373
Views
190
CrossRef citations to date
0
Altmetric
Research Article

Oxygen and Xenobiotic Reductase Activities of Cytochrome P450

, &
Pages 25-65 | Published online: 25 Sep 2008

References

  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 1964; 239: 2370
  • Guengerich F. P. Cytochrome P450: advances and prospects. FASEB J. 1992; 6: 667
  • Wickramasingh R. H., Villee C. A. Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature (London) 1975; 256: 509
  • Oxygen is poisonous — an introduction to oxygen toxicity and free radicals. Free Radicals in Biology and Medicine, B. Halliwell, J. M. C. Gutteridge. Clarendon Press, Oxford 1989; 1
  • Bast A. Is formation of reactive oxygen by cytochrome P450 perilous and predictable. TIPS 1986; 7: 266
  • McCord J. M., Fridovich I. Superoxide dismutase: the first twenty years (1968–1988). Free Rad. Biol. Med. 1988; 5: 363
  • Gonzales F. J., Nebert D. W. Evolution of the P450 superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990; 6: 182
  • Soucek P., Gut I. Cytochrome P450 in rats: structures, functions, properties and relevant human forms. Xenobiotica 1992; 22: 83
  • Garfinkel D. Studies on pig liver microsomes. I. Enzymatic and pigment composition of different microsomal preparations. Arch. Biochem. Biophys. 1958; 77: 376
  • Klingenberg M. Pigments of rat liver microsomes. Arch. Biochem. Biophys. 1958; 75: 376
  • Alvares A. P., Schilling G., Levin W., Kuntzman R. Studies on the induction of CO-binding pigment in liver microsomes by phenobarbital and 3-methylcholanthrene. Biochem. Biophys. Res. Commun. 1967; 29: 521
  • Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzales F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W., Phillips I. R., Sato R., Waterman M. R. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 1989; 8: 1
  • Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzales F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Loper J. C., Sato R., Waterman M. R., Waxman D. J. The P450 superfamily: update on new sequences, gene mapping and recommended nomenclature. DNA Cell. Biol. 1991; 10: 1
  • Brown C. A., Black S. D. Membrane topology of mammalian cytochrome P450 from liver endoplasmic reticulum: determination by trypsinolysis of phenobarbital-treated microsomes. J. Biol. Chem. 1989; 264: 4442
  • Black S. D. Membrane topology of the mammalian P450 cytochromes. FASEB J. 1992; 6: 680
  • Guengerich F. P., Martin M. V. Purification of cytochrome P-450, NADPH-cytochrome P-450 reductase and epoxide hydratase from a single preparation of rat liver microsomes. Arch. Biochem. Biophys. 1980; 205: 365
  • Schenkman J. B., Sligar S. G., Cinti D. L. Substrate interaction with cytochrome P450. Hepatic Cytochrome P450 Monooxygenase System, J. B. Schenkman, D. Kupfer. Pergamon Press, Oxford 1982; 587
  • Backes W. L., Turner J. L., Heinemann T. G., Canady W. J. Association of hydrophobic substances with hemin: Characterization of the reverse type I binding spectrum and its relationship to cytochrome P450. Biochem. Pharmacol. 1986; 35: 4443
  • Lewis D. F. V., Ionnides C., Parke D. V. Molecular orbital studies of oxygen activation and mechanisms of cytochrome P450-mediated oxidative metabolism of xenobiotics. Chem. Biol. Interact. 1989; 70: 263
  • Williams R. J. P. Haem-proteins and oxygen. Iron in Biochemistry and Medicine, A. Jacobs, M. Worwood. Academic Press, New York 1974; 183
  • Poulos T. L., Raag R. Cytochrome P450cam: crystallography, oxygen activation and electron transfer. FASEB J. 1992; 6: 674
  • Sligar S. G., Murray R. I. Cytochrome P-450cam and other bacterial P- 450 enzymes. Cytochrome P-450: Structure, Mechanism, and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 429
  • Poulos T. L. Cytochrome P450: molecular architecture, mechanism and prospects for rational inhibitor design. Pharmaceut. Res. 1988; 5: 67
  • Miwa G. T., Lu A. Y. H. The topology of the mammalian cytochrome P-450 active site. Cytochrome P-450, Structure, Mechanism, and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York 1986; 77
  • Guengerich F. P., Wang P., Davidson N. K. Estimation of isoenzymes of microsomal cytochrome P450 in rats, rabbits and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 1982; 21: 1698
  • Pickett C. B., Jeter R. L., Morin J., Lu A. Y. H. Electroimmunochemical quantitation of cytochrome P450, cytochrome P448 and epoxide hydrolase in rat liver microsomes. J. Biol. Chem. 1981; 256: 8815
  • Armstrong R. N., Levin W., Ryan D. E., Thomas P. E., Mah H. D., Jerina D. M. Stereoselectivity of rat liver cytochrome P450c in formation of benzo[a]pyrene 4,5-oxide. Biochem. Biophys. Res. Commun. 1981; 100: 1077
  • Boyd D. R., Gadaginamath G. S., Kher A., Malone J. F., Yagi H., Jerina D. M. (+)- and (-)-benzo[a]pyrene 7,8-oxide: synthesis, absolute stereochemistry, and stereochemical correlation with other mammalian metabolites of benzo[a]pyrene. J. Chem. Soc. Perkin Trans. 1980; 1: 2112
