H., Brot N. Hsp70 proteins, similar toEscherichia coli DnaK, in chloroplasts and mitochondria ofEuglena gracilis. Proc. Natl. Acad. Sci. USA 1990; 87: 1749
  • Ananthan J., Goldberg A. L., Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232: 522
  • Atkinson B. G., Cunningham T., Dean R. L., Somerville M. Comparison of the effects of heat shock and metal ion stress on gene expression in cells undergoing myogenesis. Can. J. Biochem. Cell Biol. 1983; 61: 404
  • Bader S. B., Price B. D., Mannheim‐Rodman L. A., Calderwood S. K. Inhibition of heat shock gene expression does not block the development of thermotolerance. J. Cell. Physiol. 1992; 151: 56
  • Baulieu E. ‐E., Catelli M. G. Steroid hormone receptors and heat shock protein Mr 90,000 (HSP 90): a functional interaction?. Stress Induced Proteins, M. Pardue, J. Feramisco, S. Lindquist. Alan R. Liss, New York 1989; 203
  • Beckmann R. B., Mizzen L. A., Welch W. J. Interactions of hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990; 248: 850
  • Bédard P. ‐A., Brandhorst B. P. Translational activation of maternal mRNA encoding the heat‐shock protein hsp90 during sea urchin embryogenesis. Dev. Biol. 1986; 117: 286
  • Berger H. M., Woodward M. P. Small heat shock proteins inDrosophila may confer thermal tolerance. Exp. Cell Res. 1983; 147: 437
  • Bienz M., Pelham H. R. B. Mechanisms of heat‐shock gene activation in higher eukaryotes. Adv. Genet. 1987; 24: 31
  • Bittner G. D. Degeneration and regeneration in crustacean neuromuscular systems. Am. Tool. 1973; 13: 379
  • Bittner G. D. Long‐term survival of several distal axonal stumps in vertebrates and invertebrates. Am. Zool. 1988; 28: 1165
  • Black A. R., Subjeck J. R. The biology and physiology of the heat shock and glucose‐regulated stress protein systems. Methods Achieve. Exp. Pathol. 1991; 15: 126
  • Blom A., Harder W., Matin A. Unique and overlapping pollutant stress proteins ofEscherichia coli. Appl. Environ. Microbiol. 1992; 58: 331
  • Boon‐Niermeijer E. K., Tuyl M., Van de Scheur H. Evidence for two states of thermotoler‐ance. Int. J. Hyperthermia 1986; 2: 93
  • Bosch T. C. G., Krylow S. M., Bode H. R., Steele R. E. Thermotolerance and synthesis of heat shock proteins: these responses are present inHydra attenuata but absent inHydra oligactis. Proc. Natl. Acad. Sci. USA 1988; 85: 7927
  • Bosch T. C. G., Praetzel G. The heat shock response in hydra: immunological relationship of hsp60, the major heat shock protein ofHydra vulgaris, to the ubiquitous hsp70 family. Hydrobiologia 1991; 216/217: 513
  • Bournais‐Vardiabasis N., Buzin C. H. Developmental effects of chemicals and the heat shock response inDrosophila cells. Teratogen. Carcinogen. Mutagen. 1986; 6: 523
  • Braakman I., Helenius J., Helenius A. Role of ATP and disulfide bonds during protein folding in the endoplasmic reticulum. Nature 1992; 356: 260
  • Brown M. A., Upender R. P., Hightower L. E., Renfro J. L. Thermoprotection of a functional epithelium: heat stress effects on transepithelial transport by flounder renal tubule in primary monolayer culture. Proc. Natl. Acad. Sci. USA 1993; 89: 3246
  • Brugge J. S., Erikson E., Erikson R. L. The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 1981; 25: 363
  • Brunet S., Glacomoni P. U. Heat shock messenger RNA in mouse epidermis after UV irradiation. Mutat. Res. 1989; 219: 217
  • Brunt S. A., Riehl R., Silver J. C. Steroid hormone regulation of theAchlya ambisexualis 85‐kilodalton heat shock protein, a component of theachlya steroid hormone receptor. Mol. Cell. Biol. 1990; 10: 273
  • Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 1991; 30: 1586
  • Bultmann H. Induction of heat shock puff by hypoxia in polytene foot pad chromosomes ofSarcophaga bullata. Chromosoma 1986; 93: 358
  • Buzin C. H., Bournais‐Vardiabases N. Teratogens induce a subset of small heat shock proteins inDrosophila primary embryonic cell cultures. Proc. Natl. Acad. Sci. USA 1984; 81: 4075
  • Caltabiano M. M., Koestler T. P., Poste G., Greig R. G. Induction of 32 and 34 kDa stress proteins by sodium arsenite, heavy metals, and thiol‐reactive agents. J. Biol. Chem. 1986; 261: 13381
  • Caltabiano M. M., Poste G., Greig R. G. Induction of the 32‐kD human stress protein by au‐ranofin and related triethylphosphine gold analogs. Biochem. Pharmacol. 1988; 37: 4089
  • Carretero M. T., Carmona M. J., Díez J. L. Thermotolerance and heat shock proteins inChironomus. J. Insect Physiol. 1991; 37: 239
  • Carson‐Jurica M. A., Lee A. T., Dobson A. W., Coneely O. M., Schrader W. T., Molley B. W. Interaction of the chicken progesterone receptor with heat shock protein (HSP) 90. J. Steroid Biochem. 1989; 34: 1
  • Chambraud B., Berry M., Redeuilh G., Chambon P., Baulieu E. ‐E. Several regions of the human estrogen receptor are involved in the formation of receptor‐heat shock protein 90 complexes. J. Biol. Chem. 1990; 265: 20686
  • Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W., Hallberg E. M., Hallberg R. L., Horwich A. L. Mitochondrial heat shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989; 337: 620
  • Chiang H. ‐L., Terlecky S. R., Plant C. P., Dice J. F. A role for a 70‐kilodalton heat shock protein in lysosomal degradation of intercellular proteins. Science 1989; 246: 382
  • Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 333: 805
  • Chretien P., Landry J. Enhanced constitutive expression of the 27‐kDa heat shock proteins in heat‐resistant variants from Chinese hamster cells. J. Cell. Physiol. 1988; 137: 157
  • Cochrane B. J., Irby R. B., Snell T. W. Effects of copper and tributyltin on stress protein abundance in the rotifer. Brachionusplicatilus, Comp. Biochem. Physiol. 1991; 98C: 385
  • Covington S. M., Dickson K. L., Zimmerman E. G., Waller W. T. The stress protein response of Pimphales promelas to copper. Environ. Toxicol. Chem.
