75
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Transcarboxylase: Role of Biotin, Metals, and Subunits in the Reaction and its Quaternary Structur

, &
Pages 47-123 | Published online: 26 Sep 2008

References

  • Swick R. W., Wood H. G. The role of transcarboxylation in propionic acid fermentatio. Proc. Natl. Acad. Sci. U.S.A. 1960; 46: 28
  • Rafalski A., Raczynska-Bojawouska K. The synthesis of malonate and methylmalonate and the formation of polyene antibiotic. Acta Biochim. Pol. 1972; 19: 71
  • Moss J., Lane M. D. The biotin-dependent enzyme. Adv. Enzymol 1971; 35: 321
  • Utter M. F., Barden R. E., Taylor B. L. Pyruvate carboxylase: An evaluation of the relationships between structure and mechanism and between structure and catalytic activit. Adv. Enzymol. 1975; 42: 1
  • Alberts A. W., Vagelos P. R. Acyl-CoA carboxylase. The Enzymes3rd ed., P. D. Boyer. Academic Press, New York 1975; Vol. 6: 37
  • Wood H. G. Transcarboxylas. The Enzymes3rd ed., P. D. Boyer. Academic Press, New York 1972; Vol. 6: 83
  • Wood H. G., Ahmad F., Jacobson B., Green N. M., Wrigley N. G. Transcarboxylase: A biotinyl-metallo-enzyme with a unique structur. Enzymes Structure and Function, J. Drenth, R. A. Osterbaan, C. Veeger. North-Holland, Amsterdam 1972; Vol. 29: 201
  • Wood H. G. Subunit-subunit interactions of transcarboxylas. Fed. Proc.
  • Green N. M., Valentine R. C., Wrigley N. G., Ahmad F., Jacobson B., Wood H. G. Transcarboxylase. XI. Electron microscopy and subunit structur. J. Biol. Chem. 1972; 247: 6284
  • Green N. M. Protein-protein interaction. Analysis of the Structure of Complex Proteins by Electron Microscopy, R. Jaenicke, Helm E. Reich. Springer-Verlag, Heidelberg 1972; 183
  • Wood H. G., Ahmad F., Jacobson B., Chuang M., Brattin W. Isolation of the subunits of transcarboxylase and reconstitution of the active enzyme from subunit. J. Biol Chem. 1975; 250: 918
  • Northrop D. B., Wood H. G. Transcarboxylase. V. The presence of bound zinc and cobal. J. Biol. Chem. 1969; 244: 5801
  • Ahmad F., Lygre D. G., Jacobson B. E., Wood H. G. Transcarboxylase. XII. Identification of the metal containing subunits of transcarboxylase and the stability of the bindin. J. Biol. Chem. 1972; 247: 6299
  • Fung C. H., Mildvan A. S., Leigh J. S., Jr. Electron and nuclear magnetic resonance studies of the interaction of pyruvate with transcarboxylas. Biochemistry 1974; 13: 1160
  • Gerwin B. I., Jacobson B. E., Wood H. G. Transcarboxylase. VIII. Isolation and properties of a biotin-carboxyl-carrier protei. Proc. Natl. Acad. Sci. U.S.A. 1969; 64: 1315
  • Fall R. R., Vagelos P. R. Acetyl coenzyme A carboxylase, proteolytic modification of biotin carboxyl carrier protei. J. Biol. Chem. 1974; 248: 2078
  • Ahmad F., Ahmad P. M. Fatty Acid Biosynthesis in Propionic Acid Bacteri. 170th Natl. Meet. American Chemical Society, Division of Biochemistry. 1975, Abstr. 137
  • Fall R. R., Alberts A. W., Vagelos P. R. Analysis of bacterial biotin-protein. Biochim. Biophys. Acta 1975; 379: 496
  • Berger M., Wood H. G. Purification of the subunits of transcarboxylase by affinity chromatography on avidin-Sepharos. J. Biol Chem. 1975; 250: 927
  • Green N. M., Toms E. J. Purification and crystallization of avidi. Biochem. J. 1970; 118: 67
  • Guchhait R. B., Polakis S. E., Dimroth P., Stoll E., Moss J., Lane M. D. Acetyl coenzyme A carboxylase system of E. coli: Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein component. J. Biol. Chem. 1974; 249: 6633