  • Van Bladeren P. J., Armstrong R. N., Cobb D., Thakker D. R., Ryan D. E., Thomas P. E., Sharma N. D., Boyd D. R., Levin W., Jerina D. M. Stereoselective formation of benzo[a]anthracene (+)-(5S, 6R)-oxide and (+)-(8R, 9S)-oxide by a highly purified and reconstituted system containing P450c. Biochem. Biophys. Res. Commun. 1982; 106: 602
  • Nordqvist M., Thakker D. R., Vyas K. P., Yagi H., Levin W., Ryan D. E., Thomas P. E., Conney A. H., Jerina D. M. Metabolism of chrysene and phenanthrene to bay-region diol epoxides by rat liver enzymes. Mol. Pharmacol. 1981; 19: 168
  • Yagi H., Jerina D. M. Absolute configuration of the trans-9,10-dihydrodiol metabolite of the carcinogen benzo[a]pyrene. J. Am. Chem. Soc. 1982; 104: 4026
  • Ortiz de Montellano P. R. Prosthetic heme alkylation and the catalytic mechanism of cytochrome P450. Rev. Biochem. Toxicol. 1984; 6: 1
  • Koymans L., Vermeulen N. P. E., Van Acker S. A. B. E., Koppele J. M., Heykants J. J. P., Lavrijsen K., Meuldermans W., Donné-Opden Kelder G. M. A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem. Res. Toxicol. 1992; 5: 211
  • Koymans L., Vermeulen N. P. E., Baarslag A., Donné-Op den Kelder G. M. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J. Comp. vt. Aided Mol. Design 1993; 7: 281
  • Taniguchi H., Imai Y., Sato R. Role of electron transfer system in microsomal drug monooxygenase reaction catalyzed by cytochrome P450. Arch. Biochem. Biophys. 1984; 232: 585
  • Gum J. R., Strobel H. W. Isolation of the membrane-binding peptide of NADPH-cytochrome P450 reductase: characterization of the peptide and its role in the interaction of reductase with P450. J. Biol. Chem. 1979; 254: 4177
  • Potter D. W., Reed D. J. Involvement of FMN and phenobarbital cytochrome P450 in stimulating a one-electron reductive denitrosation of 1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea catalyzed by NADPH-cytochrome P450 reductase. J. Biol. Chem. 1983; 258: 6906
  • Vermilion J. L., Coon M. J. Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P450 reductase. J. Biol. Chem. 1978; 253: 8812
  • Strobel H. W., Fang W.-F., Takazawa R. S., Stralka D. J., Newaz S. N., Kurzban G. P., Nelson D. R., Beyer R. S. Cytochrome P450 and the activation and inactivation of mutagens and carcinogens. Basic Life Sci. 1986; 39: 61
  • Gum J. R., Strobel H. W. Isolation of the membrane-binding peptide of NADPH-cytochrome P450 reductase. Characterization of the peptide and its role in the interaction of reductase with cytochrome P450. J. Biol. Chem. 1981; 256: 7478
  • Black S. D., French J. S., Williams C. H., Jr., Coon M. J. Role of a hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P450 reductase complex formation with P450LM. Biophys. Res. Commun. 1979; 91: 1528
  • Black S. D., Coon M. J. Structural features of liver microsomal NADPH-cytochrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region. J. Biol. Chem. 1982; 257: 5929
  • Nadler S. G., Strobel H. W. Identification and characterization of an NADPH-cytochrome P450 reductase derived peptide involved in binding to cytochrome P450. Arch. Biochem. Biophys. 1991; 2: 277
  • Voznesensky A. I., Schenkman J. B. The cytochrome P4502B4-NADPH-cytochrome P450 reductase electron transfer is not formed by charge-pairing. J. Biol. Chem. 1992; 267: 14669
  • Miwa G. T., West S. B., Huang M.-T., Lu A. Y. H. Studies on the association of cytochrome P450 and NADPH-cytochrome C reductase during catalysis in a reconstituted hydroxylating system. J. Biol. Chem. 1979; 254: 5695
  • Shepard E. A., Phillips I. R., Bayney R. M., Pike S. F., Rabin B. R. Quantification of NADPH-cytochrome P450 reductase in liver. Biochem. J. 1983; 211: 333
  • Backes W. L., Tamburini P. P., Jansson I., Gibson G. G., Sligar S. G., Schenkman J. B. Kinetics of cytochrome P450 reduction: evidence for faster reduction of the high-spin ferric state. Biochemistry 1985; 24: 5130
  • Tamburini P. P., Gibson G. G., Backes W. L., Sligar S. G., Schenkman J. B. Reduction kinetics of purified rat liver cytochrome P450. Evidence for a sequential reaction mechanism dependent on the hemoprotein spin state. Biochemistry 1984; 23: 4526
  • Backes W. L., Sligar S. G., Schenkman J. B. Kinetics of hepatic cytochrome P450 reduction: correlation with spin state of the ferric heme. Biochemistry 1982; 21: 1324
  • Schenkman J. B., Gibson G. G. Status of the cytochrome P450 cycle. TIPS June, 1981; 150
  • Sligar S. G., Cinti D. L., Gibson G. G., Schenkman J. B. Spin state control of the hepatic cytochrome P450 redox potential. Biochem. Biophys. Res. Commun. 1979; 90: 925
  • Franklin M. R., Estabrook R. W. On the inhibitory action of mersalyl on drug oxidation: a rigid organization of the electron transport chain. Arch. Biochem. Biophys. 1971; 143: 318
  • Yang C. S. The association between cytochrome P450 and NADPH-cytochrome P450 reductase in microsomal membrane. FEBS Lett. 1975; 54: 61
  • Peterson J. A., Ebel R. E., O'Keeffe D. H., Matsubara T., Estabrook R. W. Temperature dependence of cytochrome P450 reduction. A model for NADPH-cytochrome P450 reductase: cytochrome P450 interaction. J. Biol. Chem. 1976; 251: 4010
