664
Views
48
CrossRef citations to date
0
Altmetric
Review Article

Cellular strategies for making monoubiquitin signals

&
Pages 17-28 | Received 05 Jul 2011, Accepted 02 Sep 2011, Published online: 08 Oct 2011

References

  • Alpi AF, Pace PE, Babu MM & Patel KJ. (2008). Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell 32:767–777.
  • Bienko M, green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, Begovic T, Niimi A, Mann M, Lehmann AR & Dikic I. (2010). Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol Cell 37:396–407.
  • Boutet SC, Biressi S, Iori, K, Natu V & Rando TA. (2011). Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors. Mol Cell 40:749–761.
  • Boutet SC, Disatnik MH, Chan LS, Iori K & Rando TA. (2007). Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130:349–362.
  • Brzovic PS, Lissounov A, Christensen DE, Hoyt DW & Klevit RE. (2006). A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21: 873–880.
  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK & Varshavsky A. (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.
  • Chen A, Kleiman FE, Manley JL, Ouchi T & Pan ZQ. (2002). Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J Biol Chem 277:22085–22092.
  • Chen L, Shinde U, Ortolan TG & Madura K. (2001). Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2: 933–938.
  • Christensen DE, Brzovic PS & Klevit RE. (2007). E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 14: 941–948.
  • Ciechanover A, Elias S, Heller H, Ferber S & Hershko A. (1980). Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255: 7525–7528.
  • Deshaies RJ & Joazeiro CA. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399–434.
  • Dikic I, Wakatsuki S & Walters KJ (2009). Ubiquitin binding domains-from structures to functions. Nat Rev Mol Cell Biol 10:659–671.
  • Eakin CM, Maccoss MJ, Finney GL & Klevit RE. (2007). Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci U S A 104:5794–5499.
  • Eddins MJ, Carlile CM, Gomez KM, Pickart CM & Wolberger C. (2006). Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol, 13: 915–20.
  • Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B. 2005. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol 12:933–934.
  • Fallon L, Bélanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T, Brice A, van Bergen En Henegouwen PM, Fon EA. 2006. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842.
  • Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B. 1988. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335.
  • Goldknopf IL, Busch H. 1977. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 74:864–868.
  • Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. 1975. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA 72:11–15.
  • Haas AL, Bright PM, Jackson VE. 1988. Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. J Biol Chem 263:13268–13275.
  • Haglund K, Di Fiore PP, Dikic I. 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598–603.
  • Harvey KF, Shearwin-Whyatt LM, Fotia A, Parton RG, Kumar S. 2002. N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein. J Biol Chem 277:9307–9317.
  • Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. 1980. Proposed role of ATP in protein breakdown: Conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77:1783–1786.
  • Hibbert RG, Huang A, Boelens R & Sixma TK. (2011). E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc Natl Acad Sci U S A 108:5590–5595.
  • Hicke L. 2001. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201.
  • Hicke L, Schubert HL, Hill CP. 2005. Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6:610–621.
  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141.
  • Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H, Dikic I. 2006. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8:163–169.
  • Hoeller D, Hecker CM, Wagner S, Rogov V, Dötsch V, Dikic I. 2007. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol Cell 26:891–898.
  • Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. 2005. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8′s E1. Mol Cell 17:341–350.
  • Hunt LT, Dayhoff MO. 1977. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem Biophys Res Commun 74:650–655.
  • Hurley JH, Stenmark H. 2011. Molecular mechanisms of ubiquitin-dependent membrane traffic. Annu Rev Biophys 40:119–142.
  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD. 2003. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266.
  • Ingham RJ, Gish G, Pawson T. 2004. The Nedd4 family of E3 ubiquitin ligases: Functional diversity within a common modular architecture. Oncogene 23:1972–1984.
  • Isasa M, Katz EJ, Kim W, Yugo V, González S, Kirkpatrick DS, Thomson TM, Finley D, Gygi SP, Crosas B. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 38:733–745.
  • Jentsch S, McGrath JP, Varshavsky A. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134.
  • Jin L, Williamson A, Banerjee S, Philipp I, Rape M. 2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653–665.
  • Johnson ES. 2004. Protein modification by SUMO. Annu Rev Biochem 73:355–382.
  • Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP. 2006. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8:700–710.
  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608.
  • Klapisz E, Sorokina I, Lemeer S, Pijnenburg M, Verkleij AJ, van Bergen en Henegouwen PM. 2002. A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J Biol Chem 277:30746–30753.
  • Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. 2009. Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139:957–968.
  • Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK. 2007. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 26:2797–2807.
  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. 2003. Mono- versus polyubiquitination: Differential control of p53 fate by Mdm2. Science 302:1972–1975.
  • Li W, Tu D, Brunger AT, Ye Y. 2007. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446:333–337.