  • Libor S., Warwick R., Sundarm T. K. Binding behaviour of pyruvate carboxylase from Bacillus stearothermophilus on Sepharose-avidi. FEBS Lett. 1975; 57: 34
  • Green N. M., Toms E. J. The properties of subunits of avidin coupled to Sepharos. Biochem. J. 1973; 133: 687
  • Zwolinski G. K., Bowien B., Wood H. G. The structure of the subunits of transcarboxylase and their relationship to the quaternary structure of transcarboxylas. Biochemistry, submitted
  • Ahmad F., Jacobson B., Chuang M., Brattin W., Wood H. G. Isolation of peptides from the carboxyl carrier subunit of transcarboxylase. Role of non-biotinyl peptide in assembl. Biochemistry 1975; 14: 1606
  • Wood H. G., Lochmüller H., Reipertinger C., Lynen F. Transcarboxylase. IV. Function of biotin and structure and properties of the carboxylated enzym. Biochem. Z. 1963; 337: 247
  • Northrop D. B. Transcarboxylase. VI. Kinetic analysis of the reaction mechanis. J. Biol. Chem. 1969; 244: 5808
  • Barden R. E., Fung C. H., Utter M. F., Scrutton M. C. Pyruvate carboxylase from chicken liver: Steady state kinetics studies indicate a “two site” Ping-Pong mechanis. J. Biol. Chem. 1972; 247: 1323
  • Milner Y., Wood H. G. Mechanism of action of pyruvate, phosphate dikinase from Propionibacterium shermanii and Bactericides symbiosus. Fed. Proc. 1972; 31: 452, and J. Biol. Chem. submitted for publication
  • Chuang M., Ahmad F., Jacobson B., Wood H. G. Evidence that the two partial reactions of transcarboxylation are catalyzed by two dissimilar subunits of transcarboxylas. Biochemistry 1975; 14: 1611
  • Lynen F., Knappe J., Iorch E., Jutting G., Ringelman E., Lachance J. P. Zur Biochemischen Funktion des Biotins. II. Reinigung und Wirkungsweise der β-Methylcrotonyl-carboxylas. Biochem. Z. 1961; 335: 123
  • Polakis S. E., Guchhait R. B., Zwergel E. E., Lane M. D., Cooper T. G. Acetyl coenzyme A carboxylase system of Escherichia coli. Studies on the mechanisms of the biotin carboxylase and carboxyltransferase-catalyzed reaction. J. Biol. Chem. 1974; 249: 6657
  • Mildvan A. S., Scrutton M. C. Pyruvate carboxylase. X. The demonstration of direct coordination of pyruvate and α-ketobutyrate by the bound manganese and the formation of enzyme-metal-substrate bridge complexe. Biochemistry 1967; 6: 2978
  • Mildvan A. S. Mechanisms of enzyme actio. Annu. Rev. Biochem. 1974; 43: 357
  • Mildvan A. S., Scrutton M. C., Utter M. F. Pyruvate carboxylase. VII. A possible role for tightly bound manganes. J. Biol. Chem. 1966; 241: 3488
  • Fung C. H., Mildvan A. S., Alberhand A., Komoroski R., Scrutton M. C. Interaction of pyruvate with pyruvate carboxylase and pyruvate kinase as studied by paramagnetic effects on 13C relaxation rate. Biochemistry 1973; 12: 620
  • Scrutton M. C., Reed G. H., Mildvan A. S. Application of physical methods to the study of enzymes containing bound manganese: Problem and prospect. Adv. Exp. Med. Biol. 1973; 40: 79
  • Northrop D. B., Wood H. G. Transcarboxylase. VII. Exchange reactions and kinetics of oxalate inhibitio. J. Biol. Chem. 1969; 244: 5820
  • Jacobson B., Gerwin B. I., Ahmad F., Waegell P., Wood H. G. Transcarboxylase. IX. Parameters effecting dissociation and reassociation of the enzym. J. Biol. Chem. 1970; 245: 6471
  • Cotton F. A., Wilkinson G. The theory of metal-ligand bonding, chap. 26, chap. . Advanced Inorganic Chemistry, F. A. Cotton, G. Wilkinson. Interscience, New York 1966