  • Craig E. A. Role of hsp70 in translocation of proteins across the membranes. Stress Proteins in Biology and Medicine, R. I. Morimoto, A. Tissiéres, C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990; 279
  • Craig E. A., Ingolia T. D., Manseau L. J. Expression ofDrosophila heat‐shock cognate genes during heat‐shock and development. Dev. Biol. 1983; 99: 418
  • De Virgilio C., Piper P., Boller T., Wiemken A. Acquisition of thermotolerance inSaccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis. FEBS Lett. 1991; 288: 86
  • Delama Y. M., Cochrane B. J. The polymerase chain reaction as a tool for developing stress protein probes. Abstr. Soc. Environ. Toxicol. Chem., 13th Annu. Meet. SETAC, Pensacola, FL, in press
  • Dixon D. K., Jones D., Candido E. P. M. The differentially expressed 16‐kD heat shock genes ofCaenorhabditis elegans exhibit differential changes in chromatin structure during heat shock. DNA Cell Biol. 1990; 9: 177
  • Dyer S. D., Dickson K. L., Zimmerman E. G., Sanders B. M. Tissue specific patterns of heat shock protein synthesis and thermal tolerance of the fathead minnow (Pimephales promelas). Can. J. Zool. 1991; 69: 2021
  • Dyer S. D., Brooks G. L., Dickson K. L., Sanders B. M., Zimmerman E. G. Synthesis and accumulation of stress proteins in tissues of ar‐senite exposed fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 1993; 12: 1
  • Dyer S. D., Dickson K. L., Zimmerman E. G. A laboratory evaluation of the use of stress proteins in fish to detect changes in water quality. Environmental Toxicology and Risk Assessment, W. G. Landis, J. J. Huges, M. A. Lewis. ASTM Publishers, Philadelphia 1993; 273, ASTM STP 1179
  • Edington B. V., Whelan S. A., Hightower L. E. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J. Cell. Physiol. 1989; 139: 219
  • Ellis R. J. The molecular chaperon concept. Semin. Cell Biol. 1990; 1: 1
  • Findly R. C., Gillies R. J., Shulman R. G. In vivo phosphorus‐31 nuclear magnetic resonance reveals lowered ATP during heat shock ofTetrahymena. Science 1983; 219: 1223
  • Fink K., Zeuthen E. Heat shock proteins inTetrahymena studied under growth conditions. Exp. Cell Res. 1980; 128: 23
  • Flynn G. C., Pohl J., Flocco M. T., Rothman J. E. Peptide‐binding specificity of the molecular chaperone BiP. Nature 1991; 353: 726
  • Foulkes E. C. Biological Roles of Metallothionein. Elsevier/North Holland, New York 1982
  • Fuqua S. A. W., Blumsalingaros M., McGuire W. L. Induction of the estrogen‐regulated 24K protein by heat shock. Cancer Res. 1989; 49: 4126
  • Gaitanaris G. A., Papavassiliou A. G., Rubock P., Silverstein S. J., Gottesman M. E. Renaturation of denatured λ repressor requires heat shock proteins. Cell 1990; 61: 1013
  • Gething M. ‐J., Sambrook J. Protein folding in the cell. Nature 1992; 355: 33
  • Giudice G. Heat shock proteins in sea urchin development. Changes in Eukaryotic Gene Expression in Response to Environmental Stress, B. G. Atkinson, D. B. Walden. Academic Press, Orlando, FL 1985; 115
  • Goeroegh T. Detection of heat shock proteins in a fish cell‐line. Biona‐Report 4, Temperature Relations in Animals and Man, H. Laudien. Gustav Fischer, New York 1986; 155
  • Gong Z., Cserjesi P., Wessel G. M., Brandhorst B. P. Structure and expression of the polyubiquitin gene in sea urchin embryos. Mol. Reprod. Dev. 1991; 28: 111
  • Graham R. W., Jones D., Candido E. P. M. UbiA, the major polyubiquitin locus inCaenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol. Cell. Biol. 1989; 9: 268
  • Greenberg S. G., Lasek R. J. Comparison of labeled heat shock proteins in neuronal and non‐neuronal cells ofAplysia californica. J. Neurosci. 1985; 5: 1239
  • Grossfeld R., Tirard C., Kennedy‐Stoskopf S., Levine J., Siesko M., Fleming W. J. Stress proteins as environmental biomarkers in aquatic organisms. Environ. Toxicol. Chem.