  • Tangiguchi H., Imai Y., Iyanagi T., Sato R. Interaction between NADPH-cytochrome P450 reductase and cytochrome P450 in the membrane of phosphatidylcholine vesicles. Biochem. Biophys. Acta 1979; 550: 341
  • Gut J., Richter C., Cherry R. J., Wintherhalter K. H., Kawato S. Rotation of cytochrome P450. Complex formation of cytochrome P450. Complex formation of cytochrome P450 with NADPH-cytochrome P450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced cross-linking. J. Biol. Chem. 1983; 258: 8588
  • Backes W. L., Eyer C. S. Cytochrome P450LM2 reduction. Substrate effects on the rate of reductase-LM2 association. J. Biol. Chem. 1989; 264: 6252
  • Eyer C. S., Backes W. L. Relationship between the rate of reductase-cytochrome P450 complex formation and the rate of first electron transfer. Arch. Biochem. Biophys. 1992; 293: 231
  • Gunsalus I. C., Pedersen T. C., Sligar S. G. Oxygenase-catalyzed biological hydroxylations. Annu. Rev. Biochem. 1975; 44: 377
  • Sipes G., Gandolfi A. J. Biotransformation of toxicants. Cassarett & Doul's Toxicology: The Basic Science of Poisons, C. D. Klaassen, M. D. Amdur, J. Doul. MacMillan, New York 1986; 64
  • Groves J. T., Watanabe Y. Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P450 and peroxidases. Studies of the mechanism of oxygen activation. J. Am. Chem. Soc. 1988; 110: 8443
  • Cytochrome P-450: Structure, Mechanism, and Biochemistry, P. R. Ortiz de Montellano. Plenum Press, New York 1986
  • Ortiz de Montellano P. R. Cytochrome P450 catalysis: radical intermediates and dehydrogenation reactions. TIPS 1989; 10: 354
  • Koymans L., Van Lenthe J. H., Van de Straat R., Donné-Op den Kelder G. M., Vermeulen N. P. E. A theoretical study on the metabolic activation of paracetamol by cytochrome P450: indications for a uniform oxidation mechanism. Chem. Res. Toxicol. 1989; 2: 60
  • White R. E., Coon M. J. Oxygen activation by cytochrome P450. Annu. Rev. Biochem. 1980; 49: 315
  • Kadlubar F. F., Morton K. C., Ziegler D. M. Microsomal catalyzed hydroperoxide-dependent C-oxidation of amines. Biochem. Biophys. Res. Commun. 1973; 54: 1225
  • Rahimtula A. D., O'Brien P. J. Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P450. Biochem. Biophys. Res. Commun. 1974; 60: 440
  • Hewson W. D., Hager L. P. Peroxidases, catalases and chlorperoxidases. The Porphyrins, D. Dolphin. Academic Press, New York 1979; Vol. 7: 295
  • Kuthan H., Ullrich V. Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur. J. Biochem. 1982; 126: 583
  • Fisher M. T., Sligar S. G. Control of heme redox potential and reduction rate: a linear free energy relation between potential and ferric spin state equilibrium. J. Am. Chem. Soc. 1983; 107: 5018
  • Atkins W. M., Sligar S. G. Metabolic switching in cytochrome P450cam: deuterium isotope effects on regiospecificity and the monooxygenase/oxydase reaction. J. Am. Chem. Soc 1987; 109: 3754
  • Raag R., Poulos T. L. Crystal structure of the carbon monoxide-substrate-cytochrome P450cam ternary complex. Biochemistry 1989; 28: 7586
  • Raag R., Martinis S. A., Sligar S. G., Poulos T. L. Crystal structure of the cytochrome P450cam active site mutant. Biochemistry 1991; 30: 11421
  • Brinigar W. S., Chang C. K., Geibel J., Traylor T. G. Solvent effects on reversible formation and oxidative stability of heme-oxygenase complexes. J. Am. Chem. Soc. 1974; 96: 5597
  • Guengerich F. P., Ballou D. P., Coon M. J. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P450. Biochem. Biophys. Res. Commun. 1976; 70: 951
  • Tyson C. A., Lipscomb J. D., Gunsalus I. C. The roles of putidaredoxin and P450cam in methylene hydroxylation. J. Biol. Chem. 1972; 247: 5777
  • Nelson D. R., Strobel H. W. On the membrane topology of vertebrate cytochrome P450 proteins. J. Biol. Chem. 1988; 263: 6038
  • Ishigooka M., Shimizu T., Hiroya K., Hatano M. Role of Glu318 at the putative distal site in the catalytic function of cytochrome P450d. Biochemistry 1992; 31: 1528
  • Ekström G., Cronholm T., Ingelman-Sundberg M. Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats. Biochem. J. 1986; 233: 755
  • Ingelman-Sundberg M., Johansson I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochrome P450. J. Biol. Chem. 1984; 259: 6447
  • Gorsky L. D., Koop D. R., Coon M. J. On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P450. J. Biol. Chem. 1984; 259: 6812
  • Eliasson E., Johansson I., Ingelman-Sundberg M. Ligand-dependent maintenance of ethanol-inducible cytochrome P450 in primary rat hepatocyte cell cultures. Biochem. Biophys. Res. Commun. 1988; 150: 436
  • Ekström G., Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent and ethanol-inducible cytochrome P450 (P450IIEI). Biochem. Pharmacol. 1989; 38: 1313
  • Saito I., Matsumura T., Inoue K. Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J. Am. Chem. Soc. 1982; 105: 3200
  • Welborn C. H., Dolphin D., James B. R. One-electron electrochemical reduction of a ferrous porphyrin dioxygen complex. J. Am. Chem. Soc. 1981; 100: 627
  • Guengerich F. P. Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry 1983; 22: 2811