  • Orgel L. E. Transition-Metal Chemistry: an Introduction to Ligand Field Theory. John Wiley & Sons, New York 1966
  • Fung C. H., Feldman R. H., Mildvan A. S. 1H and 31P Fourier transform magnetic resonance studies of the conformation of the enzyme-bound propionyl coenzyme A on transcarboxylas. Biochemistry 1976; 15: 75
  • Fung C. H., Gupta R. K., Mildvan A. S. Magnetic resonance studies of the proximity and spatial arrangement of propionyl-coenzyme A and pyruvate on a biotin-metalloenzyme, transcarboxylas. Biochemistry 1976; 15: 85
  • Prutt H. R., Santrago D., Shore J. D. Electron paramagnetic resonance study of the interaction of a spin-labeled analog of adenosine diphosphoribase with paramagnetic cobalt (II) liver alcohol dehydrogenas. FEBS Lett. 1974; 39: 21
  • Gregolin C., Ryder E., Warner R. C., Kleinschmidt A. K., Chang H. C., Lane M. D. Liver acetyl coenzyme A carboxylase. II. Further molecular characterizatio. J. Biol. Chem. 1968; 243: 4236
  • Green N. M., Konieczny L., Toms E. J., Valentine R. C. The use of bifunctional biotinyl compounds to determine the arrangement of subunits in avidi. Biochem. J. 1971; 125: 781
  • Arigoni D., Lynen F., Retey J. Stereochemie der enzymatischen carboxylierung von (2R)-2–H-Propionyl-Coenzy. A, Helv. Chim. Acta 1966; 49: 311
  • Prescott D. J., Rabinowitz J. L. The enzymatic carboxylation of propionyl coenzyme A. Studies involving deuterated and tritiated substrate. J. Biol. Chem. 1968; 243: 1551
  • Rose I. A. Stereochemistry of pyruvate kinase, pyruvate carboxylase, and malate enzyme reaction. J. Biol. Chem. 1970; 245: 6052
  • Allen S. H. G., Kellermeyer R., Stjernholm R., Jacobson B., Wood H. G. The isolation, perification, and properties of methylmalonyl racemas. J. Biol. Chem. 1973; 238: 1637
  • Retey J., Lynen F. Zur biochemischen Funktion des Biotins. IX. Der sterische Verlauf der Carboxylierung von Propionyl-Co. Biochem. Z. 1965; 342: 256
  • Sprecher M., Clark M. J., Sprinson D. B. The absolute configuration of methylmalonyl coenzyme A and stereochemistry of the methylmalonyl coenzyme A mutase reactio. J. Biol. Chem. 1966; 241: 872
  • Cheung Y. F., Fung C. H., Walsh C. Stereochemistry of propionyl-coenzyme A and pyruvate carboxylations catalyzed by transcarboxylas. Biochemistry 1975; 14: 2981
  • Rose I. A., O'Connell E. L., Solomon F. Intermolecular tritium transfer in the transcarboxylase reactio. J. Biol. Chem. 1976; 251: 902
  • Guchhait R. B., Polakis S. E., Hollis D., Fenselan C., Lane M. D. Acetyl coenzyme A carboxylase systems of Escherichia coli. Site of carboxylation of biotin and enzymatic reactivity of 1'-N-(ureido) carboxybiotin derivative. J. Biol. Chem. 1974; 249: 6646
  • Jencks W. P. General acid-base catalysi. Catalysis in Chemistry and Enzymology, W. P. Jencks. McGraw-Hill, New York 1969; 209
  • Bruice T. C., Hegarty A. F. Biotin-bound CO2 and the mechanism of enzymatic carboxylation reaction. Proc. Natl. Acad. Sci. U.S.A. 1970; 65: 805
  • Hegarty A. F., Bruice T. C. Acyl transfer reactions from and to the ureido functional group. 1. The mechanisms of hydrolysis of an O-acylisourea (2-amino-4,5-benzo-6-oxo-l,3-oxazine. J. Am. Chem. Soc. 1970; 92: 6561
  • Pratt R. F., Bruice T. C. Reactions of S-acylisothioureas. I. S- to N-acyl migration in S-benzoylisothiobiotin and analog. Biochemistry 1971; 10: 3178