  • Gutierrez J. A., Guerriero V., Jr. Quantitation of hsp70 in tissues using a competitive enzyme‐linked immunosorbant assay. J. Immunol. Methods 1991; 143: 8
  • Guttman S. D., Glover C. V. C., Allis C. D., Gorovsky M. A. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved. T. piriformis, Cell 1980; 22: 299
  • Hahn G. M., Li G. C. Thermotolerance, thermoresistance, and thermosensitization. Stress Proteins in Biology and Medicine, R. I. Morimoto, A. Tissiéres, C. Georgopoulos. Cold Spring Harbor Press, Cold Spring Harbor, NY 1990; 79
  • Hahn G. M., Shiu E. C., West B., Goldstein L., Li G. C. Mechanistic implications of the induction of thermotolerance in Chinese hamster cells by organic solvents. Cancer Res. 1985; 45: 4138
  • Hakimzadeh R., Bradley B. P. The heat shock response in the copepodEurytemora affinis (poppe). J. Therm. Biol. 1990; 15: 67
  • Hallberg R. L. No heat shock protein synthesis is required for induced thermostabilization of transla‐tional machinery. Mol. Cell. Biol. 1986; 6: 2267
  • Hallberg R. L., Kraus K. W., Findly R. C. StarvedTetrahymena thermophila cells that are unable to mount an effective heat shock response selectively degrade their rRNA. Mol. Cell. Biol. 1984; 4: 2170
  • Hallberg R. L., Kraus K. W., Hallberg E. M. Induction of acquired thermotolerance inTetrahymena thermophila: effects of protein synthesis inhibitors. Mol. Cell. Biol. 1985; 5: 2061
  • Hara I., Sato N., Matsumura A., Cho J. ‐M., Weimin Q., Torigoe T., Shinnick T. M., Kamidono S., Kikuchi K. Development of monoclonal antibodies reacting against mycobacterial 65 kDa heat shock protein by using recombinant truncated products. Microbiol. Immunol. 1991; 35: 995
  • Hartl F. U., Martin J., Neupert W. Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu. Rev. Biophys. Biomol. Struct. 1992; 21: 293
  • Hartl F. ‐U., Neupert W. Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science 1990; 247: 930
  • Hatayama T., Tsukimi Y., Wakatsuki T., Kitamura T., Imahara H. Different induction of 70,000‐Da heat shock protein and metallo‐thionein in HeLa cells by copper. J. Biochem. 1991; 110: 726
  • Hayashi Y., Tohnai I., Kaneda T., Kobayashi T., Ohtsuka K. Translocation of hsp‐70 and protein synthesis during continuous heating at mild temperatures in HeLa cells. Radiat. Res. 1991; 125: 80
  • Heikkila J. J., Browder L. W., Gedamu L., Nickells R. W., Schultz G. A. Heat‐shock gene expression in animal embryonic systems. Can. J. Genet. Cytol. 1986; 28: 1093
  • Heikkila J. J., Schultz G. A., Iatrou K., Gedamu L. Expression of a set of fish genes following heat or metal ion exposure. J. Biol. Chem. 1982; 257: 12000
  • Heine L., Drabent B., Benecke B. ‐J., Günther E. A novel monoclonal antibody directed against the heat‐inducible 68 kDa heat shock protein. Hybridoma. 1991; 10: 721
  • Heschl M. F. P., Baillie D. L. Mini‐review. The hsp70 multigene family ofCaenorhabditis elegans. Comp. Biochem. Physiol. 1990; 96B: 633
  • Heschl M. F. P., Baillie D. L. Characterization of the hsp70 multigene family ofCaenorhabditis elegans. DNA 1989; 8: 233
  • Hightower L. E. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J. Cell Physiol. 1980; 102: 407
  • Hightower L. E. Heat shock, stress proteins, chaperons, and proteotoxicity (Meeting review). Cell 1991; 66: 1
  • Hightower L. E., Renfro J. L. Recent applications of fish cell culture to biomedical research. J. Exp. Zool. 1988; 248: 290
  • Hightower L. E., Schultz R. J. Poeciliopsis: a fish model for evaluating genetically variable responses to environmental hazards. Biological Criteria: Research and Regulation, Proc. Symp. U.S. Environmental Protection Agency, Washington, DC 1991; 129
  • Hirayoshi K., Kudo H., Takechi H., Nakai A., Iwamatsu A., Yamada K., Nagata K. HSP47: a tissue specific, transformation‐sensitive, collagen‐binding heat shock protein of chicken embryo fibroblasts. Mol. Cell. Biol. 1991; 11: 4036
  • Hochachka P. W., Somero G. N. Biochemical Adaptation. Princeton University Press, Princeton, NJ 1984
  • Hockertz M. K., Clark‐Lewis I., Candido E. P. M. Studies of the small heat shock proteins ofCaenorhabditis elegans using anti‐peptide antibodies. FEBS Lett. 1991; 280: 375
  • Howard C. L., Whitt K. R., Roach R. W. Quantification of stress proteins in grass shrimp exposed to contaminated estuarine sediment. Abstr. Soc. Environ. Toxicol. Chem. 12th Annu. Meet. SETAC, Pensacola, FL 1991; 120
  • Howard C. L., Whitt K. R., Reeves M. Relationship between stress protein response in grass shrimp and pollution tolerance in the ambient environment. Environ. Toxicol. Chem.