  • Koppenol W. H., Van Buuren K. J. H., Butler J., Braams R. The kinetics of the reduction of cytochrome C by the superoxide anion radical. Biochim. Biophys. Acta 1976; 449: 157
  • Ekström G., Ingelman-Sundberg M. Mechanisms of lipid peroxidation dependent upon cytochrome P450 LM2. Eur. J. Biochem. 1986; 158: 195
  • Nordmann R., Ribiere C., Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Rad. Biol. Med. 1992; 12: 219
  • Jeffery E. H., Mannering G. J. Interaction of constitutive and phenobarbital-induced cytochrome P450 isoenzymes during the sequential oxidation of benzphetamine. Mol. Pharmacol 1982; 23: 748
  • Estabrook R. W., Kawano S., Werringloer J., Kuthan H., Tsuji H., Graf H., Ullrich V. Oxycytochrome P450: its breakdown to superoxide for the formation of hydrogen peroxide. Acta Biol. Med. Ger. 1979; 38: 423
  • Ullrich V., Diehl H. Uncoupling of mono-oxygenation and electron transport by fluoro carbons in liver microsomes. Eur. J. Biochem. 1971; 20: 509
  • Bast A., Savenije-Chapel E. M., Kroes B. H. Inhibition of monooxygenase and oxidase activity of rat-hepatic cytochrome P450 by H2-receptor blockers. Xenobiotica 1984; 14: 399
  • Takamo T., Iyazaki Y. M., Araki R. Interaction of 1,1,1-trichloroethane with the mixed-function oxidation system in rat liver microsomes. Xenobiotica 1988; 18: 1457
  • Schenkman J. B., Remmer H., Estabrook R. W. Spectral studies of drug interaction with hepatic microsomal cytochrome P 450. Mol. Pharmacol. 1967; 3: 113
  • Bush M. T., Weller H. The metabolic fate of hexobarbital. Drug Metab. Rev. 1973; 1: 249
  • Van der Graaf M., Vermeulen N. P. E. Disposition of hexobarbital: 15 years of an intriguing model substrate. Drug Metab. Rev. 1988; 19: 109
  • Heinemeyer G., Nigam S., Hildebrandt A. G. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit. Naunyn Schmiedeberg's Arch. Pharmacol. 1980; 314: 201
  • Hildebrandt A. G., Speck M., Roots I. Possible control of hydrogen peroxide production and degradation on microsomes during mixed function oxidation reactions. Biochem. Biophys. Res. Commun. 1973; 54: 968
  • Estabrook R. W., Werringloer J. Active oxygen — fact or fantasy. Microsomes and Drug Oxidations, V. Ullrich, I. Roots, A. G. Hildebrandt, R. W. Estabrook, A. H. Conney. Pergamon Press, New York 1977; 748
  • Degkwitz E., Ullrich V., Stankinger J. Metabolism and cytochrome P450 binding spectra of (+)-and (-)-hexobarbital in rat liver microsomes. Hoppe Seyler's Z. Physiol. Chem. 1969; 350: 547
  • Klinger W., Reytag A. F., Schmitt W. Influence of age, hexobarbital, and aniline on NADPH/NADH dependent hydrogen peroxide production in rat hepatic microsomes. Arch. Toxicol. 1986; 382, Suppl. 9
  • Bast A., Goossens P. A. L., Savenije-Chapel E. M. Dependence of hydrogen peroxide formation in rat liver microsomes and the molecular structure of cytochrome P450-substrates: a study with barbiturates and β-adrenoceptor antagonists. Eur. J. Drug. Metab. Pharmakokinet. 1989; 14: 93
  • Estabrook R. W., Werringloer J. Cytochrome P-450 — its role in oxygen activation for drug metabolism. Drug Metabolism Concepts, S. Jerina. American Chemical Society, Washington, D. C. 1977; 1
  • Tsong T. Y., Yang C. S. Rapid conformational changes of cytochrome P-450: effect of dimyristoyl lecithin. Proc. Natl. Acad. Sci. USA. 1978; 75: 5955
  • Imai Y., Sato R., Yanagi T. I. Rate-limiting step in the reconstituted microsomal drug hydroxylase system. J. Biochem. 1977; 22: 1237
  • Ullrich V., Kuthan H. Biochemical and Biophysical Regulation of Cytochrome P-450, J. A. Gustafsson, J. Carlstedt-Duke, A. Mode, I. Raffer. Elsevier, Amsterdam 1980; 267
  • Van de Straat R., De Vries J., Vermeulen N. P. E. Role of hepatic microsomal and purified cytochrome P450 in one-electron reduction of two quinoneimines and concomitant reduction of molecular oxygen. Biochem. Pharmacol. 1987; 36: 613
  • Ingelman-Sundberg M., Johansson I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochrome P450. J. Biol. Chem. 1984; 259: 6447
  • Auclair C., De Prost D., Hakim J. Superoxide anion production by liver microsomes from phenobarbital treated rat. Biochem. Pharmacol. 1978; 27: 355
  • Goeptar A. R., Te Koppele J. M., Neve E. P. A., Vermeulen N. P. E. Reductase and oxidase activity of rat liver cytochrome P450 with 2,3,5,6-tetramethylbenzoquinone as substrate. Chem. Biol. Interact. 1992; 83: 249
  • Parkinson A., Ryan D. E., Thomas P. E., Jerina D. M., Sayer J. M., Van Bladeren P. J., Haniu M., Shively J. E., Levin W. Chemical modification and inactivation of rat liver microsomal cytochrome P450c by 2-bromo-4′-mtroacetophenone. J. Biol. Chem. 1986; 261: 11478
  • Parkinson A., Thomas P. E., Ryan D. E., Gorsky L. D., Shively J. E., Sayer J. M., Jerina D. M., Levin W. Mechanism of inactivation of rat liver microsomal cytochrome P450c by 2-bromo-4′-nitroacetophenone. J. Biol. Chem. 1986; 261: 11487
  • Goeptar A. R., Te Koppele J. M., Van Maanen J. M. S., Zoetemelk C. E. M., Vermeulen N. P. E. One-electron reductive bioactivation of 2,3,5,6-tetramethyl-benzoquinone by cytochrome P450. Biochem. Pharmacol. 1992; 43: 343