  • Li W, Tu D, Li L, Wollert T, Ghirlando R, Brunger AT, Ye Y. 2009. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc Natl Acad Sci USA 106:3722–3727.
  • Li W, Ye Y. 2008. Polyubiquitin chains: Functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406.
  • Lott JS, Coddington-Lawson SJ, Teesdale-Spittle PH, McDonald FJ. 2002. A single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel. Biochem J 361:481–488.
  • Merkley N, Shaw GS. 2004. Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly. J Biol Chem 279:47139–47147.
  • Morrison A, Miller EJ, Prakash L. 1988. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol Cell Biol 8:1179–1185.
  • Mukhopadhyay D, Riezman H. 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205.
  • Ortolan TG, Tongaonkar P, Lambertson D, Chen L, Schauber C, Madura K. 2000. The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2:601–608.
  • Parker JL, Ulrich HD. 2009. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J 28:3657–3666.
  • Petroski MD, Deshaies RJ. 2005. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123:1107–1120.
  • Pham AD, Sauer F. 2000. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289:2357–2360.
  • Pickart CM, Eddins MJ. 2004. Ubiquitin: Structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72.
  • Pickart CM, Rose IA. 1985. Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem 260:1573–1581.
  • Pickart CM, Vella AT. 1988. Ubiquitin carrier protein-catalyzed ubiquitin transfer to histones. Mechanism and specificity. J Biol Chem 263:15076–15082.
  • Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, Di Fiore PP. 2002. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416:451–455.
  • Robzyk K, Recht J, Osley MA. 2000. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287:501–504.
  • Rodrigo-Brenni MC, Foster SA, Morgan DO. 2010. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol Cell 39:548–559.
  • Rodrigo-Brenni MC, Morgan DO. 2007. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130:127–139.
  • Rotin D, Kumar S. 2009. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409.
  • Sadowski M, Suryadinata R, Lai X, Heierhorst J, Sarcevic B. 2010. Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34. Mol Cell Biol 30:2316–2329.
  • Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. 2010. Crystal structure of UbcH5b∼ubiquitin intermediate: Insight into the formation of the self-assembled E2∼Ub conjugates. Structure 18:138–147.
  • Sampson DA, Wang M, Matunis MJ. 2001. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276:21664–21669.
  • Schulman BA, Harper JW. 2009. Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331.
  • Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. 2010. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 39:784–796.
  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T. 2000. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305.
  • Sigismund S, Polo S, Di Fiore PP. 2004. Signaling through monoubiquitination. Curr Top Microbiol Immunol 286:149–185.
  • Simkus C, Bhattacharyya A, Zhou M, Veenstra TD, Jones JM. 2009. Correlation between recombinase activating gene 1 ubiquitin ligase activity and V(D)J recombination. Immunology 128:206–217.
  • Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D. 2000. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57:809–815.
  • Sullivan ML, Vierstra RD. 1991. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J Biol Chem 266:23878–23885.
  • Summers MK, Pan B, Mukhyala K, Jackson PK. 2008. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 31:544–556.
  • Sung P, Prakash S, Prakash L. 1988. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2:1476–1485.
  • van Attikum H, Gasser SM. 2009. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217.
  • van Delft S, Govers R, Strous GJ, Verkleij AJ, van Bergen en Henegouwen PM. 1997. Epidermal growth factor induces ubiquitination of Eps15. J Biol Chem 272:14013–14016.
  • VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C. 2001. Molecular insights into polyubiquitin chain assembly: Crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720.
  • Vijay-Kumar S, Bugg CE, Cook WJ. 1987. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544.
  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878.
  • Weake VM, Workman JL. 2008. Histone ubiquitination: Triggering gene activity. Mol Cell 29:653–663.
  • Wenzel DM, Stoll KE & Klevit RE. (2010). E2s: STRUCTURALLY economical and functionally replete. Biochem J 433:31–42.
  • Whitby FG, Xia G, Pickart CM, Hill CP. 1998. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem 273:34983–34991.
  • Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. 2011. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–781.
  • Wilkinson KD, Urban MK, Haas AL. 1980. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255:7529–7532.
  • Woelk T, Oldrini B, Maspero E, Confalonieri S, Cavallaro E, Di Fiore PP, Polo S. 2006. Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol 8:1246–1254.
  • Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A. 2003. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11:267–274.
  • Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. 2005. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol Cell 20:589–599.
  • Wu K, Kovacev J, Pan ZQ. 2010. Priming and extending: A UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 37:784–796.
  • Ye Y, Rape M. 2009. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764.
  • Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MJ, Darnay BG & Wu, H. (2009). E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 16:658–666.
  • Yunus AA, Lima CD. 2006. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat Struct Mol Biol 13:491–499.
  • Zheng N, Wang P, Jeffrey PD, Pavletich NP. 2000. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539.
  • Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D. 2005. Monoubiquitination of human histone H2B: The factors involved and their roles in HOX gene regulation. Mol Cell 20:601–611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.