  • Hunt L. A. Sidestream cigarette smoke exposure of mouse cells induces cell stress/heat shock‐like proteins. Toxicology 1986; 39: 259
  • Jenkins K. D., Sanders B. M. Monitoring with biomarkers: a multitiered framework for evaluating the ecological impacts of contaminants. Proc. Int. Symp. Ecol. Indicators, D. H. McKenzie, D. E. Hyatt, V. J. McDonald. Elsevier Applied Sciences, New York 1992; 1279
  • Jurivich D. A., Sistonen L., Kroes R. A., Morimoto R. I. Effect of sodium salicylate on the human heat shock response. Science 1992; 255: 1243
  • Kee S. C., Noble P. S. Concomitant changes in high temperature tolerance and heat‐shock proteins in desert succulents. Plant Physiol. 1986; 80: 596
  • Kim Y. ‐J., Shuman J., Sette M., Przybyla A. Arsenate induces stress proteins in cultured rat myoblasts. J. Cell Biol. 1983; 96: 393
  • Kirk D. L., Kirk M. M. Heat shock elicits production of sexual inducer inVolvox. Science 1986; 231: 51
  • Koban M., Graham G., Prosser C. L. Induction of heat‐shock protein synthesis in teleost hepatocytes: effects of acclimation temperature. Physiol. Zool. 1987; 60: 290
  • Koban M., Yup A. A., Agellon L. B., Powers D. A. Molecular adaptation to environmental temperature: heat‐shock response of the eurythermal teleost Fundulus heteroclitus. Mol. Mar. Biol. Biotechnol. 1991; 1: 1
  • Köhler H. ‐R., Triebskorn R., Stöcker W., Kloetzel P. ‐M., Alberti G. The 70 kD heat shock protein (hsp 70) in soil invertebrates: a possible tool for monitoring environmental toxicants. Arch. Environ. Toxicol. 1992; 22: 334
  • Kothary R. K., Candido E. P. M. Induction of a novel set of polypeptides by heat shock or sodium arsenite in cultured cells of rainbow trout Salmo gairdnerii. Can. J. Biochem. 1982; 60: 347
  • Koyasu S., Nishida E., Kadowaki T., Matsuzaki F., Iida K., Harada F., Kasuga M., Sakai H., Yahara I. Two mammalian heat shock proteins, HSP90 and HSP 100, are actin‐binding protiens. Proc. Nad. Acad. Sci. USA 1986; 83: 8054
  • Koyasu S., Nishida E., Miyata Y., Sakai H., Yahara I. Hsp‐100, a 100‐kDa heat shock protein, is a Ca2+ ‐calmodulin‐regulated actin‐binding protein. J. Biol. Chem. 1989; 264: 15083
  • Krause K. W., Hallberg E. M., Hallberg R. L. Characterization of aTetrahymena thermophila mutant strain unable to develop normal thermotolerance. Mol. Cell. Biol. 1986; 6: 3854
  • Lagerspetz K. Y. H. Temperature effects on different organization levels in animals. Temperature and Animal Cells, K. Bowler, B. J. Fuller. Company of Biologists, Ltd., CambridgeUK 1987; 429
  • Landry J., Bernier D., Chretien P., Nicole L. M., Tanguay R. M., Marceau N. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 1982; 42: 2457
  • Landry J., Chretien P., Lambert H., Hickey E., Weber L. A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol. 1989; 109: 7
  • Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 1992; 355: 455
  • Laudien H. Heat‐hardening in animals. Biona Report 4: Temperature Relations in Animals and Man, H. Laudien. Gustav Fisher, New York 1984; 147
  • Laszlo A. The relationship of heat‐shock proteins, thermotolerance, and protein synthesis. Exp. Cell Res. 1988; 178: 401
  • Laszlo A. The thermoresistant state: protection from initial damage or better repair?. Exp. Cell Res. 1992; 202: 519
  • Lee Y. J., Curetty L., Corry P. M. Differences in preferential synthesis and redistribution of HSP70 and HSP28 families by heat or sodium arsenite Chinese hamster ovary cells. J. Cell. Physiol. 1991; 149: 77
  • Levinson W., Oppermann H., Jackson J. Transition series of metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim. Biophys. Acta 1980; 606: 170
  • Li G. C. Induction of thermotolerance and enhanced heat shock protein in transiently thermo‐tolerant Chinese hamster fibroblasts by sodium arsenite and ethanol. J. Cell Physiol. 1983; 122: 91
  • Li G. C., Li L., Liu R. Y., Rehman M., Lee W. M. F. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP‐bindingdomain. Proc. Natl. Acad. Sci. USA 1992; 89: 2036
  • Li G. C., Shrieve D. C., Werb Z. Correlations between synthesis of heat shock proteins and development of tolerance to heat and to adriamycin in Chinese hamster fibroblasts: heat shock and other inducers. Heat Shock: From Bacteria to Man, M. J. Schlesinger, M. Ashburner, A. Tissiéres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1982; 395
  • Lindquist S. The heat shock response. Annu. Rev. Biochem. 1986; 55: 1151
  • Lindquist S., Craig E. A. The heat shock proteins. Annu. Rev. Genet. 1988; 22: 631
