1,188
Views
59
CrossRef citations to date
0
Altmetric
Review Articles

The biosynthesis and biological function of diphthamide

, &
Pages 515-521 | Received 01 Jun 2013, Accepted 30 Jul 2013, Published online: 23 Aug 2013

References

  • Abdel-Fattah W, Scheidt V, Uthman S, et al. (2013). Insights into diphthamide, key diphtheria toxin effector. Toxins (Basel) 5:958–68
  • Bar C, Zabel R, Liu S, et al. (2008). A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: kti11/Dph3. Mol Microbiol 69:1221–33
  • Bektaş M, Nurten R, Ergen K, Bermek E. (2006). Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions. Cell Biochem Function 24:369–80
  • Bruening W, Prowse A, Schultz D, et al. (1999). Expression of OVCA1, a candidate tumor suppressor, is reduced in tumors and inhibits growth of ovarian cancer cells. Cancer Res 59:4973–83
  • Carette J, Guimaraes C, Varadarajan M, et al. (2009). Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–5
  • Chen CM, Behringer, RR. (2001). Cloning, structure, and expression of the mouse Ovca1 gene. Biochem Biophys Res Commun 286:1019–26
  • Chen C-M, Behringer RR. (2004). Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis. Genes Dev 18:320–32
  • Chen JY, Bodley JW. (1988). Biosynthesis of diphthamide in Saccharomyces cerevisiae. Partial purification and characterization of a specific S-adenosylmethionine:elongation factor 2 methyltransferase. J Biol Chem 263:11692–6
  • Chen J, Bodley JW, Livingston DM. (1985). Diphtheria toxin-resistant mutants of Saccharomyces cerevisiae. Mol Cell Biol 5:3357–60
  • Collier RJ. (2001). Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39:1793–803
  • de Crecy-Lagard V, Forouhar F, Brochier-Armanet C, et al. (2012). Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage. Biol Direct 7:32
  • Dunlop PC, Bodley JW. (1983). Biosynthetic labeling of diphthamide in Saccharomyces cerevisiae. J Biol Chem 258:4754–8
  • Elkins J, Podar M, Graham D, et al. (2008). A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–7
  • Fendrick J, Iglewski W, Moehring JM, Moehring TJ. (1992). Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor-II in eukaryotic cells. Eur J Biochem 205:25–31
  • Fichtner L, Schaffrath R. (2002). KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44:865–75
  • Frey P, Hegeman AD, Ruzicka FJ. (2008). The radical SAM superfamily. Crit Rev Biochem Mol Biol 43:63–88
  • Greenwood C, Selth L, Dirac-Svejstrup AB, Svejstrup, JQ. (2009). An iron-sulfur cluster domain in Elp3 important for the structural integrity of elongator. J Biol Chem 284:141–9
  • Honjo T, Nishizuka Y, Hayaishi O. (1968). Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–5
  • Iglewski W, Lee H, Muller P. (1984). ADP-ribosyltransferase from beef liver which ADP-ribosylates elongation factor-2. FEBS Lett 173:113–18
  • Jager D, Werdan K, Muller-Werdan U. (2011). Endogenous ADP-ribosylation of elongation factor-2 by interleukin-1beta. Mol Cell Biochem 348:125–8
  • Jorgensen R, Merrill AR, Andersen GR. (2006). The life and death of translation elongation factor 2. Biochem Soc Trans 34:1–6
  • Jorgensen R, Purdy A, Fieldhouse R, et al. (2008b). Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283:10671–8
  • Jorgensen R, Wang Y, Visschedyk D, Merrill AR. (2008a). The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9:802–9
  • Jorgensen R, Yates S, Teal D, et al. (2004). Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae. J Biol Chem 279:45919–25
  • Kong F, Tong R, Jia L, et al. (2011). OVCA1 inhibits the proliferation of epithelial ovarian cancer cells by decreasing cyclin D1 and increasing p16. Mol Cell Biochem 354:199–205
  • Krogan N, Cagney G, Yu H, et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637--43
  • Lee H, Iglewski WJ. (1984). Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–7
  • Lin H. (2011). S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 39:161–70
