502
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Ribonucleotides in bacterial DNA

, , &
Pages 181-193 | Received 26 Sep 2014, Accepted 24 Oct 2014, Published online: 12 Nov 2014

References

  • Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD. (2014). A saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 34:1521–34
  • Aniukwu J, Glickman MS, Shuman S. (2008). The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 22:512–27
  • Astatke M, Ng K, Grindley ND, Joyce CM. (1998). A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci USA 95:3402–7
  • Beck J, Vogel M, Nassal M. (2002). dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases. Nucleic Acids Res 30:1679–87
  • Berkower I, Leis J, Hurwitz J. (1973). Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J Biol Chem 248:5914–21
  • Bhattarai H, Gupta R, Glickman MS. (2014). DNA ligase C1 mediates the LigD independent NHEJ pathway of Mycobacterium smegmatis. J Bacteriol 196:3366–76
  • Bonnin A, Lazaro JM, Blanco L, Salas M. (1999). A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. Journal of Molecular Biology 290:241–51
  • Bouche JP, Zechel K, Kornberg A. (1975). dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem 250:5995–6001
  • Braithwaite DK, Ito J. (1993). Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21:787–802
  • Breier AM, Weier HU, Cozzarelli NR. (2005). Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci USA 102:3942–7
  • Brown JA, Fiala KA, Fowler JD, et al. (2010). A novel mechanism of sugar selection utilized by a human X-family DNA polymerase. J Mol Biol 395:282–90
  • Brown JA, Suo Z. (2011). Unlocking the sugar “steric gate” of DNA polymerases. Biochemistry 50:1135–42
  • Buckstein MH, He J, Rubin H. (2008). Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190:718–26
  • Cai Y, Geacintov NE, Broyde S. (2014). Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 13:55–60
  • Caldecott KW. (2014). Molecular biology. Ribose – an internal threat to DNA. Science 343:260–1
  • Carles-Kinch K, George JW, Kreuzer KN. (1997). Bacteriophage T4 UvsW protein is a helicase involved in recombination, repair and the regulation of DNA replication origins. EMBO J 16:4142–51
  • Cases-Gonzalez CE, Gutierrez-Rivas M, Menendez-Arias L. (2000). Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 275:19759–67
  • Chon H, Matsumura H, Koga Y, et al. (2006). Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. J Mol Biol 356:165–78
  • Chon H, Sparks JL, Rychlik M, et al. (2013). RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res 41:3130–43
  • Corn JE and Berger JM. (2006). Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res 34:4082–8
  • Crow YJ, Hayward BE, Parmar R, et al. (2006a). Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 38:917–20
  • Crow YJ, Leitch A, Hayward BE, et al. (2006b). Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38:910–16
  • Das U, Chakravarty AK, Remus BS, Shuman S. (2013). Rewriting the rules for end joining via enzymatic splicing of DNA 3′-PO4 and 5′-OH ends. Proc Natl Acad Sci USA 110:20437–42
  • Das U, Chauleau M, Ordonez H, Shuman S. (2014). Impact of DNA3′pp5′G capping on repair reactions at DNA 3′ ends. Proc Natl Acad Sci USA 111:11317–22
  • de Massy B, Fayet O, Kogoma T. (1984). Multiple origin usage for DNA replication in sdrA(rnh). mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 178:227–36
  • DeLucia AM, Grindley ND, Joyce CM. (2003). An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus). uses a ‘steric gate' residue for discrimination against ribonucleotides. Nucleic Acids Res 31:4129–37
  • DeRose EF, Perera L, Murray MS, et al. (2012). Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. Biochemistry 51:2407–16
  • Dudas KC, Kreuzer KN. (2001). UvsW protein regulates bacteriophage T4 origin-dependent replication by unwinding R-loops. Mol Cell Biol 21:2706–15