  • Loomis W. F., Wheeler S. Heat shock response ofDictyostelium. Dev. Biol. 1980; 79: 399
  • Love J. D., Vivino A. A., Minton K. W. Hydrogen peroxide toxicity may be enhanced by heat shocked gene induction inDrosophila. J. Cell Physiol. 1986; 126: 60
  • Maness J. D., Hutchinson V. H. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Therm. Biol. 1980; 5: 225
  • Margulis B. A., Antropova O. Y., Kharazova A. D. 70 kDa heat shock proteins from mollusc and human cells have common structural and functional domains. Comp. Biochem. Physiol. 1989; 94b: 621
  • Margulis B. A., Nacharov P. V., Tsvetkova O. I., Welsh M., Kinev A. V. The characterization and use of different antibodies against the hsp70 major heat shock protein family for the development of an immunoassay. Electrophoresis 1991; 12: 670
  • Marshall J. S., DeRocher A. E., Keegstra K., Vierling E. Identification of heat shock protein hsp70 homologues in chloroplasts. Proc. Natl. Acad. Sci. USA 1990; 87: 374
  • Martin J., Horwich A. L., Hartl F. ‐U. Prevention of protein denaturation under heat stress by the chaperonin hsp60. Science 1992; 258: 995
  • Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. ‐U. Chaperonin‐mediated protein folding at the surface of groEL through a 'molten globule'‐like intermediate. Nature 1991; 352: 36
  • Matsumura F., Ghiasuddin S. M. Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. J. Environ. Sci. Health B 1983; 18: 1
  • McLennan A. G., Miller D. A biological role for the heat shock response in crustaceans. J. Therm. Biol. 1990; 15: 61
  • McMahon A. P., Novak T. J., Britten R. J., Davidson E. H. Inducible expression of a cloned heat shock fusion gene in sea urchin embryos. Proc. Natl. Acad. Sci. USA 1984; 81: 7490
  • McMullin T. W., Hallberg R. L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by theEscherichia groEL gene. Mol. Cell. Biol. 1988; 8: 371
  • McMullin T. W., Hallberg R. L. A normal mitochondrial protein is selectively synthesized and accumulated during heat shock inTetrahymena thermophila. Mol. Cell. Biol. 1987; 7: 4414
  • Merz R., Laudien H. Two types of heat tolerance in FHM‐cells. Induction by heat‐shock versus elevated culturing temperature. J. Therm. Biol. 1987; 12: 281
  • Meury J., Kohiyama M. Role of heat shock protein DnaK in osmotic adaptation ofEscherichia coli. J. Bacteriol. 1991; 173: 4404
  • Milarski K. L., Welch W. J., Morimoto R. I. Cell‐cycle dependent association of HSP70 with specific cellular proteins. J. Cell Biol. 1989; 108: 413
  • Miller D., McLennan A. G. The heat shock response of the crytobiotic brine shrimp,Anemia II. Heat shock proteins. J. Therm. Biol. 1988; 13: 125
  • Miller S. G. Association of a sperm‐specific protein with the mitochondrial F1F0‐Atpase inHeliothis. Insect Biochem. 1987; 17: 417
  • Minota S., Cameron B., Welch W. J., Winfield J. B. Autoantibodies to the constitutive 73‐kD member of the hsp70 family of heat shock proteins insystemic lupus erythematosus. J. Exp. Med. 1988; 168: 1475
  • Misra S., Zafarullah M., Price‐Haughey J., Gedamu L. Analysis of stress‐induced gene expression in fish cell lines exposed to heavy metals and heat shock. Biochim. Biophys. Acta 1989; 1007: 325
  • Mitani H., Naruse K., Shima A. Eurythermic and stenothermic growth of cultured fish cells and their thermosensitivity. J. Cell Sci. 1989; 93: 731
  • Mitchell H. K., Petersen N. S., Buzin C. H. Self‐degradation of heat shock proteins. Proc. Natl. Acad. Sci. USA 1985; 82: 4969
  • Mizzen L. A., Welch W. J. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat‐shock protein 70 expression. J. Cell Biol. 1988; 106: 1105
  • Mobbs C. V., Romano G. J., Schwartz‐Giblin S., Pfaff D. W. Biochemistry of a steroid‐regulated mammalian mating behavior; heat shock proteins and secretion, enkephalin and GAB A. Neural Control of Reproductive Function, J. M. Lakowski, J. R. Perez‐polo, D. K. Rassin. Alan R. Liss, New York 1989; 95
  • Morimoto R. I., Sarge K. D., Abravaya K. Transcriptional regulation of heat shock genes. J. Biol. Chem. 1992; 31: 21987
  • Mosser D. D., van Oostrom J., Bols N. C. Induction and decay of thermotolerance in rainbow trout fibroblasts. J. Cell. Physiol. 1987; 132: 155
  • Mosser D. D., Bols N. C. Relationship between heat‐shock protein synthesis and thermotolerance in rainbow trout fibroblasts. J. Comp. Physiol. B 1988; 158: 457
  • Mosser D. D., Theodorakis N. G., Morimoto R. I. Coordinate changes in heat shock element‐binding activity and hsp70 gene transcription rates in human cells. Mol. Cell. Biol. 1988; 8: 4736