  • Persson J. O., Terelius Y., Ingelman-Sundberg M. Cytochrome P450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P450-mediated reduction of oxygen and carbon tetrachloride. Xenobiotica 1990; 20: 887
  • Goldblum A., Loew G. H. Quantum chemical studies of anaerobic reductive metabolism of halothane by cytochrome P450. Chem. Biol. Interact. 1980; 32: 83
  • Luke B. T., Loew G. H., McLean A. D. Theoretical investigations of the anaerobic reduction of halogenated alkanes by cytochrome P450.1. Structure, inversion barriers, and heats of formation of halomethyl radicals. J. Am. Chem. Soc. 1987; 109: 1307
  • Nastainczyk W., Ullrich V. Effect of oxygen concentration on the reaction of halothane with cytochrome P450 in liver microsomes and isolated perfused rat liver. Biochem. Pharmacol. 1978; 27: 387
  • De Groot H., Noll T. The crucial role of low steady state oxygen partial pressure in haloalkane free radical mediated lipid peroxidation. Biochem. Pharmacol. 1986; 35: 15
  • Knecht K. T., Mason R. P. In vivo radical trapping and biliary secretion of radical adducts of carbon tetrachloride-derived free radical metabolites. Drug Metab. Dispos. 1988; 16: 813
  • Gooding P. E., Chayen J., Sawyer B., Slater T. F. Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration. Chem. Biol. Interact. 1978; 20: 299
  • Kessler M., Lang H., Sinagowitz E., Rink R., Höper J. Oxygen Transport to Tissues, A Part, D. F. Bruley, H. I. Bicker. Plenum Press, New York 1973; 351
  • Koop D. R. Oxidative and reductive metabolism by cytochrome P450 2E1. The FASEB J. 1992; 6: 724
  • Vromans R. M., Van de Straat R., Groeneveld M., Vermeulen N. P. E. One-electron reduction of mitomycin C by rat liver: role of cytochrome P450 and NADPH-cytochrome P450 reductase. Xenobiotica 1990; 20: 967
  • Kennedy K. A., Sligar S. G., Polonski L., Sartorelli A. C. Metabolic activation of mitomycin C by liver microsomes and nuclei. Biochem. Pharmacol. 1982; 31: 2011
  • Goeptar A. R., Te Koppele J. M., Lamme E. K., Piqué J. M., Vermeulen N. P. E. Cytochrome P450IIB1-mediated one-electron reduction of adriamycin: a study with rat liver microsomes and purified enzymes. Mol. Pharmacol. 1993; 44: 1267
  • Chesis P. L., Levin D. E., Smit M. T., Ernster L., Ames B. N. Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 1696
  • Weiner L. M., Gritzan N. P., Bezhnin N. M., Lyakhovich V. V. Microsomal and photochemical oxidation and reduction of 1-piperidinoanthraquinone. Biochim. Biophys. Acta 1982; 714: 234
  • Davis S., Weiss M. J., Wong J. R., Lampidis T. L., Chen L. B. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adeno-carcinoma-derived MCF-7 cells. J. Biol. Chem. 1985; 260: 13844
  • Mikalsen A., Alexander J., Andersen R. A., Ingelman-Sundberg M. Effect of in vivo chromate actone and combined treatment on rat liver in vitro microsomal chromium (VI) reductive activity and on cytochrome P450 expression. Pharmacol. Toxicol. 1991; 68: 546
  • Vaz A. D. N., Roberts E. S., Coon M. J. Reductive β-scission of the hydroperoxide of fatty acids and xenobiotics: Role of alcohol-inducible cytochrome P450. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5499
  • Manno M., Ferrara R., Cazzaro S., Rigotti P., Ancona E. Suicidal inactivation of human cytochrome P450 by carbon tetrachloride and halothane in vitro. Pharmacol. Toxicol. 1992; 70: 13
  • Mansuy D., Fontecave M. Reduction of benzylhalides by liver microsomes. Formation of 478 nm-absorbing σ-alkyl-ferric cytochrome P450 complexes. Biochem. Pharmacol. 1971; 32, 1983
  • Testai E., Vitozzi L. Biochemical alterations elicited in rat liver microsomes by oxidation and reduction products of chloroform metabolism. Chem. Biol. Interact. 1986; 59: 157
  • Baker M. T., Nelson R. M., Van Dyke R. A. The formation of chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes. Arch. Biochem. Biophys. 1985; 236: 506
  • Thompson J. A., Ho B., Mastovich S. C. Reductive metabolism of 1,1,1,2-tetrachloroethane and related chloroethanes by rat liver microsomes. Chem. Biol. Interact. 1984; 51: 321
  • McGirr L. G., Khan S., Lauriault V., O'Brien P. J. Molecular mechanisms for bromotrichloromethane cytotoxicity in isolated rat hepatocytes. Xenobiotica 1990; 20: 933
  • De Toranzo E. G. D., Villarruel M. C., Castro J. A. Early destruction of cytochrome P-450 in testis of carbon tetrachloride poisoned rats. Toxicology 1978; 10: 39
  • Reiner O., Athanassopoulos S., Hellmer K. H., Murray R. E., Uehleke H. Bilkung von Chloroform aus Tetrachlorkohlen Stoff in Leber-mikrosomen, Lipidperoxidation und Zerstorung vor Cytochrom P450. Arch. Toxikol. 1977; 29: 219
  • Noguchi T., Fong K. L., Lai E. K., Alexander S. S., King M. M., Olson L., Poyer J. L., McCay P. B. Specificity of a phenobarbital-induced cytochrome P450 for metabolism of carbon tetrachloride to the trichloromethyl radical. Biochem. Pharmacol. 1982; 31: 615
  • Farber J. L., Gerson R. J. Mechanisms of cell injury with hepatotoxic chemicals. Am. Soc. Pharmacol. Exp. Ther. 1984; 36: 71