  • Liu S, Bachran C, Gupta P, et al. (2012). Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc Natl Acad Sci USA 109:13817--22
  • Liu S, Milne G, Kuremsky J, et al. (2004). Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24:9487–97
  • Liu S, Wiggins J, Sreenath T, et al. (2006). Dph3, a small protein required for diphthamide biosynthesis, is essential in mouse development. Mol Cell Biol 26:3835–41
  • Mattheakis L, Shen W, Collier R. (1992). DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 12:4026–37
  • Moehring T, Danley DE, Moehring JM. (1984). In vitro biosynthesis of diphthamide, studied with mutant Chinese hamster ovary cells resistant to diphtheria toxin. Mol Cell Biol 4:642–50
  • Ortiz P, Ulloque R, Kihara G, et al. (2006). Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 281:32639–48
  • Pappenheimer Jr A, Dunlop P, Adolph KW, Bodley JW. (1983). Occurrence of diphthamide in archaebacteria. J Bacteriol 153:1342–7
  • Phillips N, Ziegler MR, Deaven LL. (1996a). A cDNA from the ovarian cancer critical region of deletion on chromosome 17p13.3. Cancer Lett 102:85--90
  • Phillips N, Ziegler M, Radford D, et al. (1996b). Allelic deletion on chromosome 17p13.3 in early ovarian cancer. Cancer Res 56:606–11
  • Proudfoot M, Sanders S, Singer A, et al. (2008). Biochemical and structural characterization of a novel family of cystathionine [beta]-synthase domain proteins fused to a Zn ribbon-like domain. J Mol Biol 375:301–15
  • Robinson E, Henriksen O, Maxwell ES. (1974). Elongation factor 2. Amino acid sequence at the site of adenosine diphosphate ribosylation. J Biol Chem 249:5088–93
  • Sahi C, Craig EA. (2007). Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U S A 104:7163–8
  • Shi Y, Stefan C, Rue S, et al. (2011). Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 22:4093–107
  • Sjolinder M, Uhlmann J, Ponstingl H. (2004). Characterisation of an evolutionary conserved protein interacting with the putative guanine nucleotide exchange factor DelGEF and modulating secretion. Exp Cell Res 294:68–76
  • Spahn C, Gomez-Lorenzo M, Grassucci R, et al. (2004). Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–19
  • Su X, Chen W, Lee W, et al. (2012a). YBR246W is required for the third step of diphthamide biosynthesis. J Am Chem Soc 134:773–6
  • Su X, Lin Z, Chen W, et al. (2012b). Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proc Natl Acad Sci USA 109:19983–7
  • Sun J, Zhang J, Wu F, et al. (2005). Solution structure of Kti11p from Saccharomyces cerevisiae reveals a novel zinc-binding module. Biochemistry 44:8801–9
  • Thakur A, Chitoor B, Goswami A, et al. (2012). Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. J Biol Chem 287:13194–205
  • Uthman S, Bar C, Scheidt V, et al. (2013). The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet 9:e1003334
  • Van Ness B, Howard JB, Bodley JW. (1978). Isolation and properties of the trypsin-derived ADP-ribosyl peptide from diphtheria toxin-modified yeast elongation factor 2. J Biol Chem 253:8687–90
  • Van Ness B, Howard JB, Bodley JW. (1980a). ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–20
  • Van Ness B, Howard JB, Bodley JW. (1980b). ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255:10710–16
  • Webb T, Cross S, McKie L, et al. (2008). Diphthamide modification of eEF2 requires a J-domain protein and is essential for normal development. J Cell Sci 121:3140–5
  • Wei H, Bera T, Wayne A, et al. (2013). A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene. J Biol Chem 288:12305–12
  • Zhang Y, Zhu X, Torelli A, et al. (2010). Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme. Nature 465:891–6
  • Zhu X, Dzikovski B, Su X, et al. (2011). Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis. Mol BioSystems 7:74–81
  • Zhu X, Kim J, Su X, Lin H. (2010). Reconstitution of diphthine synthase activity in vitro. Biochemistry 49:9649–57

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.