  • Hegarty A. F., Bruice T. C., Benkovic S. J. Biotin and the nucleophilicity of 2-methoxy-2-imidazoline toward the sp carbonyl carbo. Chem. Commun. 1173; 1969
  • Steinberg R., Westheimer B. H. Metal ion-catalyzed decarboxylation: A model for an enzyme syste. J. Am. Chem. Soc. 1951; 73: 429
  • Kornberg A., Ochoa S., Mehler A. H. Spectrophotometric studies on the decarboxylation of β-keto acid. J. Biol. Chem. 1948; 174: 159
  • Polakis S. E., Guchhait R. B., Lane M. D. On the possible involvement of a carbonyl phosphate intermediate in the adenosine-triphosphate-dependent carboxylation of bioti. J. Biol. Chem. 1972; 247: 1335
  • Ashman L. K., Keech D. B. Sheep kidney pyruvate carboxylase. Studies on the coupling of adenosine triphosphate hydrotypes and CO2 fixatio. J. Biol. Chem. 1975; 250: 14
  • Flavin M., Castro-Medosa H., Ochoa S. Bicarbonate-dependent enzymatic phosphorylation of fluoride by adenosine triphosphat. Biochim. Biophys. Actat. 1959; 20: 59
  • Flavin M., Castro-Medosa H., Ochoa S. Metabolism of propionic acid in animal tissues. II. Propionyl coenzyme A carboxylation syste. J. Biol. Chem. 1957; 229: 981
  • Tietz A., Ochoa S. Fluorokinase and pyruvic kinas. Arch. Biochem. Biophys. 1958; 78: 477
  • Wood H. G., Chiao J. P., Poto E. M. A new large form of transcarboxylase with six peripheral subunits and twelve biotinyl carboxyl carrier subunit. J. Biol. Chem., submitted for publication
  • Yphantis D. A. Equilibrium ultracentrifugation of dilute solution. Biochemistry 1964; 3: 297
  • Cohen R., Mire M. Analytical-band centrifugation of an active enzyme-substrate complex. I. Principle and practice of the centrifugatio. Eur. J. Biochem. 1971; 23: 267
  • Taylor B. L., Barden R. E., Utter M. F. Identification of the reacting form of pyruvate carboxylas. J. Biol. Chem. 1972; 247: 7383
  • Wood H. G., Jacobson B., Gerwin B. I., Northrop D. B. Oxalacetate transcarboxylase from propionibacteri. Methods Enzymol. 1969; 13: 215
  • Green N. M. Spectrophotometric determination of avidin and bioti. Methods Enzymol. 1970; 18A: 418
  • Schachman H. K. Ultracentrifugation in Biochemistry. Academic Press, New York 1959
  • Josephs R., Harrington W. F. On the stability of myosin filament. Biochemistry 1968; 7: 2834
  • Zwolinski G. K., Bowien B. U., Wood H. G., Ericsson L. Isolation purification and sequencing of the biotin carboxyl carrier protein (1.3 SE subunit) of transcarboxylase from Propionibacterium shermanii. Fed. Proc. 1975; 34: 63, unpublished results
  • Dayhoff M. O. Data section: Composition of proteins. Mechanisms, in molecular evolution: Example. Atlas of Protein Sequence and Structure, M. O. Dayhoff. National Biomedical Research Foundation, Washington, D.C. 1972; Vol. 5: D355
  • Dickerson R. E., Geis I. The influence of side chains, chapter 1.. The Structure and Action of Proteins, R. E. Dickerson, I. Geis. Harper and Row, New York 1969
  • Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from protein. Biochemistry 1974; 13: 211
  • Chou P. Y., Fasman G. D. Prediction of protein conformatio. Biochemistry 1974; 13: 222
  • Haschemeyer R. H. Electron microscopy of enzyme. Adv. Enzymol. 1970; 33: 71
  • Haschemeyer R. H., Myers R. J. Negative stainin. Principles and Techniques of Electron Microscopy: Biological Applications, M. A. Hayat. Van Nostrand, Princeton 1972; Vol. 2: 99
  • Lipscomb W. N., Reeke G. N., Jr., Hartsuck J. A., Quiocho F. A. The structure of carboxy peptidase A. IX. The X-ray diffraction results in the light of the chemical sequenc. Proc. Natl Acad. Sci U.S.A. 1969; 64: 28