  • Waller R. L., Recknagel R. O. Evaluation of a role for phosgene production in the hepatotoxic mechanism of action of carbon tetrachloride and bromotrichloromethane. Toxicol. Appl. Pharmacol. 1982; 66: 172
  • Kubic V. L., Anders M. W. Metabolism of carbon tetrachloride to phosgene. Life Sci. 1980; 26: 2151
  • Nadkarni G. S., D'Souza N. B. Hepatic antioxidant enzymes and lipid peroxidation in carbon tetrachloride-induced liver cirrhosis in rats. Biochem. Med. Metob. Biol. 1988; 40: 42
  • Glende E. A., Jr., Recknagel T. O. An indirect method demonstrating that CCl4-dependent hepatocyte injury is linked to a rise in intracellular calciumion concentration. Res. Comun. Chem. Pathol. Pharmacol 1992; 73: 41
  • Reinke L. A., Towner R. A., Janzen E. G. Spin trapping of free radical metabolites of carbon tetrachloride in vitro and in vivo: effect of acute ethanol administration. Toxicol. Appl. Pharmacol. 1992; 112: 17
  • De Groot H., Haas W. Self-catalyzed, O2 independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P450 by carbon tetrachloride. Biochem. Pharmacol. 1981; 30: 2343
  • Manno M., King L. J., De Matteis F. The degradation of haem by carbon tetrachloride: metabolic activation required a free axial co-ordination site on the haem iron and electron donation. Xenobiotica 1989; 19: 1023
  • Strubelt O. Alcohol potentation of liver injury. Fundam. Appl Toxicol. 1984; 4: 144
  • Johansson I., Ingelman-Sundberg M. Carbon tetrachloride-induced lipid peroxidation dependent on an ethanol-inducible form of rabbit liver microsomal cytochrome P450. FEBS Lett. 1985; 183: 265
  • Ekström G., Von Bahr C., Ingelman-Sundberg M. Human liver microsomal cytochrome P450IIE1. Immunological evaluation of its contribution to microsomal ethanol oxidation, carbon tetrachloride reduction and NADPH oxidase activity. Biochem. Pharmacol. 1989; 38: 689
  • Hiad B., Moody D. E., Woo C. H., Smuckler E. A. Alterations of specific forms of cytochrome P450 in rat liver during acute carbon tetrachloride intoxication. Toxicol. Appl. Pharmacol. 1981; 61: 286
  • Stier A. Trifluoroacetic acid as metabolite of halothane. Biochem. Pharmacol. 1964; 13: 1544
  • Tomasi A., Billing S., Garner A., Slater T. F., Albano E. The metabolism of halothane by hepatocytes: a comparison between free radical spin trapping and lipid peroxidation in relation to cell damage. Chem. Biol. Interact. 1983; 46: 353
  • Mukai S., Morio M., Fujii K., Hanaki C. Volatile metabolites of halothane in the rabbit. Anaesthesiology 1977; 47: 248
  • Manno M., Cazzaro S., Rezzadore M. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P450 by halothane. Arch. Toxicol. 1991; 65: 191
  • Akita S., Kawahara M., Takeshita T., Morio M., Fuji K. Halothane-induced hepatic microsomal lipid peroxidation in guinea pigs and rats. J. Appl. Toxicol. 1989; 9: 9
  • Baker M. T., Vasquiz M. T., Chiang C. K. Evidence for the stability and cytochrome P450 specificity of the phenobarbital induced reductive halothane-cytochrome P450 complex formed in rat hepatic microsomes. Biochem. Pharmacol. 1991; 41: 1691
  • Johnson R. F., Zenhausern A., Zollingen H. Azo dyes. Kirk-Othmer Encyclopedia of Chemical Technology, Vol 2, 2nd ed, H. F. Mark, J. J. McKetta, Jr., D. F. Othmer, A. Standen. John Wiley & Sons, New York 1978; 686
  • Levine W. G. Metabolism of azodyes: implication for detoxication and activation. Drug Metab. Rev. 1991; 23: 253
  • Martin C. N., Kennelly J. C. Rat liver microsomal azoreductase activity of four azodyes derived from benzidine, 3,3′-dimethylbenzidine or 3,3′-dimethoxybenzidine. Carcinogenesis 1981; 2: 307
  • Huang M. T., Miwa G. T., Cronheim N., Lu A. Y. H. Rat liver cytosolic azoreductase, electron transport properties and the mechanism of dicumarol inhibition of the purified enzyme. J. Biol Chem. 1979; 254: 11223
  • Chung K. T., Stevens S. E., Cerniglia C. E. The reduction of azodyes by the intestinal microflora. Crit. Rev. Microbiol. 1992; 18: 175
  • Kitamura S., Tatsumi K. Azoreductive activity of aldehyde oxidase. Chem. Pharm. Bull. 1983; 31: 3334
  • Hernandez P. H., Mazel P., Gillette J. R. Studies on the mechanism of action of mammalian hepatic reductase II. The effect of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activities. Biochem. Pharmacol. 1967; 16: 1877
  • Levine W. G., Raza H. Mechanisms of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P450 reductase and partially purified cytochrome P450. Oxygen and carbon monoxide sensitivity and stimulation by FAD and FMN. Drug Metab. Dispos. 1988; 16: 441
  • Peterson F. J., Holtzman J. L., Crankshaw D., Mason R. P. Two sites of azoreduction in the monooxygenase system. Mol. Pharmacol. 1989; 34: 597
  • Levine W. G., Zbaida S. Two classes of azodye reductase activity associated with rat liver microsomal cytochrome P450. Adv. Exp. Med. Biol. 1991; 283: 315
  • Raza H., Levine W. G. Azoreduction ofN, N-dimethyl-4-aminoazobenzene (DAB) by rat hepatic microsomes. Selective induction by clofibrate. Drug Metab. Dispos. 1986; 41: 19