  • Mosser D. D., Kotzbauer P. T., Sarge K. D., Morimoto R. I. In vitro activation of heat shock transcription factor DNA‐binding by calcium and biochemical conditions that affect protein conformation. Proc. Natl. Acad. Sci. USA 1990; 87: 3748
  • Murphy B. J., Laderoute K. R., Short S. M., Sutherland R. M. The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br. J. Cancer 1991; 64: 69
  • Nelson R. J., Ziegelhoffer T., Nicolet C., Werner‐Washburne M., Craig E. The transition machinery and 70 kd heat shock protein co‐operate in protein synthesis. Cell 1992; 71: 97
  • Nemer M., Rondinelli E., Infante D., Infante A. A. Polyubiquitin RNA characteristics and conditional induction in sea urchin embryos. Dev. Biol. 1991; 145: 255
  • Nieto S. R., Sanders B. M. Characterization of the heat shock response in a thermophilic alga. Abstr. Am. Physiol. Soc. Meet. Orlando, FL 1990
  • Nover L. The Heat Shock Response. CRC Press, Boca Raton, FL 1991
  • Ödberg‐Ferragut C., Espigares M., Dive D. Stress protein synthesis, a potential toxicity marker inEscherichia coli. Ecotoxicol. Environ. Safety 1991; 21: 275
  • Ogata N., Vogel S. M., Narahashi T. Lindane but not deltamethrin blocks a component of GABA‐activated chloride channels. FASEB J. 1988; 2: 2895
  • Ohtsuka K., Laszlo A. The relationship between hsp70 localization and heat resistance. Exp. Cell Res. 1992; 202: 507
  • Ohtsuka K., Masuda A., Nakai A., Nagata K. A novel 40‐kDa protein induced by heat shock and other stresses in mammalian and avian cells. Biochem. Biophys. Res. Commun. 1990; 166: 642
  • Ostermann J., Horwich A. L., Neupert W., Hartl F. ‐U. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 1989; 341: 125
  • Pelham H. R. B. Functions of the hsp70 protein family: an overview. Stress Proteins in Biology and Medicine, R. I. Morimoto, A. Tissiéres, C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990; 287
  • Perdew G. H. Association of the Ah receptor with the 99‐kDa heat shock protein. J. Biol. Chem. 1988; 263: 13802
  • Phillips G. J., Silhavy T. J. Heat‐shock proteins DnaK and GroEL facilitate export of Lac Z hybrid proteins inE. coli. Nature 1990; 344: 882
  • Picard D., Khursheed B., Garabedian M. J., Fortin M. G., Lindquist S., Yamamoto K. R. Reduced levels of hsp90 compromise steroid receptor actionin vivo. Nature 1990; 348: 166
  • Pipkin J. L., Anson J. F., Hinson W. G., Burns E. R., Casciano D. A. Microscale electrophoresis of stress proteins induced by chemicals during thein vivo cell cycle. Electrophoresis 1986; 7: 463
  • Price‐Haughey J., Bonham K., Gedamu L. Metallothionein gene expression in fish cell lines: its activation in embryonic cells by 5‐azacytidien. Biochim. Biophys. Acta 1987; 908: 158
  • Prosser C. L. Adaptation Biology: Molecules to Organisms. John Wiley & Sons, New York 1986
  • Ramachandran C., Catelli M. G., Schneider W., Shyamala G. Estrogenic regulation of uterine 90‐kilodalton heat shock protein. Endocrinology 1988; 123: 956
  • Ristic Z., Gifford D. J., Case D. D. Heat shock proteins in two lines ofZea mays L. that differ in drought and heat resistance. Plant Physiol. 1991; 97: 1430
  • Ritossa F. A new puffing pattern induced by heat shock and DNP inDrosophila. Experientia 1962; 18: 571
  • Roberts J. L. Effects of thermal stress on gill ventilation and heart rate in fishes. Responses of Fish to Environmental Changes, W. Chavin. Charles C Thomas, Springfield, IL 1973; 64
  • Rochelle J. M., Grossfeld R. M., Bunting D. L., Tytell M., Dwyer B. E., Xue Z. Stress protein synthesis by crayfish CNS tissuein vitro. Neu‐rochem. Res. 1991; 16: 533
  • Roccheri M. C., Sconzo G., DiBernardo M. G., Albanese I., DiCarlo M., Giudice G. Heat shock proteins in sea urchin embryos territorial and intracellular location. Acta Embryol. Morphol. Exp. 1981; 2: 91
  • Roccheri M. C., Sconzo G., La Rosa M., Oliva D., Abrignani A., Guidice G. Response to heat shock of different sea urchin species. Cell Differ. 1986; 18: 131
  • Rothman J. E. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cell. Cell 1989; 59: 591
  • Russnak R. H., Jones D., Candido E. P. M. Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) inCaenorhabditis elegans: homology with the small hsps ofDrosophila. Nucleic Acids Res. 1983; 11: 3187
  • Rutledge P. S., Spotila J. R., Easton D. P. Heat hardening in response to two types of heat shock in the lungless salamandersEurycea bislineata andDesmognathus ochrophaeus. J. Therm. Biol. 1987; 12: 235
  • Ryan J. A., Hightower L. E. Biomonitoring using an organism's own cellular stress response system. Environ. Toxicol. Chem.