  • Englert M, Xia S, Okada C, et al. (2012). Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH. Proc Natl Acad Sci USA 109:15235–40
  • Ferraro P, Franzolin E, Pontarin G, et al. (2010). Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res 38:e85
  • Figiel M, Chon H, Cerritelli SM, et al. (2011). The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutieres syndrome defects. J Biol Chem 286:10540–50
  • Figiel M, Nowotny M. (2014). Crystal structure of RNase H3-substrate complex reveals parallel evolution of RNA/DNA hybrid recognition. Nucleic Acids Res 42:9285–94
  • Gao G, Orlova M, Georgiadis MM, et al. (1997). Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc Natl Acad Sci USA 94:407–11
  • Garcia-Diaz M, Bebenek K, Krahn JM, et al. (2005). A closed conformation for the Pol lambda catalytic cycle. Nat Struct Mol Biol 12:97–8
  • Gardner AF, Jack WE. (1999). Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res 27:2545–53
  • Gaur V, Vyas R, Fowler JD, et al. (2014). Structural and kinetic insights into binding and incorporation of L-nucleotide analogs by a Y-family DNA polymerase. Nucleic Acids Res 42:9984–95
  • Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, et al. (2013). Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 50:323–32
  • Gong C, Bongiorno P, Martins A, et al. (2005). Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304–12
  • Goodman MF, Woodgate R. (2013). Translesion DNA polymerases. Cold Spring Harb Perspect Biol 5:a010363
  • Hogrefe HH, Hogrefe RI, Walder RY, Walder JA. (1990). Kinetic analysis of Escherichia coli RNase H using DNA-RNA-DNA/DNA substrates. J Biol Chem 265:5561–6
  • Holmes J, Jr. Clark S, Modrich P. (1990). Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci USA 87:5837–41
  • Hong X, Cadwell GW, Kogoma T. (1995). Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14:2385–92
  • Hong X, Cadwell GW, Kogoma T. (1996). Activation of stable DNA replication in rapidly growing Escherichia coli at the time of entry to stationary phase. Mol Microbiol 21:953–61
  • Hong X, Kogoma T. (1993). Absence of a direct role for RNase HI in initiation of DNA replication at the oriC site on the Escherichia coli chromosome. J Bacteriol 175:6731–4
  • Ide H, Okagami M, Murayama H, et al. (1993a). Synthesis and characterization of oligonucleotides containing the alpha-anomer of deoxyadenosine to study its influence on DNA replication. Biochem Mol Biol Int 31:485–91
  • Ide H, Yagi R, Yamaoka T, Kimura Y. (1993b). Misincorporation of ribonucleotides by DNA polymerase during in vitro DNA replication. Nucleic Acids Symp Ser 29:133–4
  • Itaya M. (1990). Isolation and characterization of a second RNase H (RNase H II) encoded by the rnhB gene. Proc Natl Acad Sci USA 87:8587–91
  • Itaya M, Omori A, Kanaya S, et al. (1999). Isolation of RNase H genes that are essential for growth of Bacillus subtilis 168. J Bacteriol 181:2118–23
  • Iyer RR, Pluciennik A, Burdett V, Modrich PL. (2006). DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–23
  • Jarosz DF, Godoy VG, Walker GC. (2007). Proficient and accurate bypass of persistent DNA lesions by DinB DNA polymerases. Cell Cycle 6:817–22
  • Johnson A, O'Donnell M. (2005). Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315
  • Jongruja N, You DJ, Angkawidjaja C, et al. (2012). Structure and characterization of RNase H3 from Aquifex aeolicus. FEBS J 279:2737–53
  • Joyce CM. (1997). Choosing the right sugar: how polymerases select a nucleotide substrate. Proc Natl Acad Sci USA 94:1619–22
  • Joyce CM, Potapova O, Delucia AM, et al. (2008). Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Biochemistry 47:6103–16
  • Kanaya S. (2001). Prokaryotic type 2 RNases H. Methods Enzymol 341:377–94