  • Levine W. G., Stoddart A., Zbaida S. Multiple mechanisms in hepatic microsomal azoreduction. Xenobiotica 1992; 22: 1111
  • Testa B., Jenner P. Inhibitors of cytochrome P450 and their mechanism of action. Drug. Met. Rev. 1981; 12: 1
  • Newson S., Eastring R., Bergman H., Roth R. Inhibition of benzo(a)pyrene monooxygenase by α-naphthoflavone may be partially mediated by the metabolite 9-hydroxy-α-naphthoflavone. Toxicol. Lett. 1982; 14: 7
  • Zbaida S., Stoddart A. M., Levine W. G. Studies on the mechanism of reduction of azodye carcinogens by rat liver microsomal cytochrome P450. Chem. Biol. Interact. 1989; 69: 61
  • Zbaida S., Levine W. G. Role of electronic factors in binding and reduction of azo dyes by hepatic microsomes. J. Pharmacol. Exp. Therapeut. 1992; 260: 554
  • Zbaida S., Levine W. G. A novel application of cyclic voltammetry for direct investigation of metabolic intermediates in microsomal azoreduction. Chem. Res. Toxicol. 1991; 4: 82
  • Mason R. P., Peterson F. J., Holtzman J. L. Inhibition of azoreductase by oxygen. The role of the azo anion free radical metabolite in the reduction of oxygen to superoxide. Mol. Pharmacol. 1978; 14: 661
  • Powis G. Free radical formation by antitumor quinones. Free Rad. Biol. Med. 1989; 6: 63
  • Powis G. Metabolism and reactions of quinoid anticancer agents. Pharmac. Ther. 1987; 35: 57
  • O'Brien P. J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 1991; 80: 1
  • Sinha B. K. Free radicals in anticancer drug pharmacology. Chem. Biol. Interact. 1989; 69: 293
  • Svingen B. A., Powis G. Pulse radiolysis studies of antitumor quinones: radical lifetimes, reactivity with oxygen, and one-electron reduction potentials. Arch. Biochem. Biophys. 1981; 209: 119
  • Traver R. D., Horikoshi T., Danenberg K. D., Stadlbauer T. H. W., Danenberg P. V., Ross D., Gibson N. W. NAD(P)H: quino oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutant which modulates DT-diaphorase activity and mitomycin C sensitivity. Cancer Res. 1992; 52: 797
  • Odom A. L., Hatwig C. A., Stanley J. S., Benson A. M. Biochemical determinants of adriamycin toxicity in mouse liver, heart and intestine. Biochem. Pharmacol. 1992; 43: 831
  • Kalyanaraman B., Perez-Reyes E., Mason R. P. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim. Biophys. Acta 1980; 630: 119
  • Gustafson D. L., Swanson J. D., Pristos C. A. Role of xanthine oxidase in the potentation of doxorubicin-induced cardiotoxicity by mitomycin C. Cancer Commun. 1991; 3: 299
  • Powis G., Appel P. L. Relationship of the single-electron reduction potentials of quinones to their reduction by flavoproteins. Biochem. Pharmacol. 1980; 29: 2567
  • Doroshow J. Role of hydrogen peroxide and hydroxyl formation in the killing of Ehrlich cancer cell by antitumor quinones. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4514
  • Bachur N. R., Gordon S. L., Gee M. V., Kon H. NADPH-cytochrome P450 reductase activation of quinone anticancer agents to free radicals. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 954
  • Nakamura Y., Ohtaki S., Makino R., Tanaka T., Ishimura Y. Superoxide anion in the initial product in the hydrogen peroxide formation catalyzed by NADPH oxidase in porcine thyroid plasma membrane. J. Biol. Chem. 1989; 264: 4759
  • Gutteridge J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986; 201: 291
  • Rumyantseva G. V., Weiner L. M. Redox transformations of quinone antitumor drugs in liver microsomes. FEBS Lett. 1988; 234: 459
  • Fisher G. R., Brown J. R., Patterson L. H. Involvement of hydroxyl radical formation and DNA strand breakage in the cytotoxicity of anthraquinone antitumor agents. Free Rad. Res. Commun. 1990; 11: 117
  • Rumyantseva G. V., Weiner L. M., Frolova E. I., Fedorova O. S. Hydroxyl radical generation and DNA strand scission mediated by natural anticancer and synthetic quinones. FEBS Lett. 1989; 242: 397
  • Blount S., Griffiths H. R., Lunec J. Reactive oxygen species induce antigenic changes in DNA. FEBS Lett. 1989; 245: 100
  • Chatterjee S. N., Agarwal S., Jana A. K., Bose B. Membrane lipid peroxidation and its pathological consequences. Indian J. Biochem. Biophys. 1988; 25: 25
  • Mimnaugh E. G., Trush M. A., Gram T. E. A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity. Biochem. Pharmacol. 1986; 35: 4327
  • Vaca C. E., Harms-Ringdahl M. Nuclear membrane lipid peroxidation products bind to nuclear macromolecules. Arch. Biochem. Biophys. 1989; 269: 548
  • Hauptlorenz S., Esterbauer H., Mol W., Rumpoll R., Schauenstein E., Puschendorf B. Effects of the lipid peroxidation product 4-hydroxynonenal and related aldehyde on proliferation and viability of cultured Ehrlich ascites tumor cells. Biochem. Pharmacol. 1985; 34: 3803
  • Docampo R., Moreno S. N. J. The metabolism and mode of action of gentian violet. Drug Metab. Rev. 1990; 22: 161
  • Thomas S. M., MacPhee D. G. Crystal violet: a direct-acting frameshift mutagen whose mutagenicity is enhanced by mammalian metabolism. Mutat. Res. 1984; 140: 165