  • Pangburn M. K., Walsh K. A. Thermolysin and neutral protease: mechanistic consideration. Biochemistry 1975; 14: 4050
  • Adams M. J., Blundill T. L., Dodson G. G., Vijoyan M., Baker E. N., Barding M. M., Hodgkin D. C., Rimmer B., Sheat S. Structure of rhombohedral 2 zinc insulin crystal. Nature 1969; 224: 491
  • McAllister H. C., Coon M. J. Further studies on the properties of liver propionyl coenzyme A holocarboxylase synthase and the specificity of holocarboxylase formatio. J. Biol. Chem. 1976; 241: 2855
  • Gros C., Labouesse B. Study of the dansylation reaction of amino acids, peptides and protein. Eur. J. Biochem. 1969; 7: 463
  • Wingatd M., Matsuedo G., Wolfe R. S. Myxobacter AL-I protease II: Specific peptide bond cleavage on the amino side of lysin. J. Bacteriol. 1972; 112: 940
  • Mann K. G., Fish W. W., Cox A. C., Tanford C. Single-chain nature of human serum transferri. Biochemistry 1970; 9: 1348
  • Waterson R. M., Konigsberg W. H. Peptide mapping of aminoacyl-tRNA synthetases: Evidence for internal sequence homology in Escherichia coli leucyl-tRNA synthetas. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 376
  • Koch G. L. E., Boulanger Y., Hartley B. S. Repeating sequences in aminoacyl-tRNA synthetase. Nature 1974; 249: 316
  • Bruton C. J., Jakes R., Koch G. L. E. Repeated sequences in methionyl-tRNA synthetase from E. coli. FEBS Lett. 1974; 45: 26
  • Rossman M. G., Liljes A. Recognition of structural domains in globular protein. J. Mol. Biol. 1974; 85: 177
  • Klotz I. M., Langerman N. R. Quaternary structure of protein. Anna. Rev. Biochem. 1970; 39: 25
  • Monod J., Wyman J., Changeux J.-P. On the nature of allosteric transition: A plausible mode. J. Mol. Biol. 1965; 12: 88
  • Cornish-Bowden A., Koshland D. E., Jr. The influence of binding domains on the nature of subunit interaction in oligomeric protein. J. Biol. Chem. 1970; 245: 6241
  • Tulinsky A., Vandlen R. L., Morimoto C. N., Mani N. V., Wright L. H. Variability in the tertiary structure of α-chymotrypsin at 2.8-A resolutio. Biochemistry 1973; 12: 4185
  • Vandlen R. L., Tulinsky A. Changes in the tertiary structure of α-chymotrypsin with change in pH; pH 4.2–6.. Biochemistry 1973; 12: 4193
  • Anderson W. F., Fletterick R. J., Steitz T. A. Structure of yeast hexokinase. III. Low resolution structure of a second crystal form showing a different quaternary structure, heterologous interaction of subunits, and substrate bindin. J. Mol. Biol.
  • Anderson W. F., Steitz T. A. Structure of yeast hexokinase. IV. Low resolution structure of enzyme-substrate complexes revealing negative cooperativity and allosteric interaction. J. Mol. Biol. 1975; 92: 279
  • Bowien B., Zwolinski G., Wood H. G., unpublished results
  • Mildvan A. S., private communication
  • Poto E. M., Wood H. G., unpublished results
  • Bradshaw R., et al, unpublished data
  • Chuang M., Wood H. G., unpublished data
  • Vagelos P. R., et al, unpublished data
  • Wrigley N. G., Chiao J. P., Wood H. G., unpublished results
  • Berger M., Wood H. G. Immunochemistry of the subunits of transcarboxylas. J. Biol. Chem., submitted for publication
  • Berger M. Production of antibodies that bind biotin and inhibit biotin containing enzyme. Biochemistry 1975; 14: 2338
  • Harmon F., Berger M., Wood H. G., Wrigley N., unpublished results

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.