  • Kasiviswanathan R, Copeland WC. (2011). Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J Biol Chem 286:31490–500
  • Kim N, Huang SN, Williams JS, et al. (2011). Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332:1561–64
  • Kirouac KN, Suo Z, Ling H. (2011). Structural mechanism of ribonucleotide discrimination by a Y-family DNA polymerase. J Mol Biol 407:382–90
  • Kogoma T. (1997). Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–38
  • Kogoma T, Hong X, Cadwell GW, et al. (1993). Requirement of homologous recombination functions for viability of the Escherichia coli cell that lacks RNase HI and exonuclease V activities. Biochimie 75:89–99
  • Kogoma T, von Meyenburg K. (1983). The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J 2:463–8
  • Kornberg A, Baker TA. (1992). DNA replication. New York: W. H. Freeman and Company
  • Kuban W, Vaisman A, McDonald JP, et al. (2012). Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival. DNA Repair (Amst) 11:726–32
  • Kuchta RD, Stengel G. (2010). Mechanism and evolution of DNA primases. Biochim Biophys Acta 1804:1180–9
  • Lacks SA, Dunn JJ, Greenberg B. (1982). Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31:327–36
  • Lahue RS, Au KG, Modrich P. (1989). DNA mismatch correction in a defined system. Science 245:160–4
  • Lee H, Popodi E, Tang H, Foster PL. (2012). Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci USA 109:E2774–83
  • Lu Z, Hou J, Wang Y, Liu J. (2012a). Involvement of Ser94 in RNase HIII from Chlamydophila pneumoniae in the recognition of a single ribonucleotide misincorporated into double-stranded DNA. Biochim Biophys Acta 1824:859–65
  • Lu Z, Liang R, Liu X, et al. (2012b). RNase HIII from Chlamydophila pneumoniae can efficiently cleave double-stranded DNA carrying a chimeric ribonucleotide in the presence of manganese. Mol Microbiol 83:1080–93
  • Lujan SA, Williams JS, Clausen AR, et al. (2013). Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50:437–43
  • Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN. (2014). Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol Microbiol 91:39–56
  • Martin MJ, Garcia-Ortiz MV, Esteban V, Blanco L. (2013). Ribonucleotides and manganese ions improve non-homologous end joining by human Polmu. Nucleic Acids Res 41:2428–36
  • Matthews LA, Simmons LA. (2014). Bacterial non-homologous end joining requires teamwork. J Bacteriol 196:3363–5
  • McDonald JP, Vaisman A, Kuban W, et al. (2012). Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. PLoS Genet 8:e1003030
  • McFadden G, Denhardt DT. (1974). Mechanism of replication of phi x174 single-stranded DNA. IX. Requirement for the Escherichia coli dnaG protein. J Virol 14:1070–5
  • McHenry CS. (2011). Breaking the rules: bacteria that use several DNA polymerase IIIs. EMBO Rep 12:408–14
  • Miller HI, Riggs AD, Gill GN. (1973). Ribonuclease H (hybrid) in Escherichia coli. Identification and characterization. J Biol Chem 248:2621–4
  • Miyashita S, Tadokoro T, Angkawidjaja C, et al. (2011). Identification of the substrate binding site in the N-terminal TBP-like domain of RNase H3. FEBS Lett 585:2313–17
  • Nick McElhinny SA, Kumar D, Clark AB, et al. (2010a). Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–81
  • Nick McElhinny SA, Ramsden DA. (2003). Polymerase mu is a DNA-directed DNA/RNA polymerase. Mol Cell Biol 23:2309–15
  • Nick McElhinny SA, Watts BE, Kumar D, et al. (2010b). Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci USA 107:4949–54
  • Nowotny M, Cerritelli SM, Ghirlando R, et al. (2008). Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO J 27:1172–81
  • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–16
  • Ogawa T, Okazaki T. (1984). Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol Gen Genet 193:231–7