  • Sanchez E. R., Meshinchi S., Tienrungroj W., Schlesinger M. J., Toft D. O., Pratt W. B. Relationship of the 99‐kDa murine heat shock protein to the untransformed and transformed states of the L. cell glucocorticoid receptor. J. Biol. Chem. 1987; 262: 6986
  • Sanchez Y., Lindquist S. L. HSP104 required for induced thermotolerance. Science 1990; 248: 1112
  • Sanders B. M. The role of stress protein response in physiological adaptation of marine molluscs. Mar. Environ. Res. 1988; 24: 207
  • Sanders B. M. Stress proteins: potential as multitiered biomarkers. Environmental Biomarkers, L. Shugart, J. McCarthy. Lewis Publishers, Chelsea, MI 1990; 165
  • Sanders B. M., Jenkins K. D., Sunda W. G., Costlow J. D. Free cupric ion activity in seawater: effects on metallothionein and growth in crab larvae. Science 1983; 222: 53
  • Sanders B. M., Hope C., Pascoe V. M., Martin L. S. Characterization of the stress protein response in two species ofCollisella limpets with different temperature tolerances. Physiol. Zool. 1991; 64(6)1471
  • Sanders B. M., Martin L. S., Nelson W. G., Phelps D. K., Welch W. Relationship between accumulation of a 60 kDa stress protein and scope‐for‐growth inMytilus edulis exposed to a range of copper concentrations. Mar. Environ. Res. 1991; 31: 81
  • Sanders B. M., Pascoe V. M., Nakagawa P. A., Martin L. S. Persistence of the heat shock response over time in the common mussel. Mytilus edulis, Mol. Mar. Biol. Biotechnol. 1992; 1(2)147
  • Sanders B. M., Martin L. S. The use of stress proteins as biomarkers for environmental specimen banking. Sci. Total Environ.
  • Sanders B. M., unpublished data
  • Sanders S. L., Whitfield K. M., Vogel J. P., Rose M. D., Schekman R. W. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 1992; 69: 353
  • Schlesinger M. J. Heat shock proteins: the search for functions. J. Cell Biol. 1986; 103: 321
  • Heat Shock: From Bacteria to Man, M. J. Schlesinger, M. Ashbumer, A. Tissiéres. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1982
  • Schlesinger M., Hershko A. The Ubiquitin System. Cold Spring Harbor Press, Cold Spring Harbor, NY 1988
  • Schmidt J., Laudien H., Bowler K. Acute adjustments to high temperature in FHM‐cells fromPimephales promelas (Pisces, Cyprinidea). Comp. Biochem. Physiol. 1984; 78A: 823
  • Sciandra J. J., Subjeck J. R., Hughes C. S. Induction of glucose regulated proteins during anaerobic exposure and of heat‐shock proteins after reoxygenation. Proc. Natl. Acad. Sci. USA 1984; 81: 4843
  • Seckler R., Jaenicke R. Protein folding and protein refolding. FASEB J. 1992; 6: 2545
  • Shanknovich R., Shue G., Kohtz D. S. Conformational activation of a basic helix‐loop‐helix protein (MyoDl) by the c‐terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 1992; 12: 5059
  • Shearer G., Birge C. H., Yuckenberg P. D., Kobayashi G. S., Mendoff G. Heat shock proteins indiced during the mycelial to yeast transitions of strains ofHistoplasma capsulatum. J. Gen. Microbiol. 1987; 133: 3375
  • Skowyra D., Georgopoulos C., Zylicz W. TheE. coli dnaK gene product, the hsp70 homolog, can reactivate heat‐inactivated RNA polymerase in an ATP hydrolysis‐dependent manner. Cell 1990; 62: 939
  • Smith B. J., Yaffe M. P. Uncoupling thermotolerance from the induction of heat shock proteins. Proc. Natl. Acad. Sci. USA 1991; 88: 11091
  • Snutch T. P., Baillie D. L. Alterations in the pattern of gene expression following heat shock in the nematodeCaenorhabditis elegans. Can. J. Biochem. Cell Biol. 1983; 61: 480
  • Snutch T. P., Heschl M. F. P., Baillie D. L. TheCaenorhabditis elegans hsps70 gene family: a molecular genetic characterization. Gene 1988; 64: 241
  • Solomon J. M., Rossi J. M., Golic K., McGarry T., Lindquist S. Changes in hsp70 alter ther‐motolerance and heat‐shock regulations inDrosophila. New Biol. 1991; 3: 1106
  • Steinert S. A., Pickwell G. V. Induction of SP70 proteins in mussels by ingestion of tributyltin. Mar. Environ. Res. 1993; 35: 89
  • Steinert S. A., Pickwell G. V. Stress protein profiles in mussel tissue. Environ. Toxicol. Chem.