  • Harrelson W. G., Mason R. P. Microsomal reduction of gentian violet; evidence for cytochrome P-450-catalyzed free radical formation. Mol. Pharmacol. 1982; 22: 239
  • Harrelson W. G., Jr., Mason R. P. Microsomal reduction of gentian violet. Evidence for cytochrome P450 catalyzed free radical formation. Mol. Pharmacol. 1982; 22: 239
  • McDonald J. J., Cerniglia C. E. Biotransformation of gentian violet to leucogentian violet by human, rat, and chicken intestinal flora. Drug Metab. Dispos. 1984; 12: 330
  • Tokiwa H., Nakagawa R., Horikawa K. Mutagenic/carcinogenic agents in indoor pollutants. The dinitropyrene generated by kerosene heaters and fuel gas and liquified petroleum gas burner. Mutat. Res. 1985; 157: 39
  • Sweetman J. A., Zielinska B., Atkinson R., Randhal T., Winer A. M., Pitts J. N, Jr. A possible formation pathway for the 2-nitrofluoranthene observed in ambient particulate organic matter. Atmos. Environ. 1986; 20: 235
  • Pitts J. N., Jr., Van Cauwenberghe R. A., Grosjean D., Schmid J. P., Fitz D. R., Beeser W. L., Jr., Knudson G. B., Hunds P. M. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 1979; 202: 515
  • Zielinska B., Harger W. P., Arey J., Winer A. M., Haar R. A., Hanson C. V. The mutagenicity of 2-nitrofluoranthene and its in vitro hepatic metabolites. Mutat. Res. 1987; 190: 259
  • Dubin M., Villamil S. H. F., De Blumefeld M. P., Stoppani A. O. M. Inhibition of microsomal lipid peroxidation and cytochrome P450-catalyzed reactions by nitrofuran compounds. Free Rad. Res. Commun. 1991; 14: 419
  • Masana M., De Toranzo E. G. D., Castro J. A. Reductive metabolism and activation of benznidazole. Biochem. Pharmacol. 1984; 33: 1041
  • O'Brien P. J., Wong W. C., Silva J., Khan S. Toxicity of nitrobenzene compounds towards isolated hepatocytes: dependence on reduction potential. Xenobiotica 1990; 20: 945
  • Mori M. A., Matsuhashi T., Miyahara T., Shibara S., Izima C., Kozuka H. Reduction of 2,4-dinitrotoluene by Wistar rat liver microsomal and cytosol fractions. Toxicol. Appl. Pharmacol. 1984; 76: 105
  • Lloyd R. V., Duling D. R., Rumyantseva G. V., Mason R. P., Bridson P. K. Microsomal reduction of 3-amine-1,2,4-benzotriazine 1,4-dioxide to a free radical. Mol. Pharmacol. 1991; 40: 440
  • Tatsumi K., Kitamura S., Narai N. Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Cancer Res. 1986; 46: 1089
  • Belisaria M. A., Pecce R., Dalla Morte R., Arena A. R., Cecinato A., Ciccioli P., Stainno N. Characterization of oxidative and reductive metabolism in vitro of nitrofluor-anthenes by rat liver enzymes. Carcinogenesis 1990; 11: 214
  • Saito K., Kamataki T., Kato R. Participation of cytochrome P450 in the reductive metabolism of 1-nitropyrene by rat liver microsomes. Cancer Res. 1984; 44: 3169
  • Harada N., Omura T. Participation of cytochrome P450 in the reduction of nitro compounds by rat liver microsomes. J. Biochem. 1980; 87: 1539
  • Gilette J. R., Kamm J. J., Sasame H. A. Mechanism of p-nitrobenzoate reduction in liver: the possible role of cytochrome P450 in liver microsomes. Mol. Pharmacol. 1968; 4: 541
  • Mason R. P., Josephy P. S. Free Radical Mechanism of Nitroreductase. Toxicity of Nitro-aromatic Compounds, D. E. Rickert. Hemisphere, Washington, D.C. 1985; 121
  • Corbett M. D., Corbelt B. R. Metabolism of 4-chloronitrobenzene by die yeast. Rhodosporidium sp., Appl. Environ. Microbiol. 1981; 41: 942
  • Mermelstein R., Kiriazide D. K., Butter M., McCoy E. C., Rozenkranz H. S. The extraordinary mutagenicity of nitropyrenes in bacteria. Mutat. Res. 1981; 89: 187
  • Takayama S., Tanaka M., Katoh Y., Terada M., Sugimaura T. Mutagenicity of nitropyrenes in Chinese hamster V79 cells. Gann 1983; 74: 338
  • Nachtman J. P., Wolff S. Activity of nitropolynuclear aromatic hydrocarbons in the sister chromatid exchange assay with and without metabolic activation. Environ. Mutagen. 1982; 4: 1
  • Campbell J., Crumplin G. C., Garner J. V., Garner R. C., Martin C. M., Rutler A. Nitrated polycyclic aromatic hydrocarbon: potent bacterial mutagens and stimulators of DNA synthesis in cultured human cells. Carcinogenesis 1981; 2: 559
  • Hirose M., Lee M., Vaught J. B., Wang C. Y., King C. M. Carcinogenicity and metabolic activation of 1-nitropyrene. Proc. Am. Assoc. Cancer Res. 1983; 24: 83
  • Hong J., Pan J., Gonzales F. J., Gelboin H. V., Yang C. S. The induction of a specific form of cytochrome P450 (P450j) by fasting. Biochem. Biophys. Res. Commun. 1987; 142: 1077
  • Koymans L., Donné-Op den Kelder G. M., Te Koppele J. M., Vermeulen N. P. E. Cytochromes P450: Their active-site stracture and mechanism of oxidation. Drug. Metab. Rev. 1993; 25: 325
  • Poulos T. L., Finzel B. C., Howard A. J. Crystal structure of substrate-freePseudomonas putida cytochrome P450. Biochemistry 1986; 25: 5314
  • Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 1987; 195: 687
  • Murray M., Reidy G. F. Selectivity in the inhibition of mammalian cytochromes P450 by chemical agents. Pharmacol. Rev. 1990; 42: 85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.