  • Stringham E. G., Candido E. P. M. Transgenic hspl6‐lacZ strains of the soil nematodeCaenorhabditis elegans as biological monitors of environmental stress. Environ. Toxicol. Chem.
  • Subjeck J. R., Sciandra J., Johnson R. J. Heat shock proteins and thermotolerance: comparison of induction kinetics. Br. J. Radiol. 1982; 55: 579
  • Theodorakis C. W., D'Surney S. J., Brinkham J. W., Lyne T. B., Bradley B. P., Hawkins W. E., Farkas W. L., McCarthy J. J., Shugart L. R. Sequential expression of biomarkers in bluegill fish exposed to contaminated sediments. Ecotoxicology 1992; 1: 45
  • Trent J. D., Nimmesgern E., Wall J. S., Hartl F. ‐U., Horwich A. L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t‐complex polypeptide‐1. Nature 1991; 354: 490
  • Unno K., Okada S. Alterations in the heat response ofChlorella ellipsoidea by deuteration. Plant Cell Physiol. 1991; 32: 113
  • Ursic D., Culbertson M. R. Is yeast TCP1 a chaperonin?. Nature 1992; 356: 392
  • Van Der Ploeg L. H. T., Giannini S. H., Cantor C. R. Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 1985; 228: 1443
  • VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotide inEscherichia coli. J. Bacteriol. 1987; 169: 26
  • Veldhuizen‐Tsoerkan M. B., Holwerda D. A., de Bont A. M. T., Smaal A. C., Zandee D. I. A field study on stress indices in the sea mussel,Mytilus edulis: application of the “stress approach” in biomonitoring. Arch. Environ. Contam. Toxicol. 1991; 21: 491
  • Wedler F. C. Determinants of molecular heat stability. Thermotolerance, Vol. II, Mechanisms of Heat Resistance, K. J. Henle. CRC Press, Boca Raton, FL 1987
  • Welch W. J. The role of heat‐shock proteins as molecularchaperones. Curr. Opin. Cell Biol. 1991; 3: 1033
  • Welch W. J. Mammalian stress repsonse: cell physiology and biochemistry of stress proteins. The Role of the Stress Response in Biology and Disease, R. Morimoto, A. Tissiéres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990; 223
  • Welch W. J., Mizzen L. A. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat shock protein 70, intermediate filaments and small ribonucleoprotein complexes. J. Cell Biol. 1988; 106: 1117
  • Welch W. J., Suhan J. P. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell. Biol. 1986; 103: 2035
  • Welch W. J., Suhan J. P. Morphological studies of the mammalian stress response: characterization of changes. J. Cell Biol. 1985; 101: 1198
  • Whelan S. A., Hightower L. E. Differential induction of glucose regulated and heat shock proteins: effects of pH and sulfhydryl‐reducing agents on chicken embryo cells. J. Cell Physiol. 1985; 125: 251
  • White R. L. Effects of high temperature change and acclimation temperature on neuromuscular function and lethality in crayfish. Physiol. Zool. 1976; 56: 174
  • Wickner S., Hosskins J., McKenney K. Function of DnaJ and DnaK as chaperones in origin‐specific DNA binding by RepA. Nature 1991; 350: 165
  • Wilhelm J. M., Spear P., Sax C. Heat‐shock proteins in the protozoan Tetrahymena: induction by protein synthesis inhibition and possible role in carbohydrate metabolism. Heat Shock: From Bacteria to Man, M. J. Schlesinger, M. Ashburner, A. Tissiéres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1982; 309
  • Williams J. H., Farag M. A., Stainsbury M. A., Young P. A., Petersen N. S., Bergman H. L. Biochemical and physiological differences observed in rainbow trout fed different diets. Abstr. Soc. Environ. Toxicol. Chem., 13th Annu. Meet. SETAC, Pensacola, FL, in press
  • Williams K. J., Landgraf B. E., Whiting N. L., Zurlo J. Correlations between the induction of heat shock protein 70 and enhanced viral reactivation in mammalian cells treated with ultraviolet light and heat shock. Cancer Res. 1989; 49: 2735
  • Woolley D. E., Zimmer L. Effects and proposed mechanisms of action of lindane in mammals: unsolved problems. Membrane Receptors and Enzymes as Targets of Insecticidal Action, J. M. Clark, F. Matsumura. Plenum Press, New York 1986; 1
  • Viitanen P. V., Lorimer G. H., Seetheram R., Gupta R. S., Oppenheim J., Thomas J. O., Cowan N. J. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J. Biol. Chem. 1992; 267: 695
  • Xue Z., Grossfeld R. M. Stress protein synthesis and accumulation after traumatic injury of crayfish CNS. Neurochem. Res. 1993; 18: 209
  • Yocum G. D., Joplin K. H., Denlinger D. L. Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy mothLymantria dispar. Arch. Insect Biochem. Physiol. 1991; 18: 239
  • Zafarullah M., Wisniewski J., Shworak N. W., Schieman S., Misra S., Gedamu L. Molecular cloning and characterization of a constitutively expressed heat shock cognate HSC71 gene from rainbow trout. Eur. J. Biochem. 1992; 204: 893
  • Zimarino V., Wu C. Induction of sequence‐specific binding ofDrosophila heat shock activator protein without protein synthesis. Nature 1987; 327: 727

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.