  • Ogawa T, Pickett GG, Kogoma T, Kornberg A. (1984). RNase H confers specificity in the dnaA-dependent initiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro. Proc Natl Acad Sci USA 81:1040–4
  • Ohtani N, Haruki M, Morikawa M, et al. (1999a). Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Biochemistry 38:605–18
  • Ohtani N, Haruki M, Morikawa M, Kanaya S. (1999b). Molecular diversities of RNases H. J Biosci Bioeng 88:12–19
  • Ohtani N, Haruki M, Muroya A, et al. (2000). Characterization of ribonuclease HII from Escherichia coli overproduced in a soluble form. J Biochem 127:895–9
  • Ohtani N, Yanagawa H, Tomita M, Itaya M. (2004). Identification of the first archaeal Type 1 RNase H gene from Halobacterium sp. NRC-1: archaeal RNase HI can cleave an RNA-DNA junction. Biochem J 381:795–802
  • Oivanen M, Kuusela S, Lonnberg H. (1998). Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by bronsted acids and bases. Chem Rev 98:961–90
  • Ordonez H, Uson ML, Shuman S. (2015). Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 42:11056–70
  • Patel M, Jiang Q, Woodgate R, et al. (2010). A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45:171–84
  • Patel PH, Loeb LA. (2000). Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J Biol Chem 275:40266–72
  • Pavlov YI, Mian IM, Kunkel TA. (2003). Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 13:744–8
  • Pelletier H, Sawaya MR, Kumar A, et al. (1994). Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:1891–903
  • Pitcher RS, Brissett NC, Picher AJ, et al. (2007). Structure and function of a mycobacterial NHEJ DNA repair polymerase. J Mol Biol 366:391–405
  • Pitcher RS, Tonkin LM, Green AJ, Doherty AJ. (2005). Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis. J Mol Biol 351:531–44
  • Pizzi S, Sertic S, Orcesi S, et al. (2014). Reduction of hRNase H2 activity in Aicardi-Goutières syndrome cells leads to replication stress and genome instability. Hum Mol Genet. [Epub ahead of print]. doi: 10.1093/hmg/ddu485
  • Pomerantz RT, O'Donnell M. (2008). The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:762–6
  • Popow J, Englert M, Weitzer S, et al. (2011). HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331:760–4
  • Potenski CJ, Niu H, Sung P, Klein HL. (2014). Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511:251–4
  • Pursell ZF, Isoz I, Lundstrom EB, et al. (2007). Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–30
  • Reijns MA, Jackson AP. (2014). Ribonuclease H2 in health and disease. Biochem Soc Trans 42:717–25
  • Reijns MA, Rabe B, Rigby RE, et al. (2012). Enzymatic removal of ribonucleotides from DNA is essential for Mammalian genome integrity and development. Cell 149:1008–22
  • Rowen L, Kornberg A. (1978). Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253:758–64
  • Rudolph CJ, Upton AL, Stockum A, et al. (2013). Avoiding chromosome pathology when replication forks collide. Nature 500:608–11
  • Ruiz JF, Juarez R, Garcia-Diaz M, et al. (2003). Lack of sugar discrimination by human Pol mu requires a single glycine residue. Nucleic Acids Res 31:4441–9
  • Rychlik MP, Chon H, Cerritelli SM, et al. (2010). Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Mol Cell 40:658–70
  • Sale JE, Lehmann AR, Woodgate R. (2012). Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13:141–52
  • Sanders GM, Dallmann HG, McHenry CS. (2010). Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Mol Cell 37:273–81
  • Sawaya MR, Prasad R, Wilson SH, et al. (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–15
  • Sekiguchi J, Shuman S. (1997). Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol Cell 1:89–97
  • Shuman S, Glickman MS. (2007). Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–61
  • Sparks JL, Chon H, Cerritelli SM, et al. (2012). RNase H2-initiated ribonucleotide excision repair. Mol Cell 47:980–6
  • Sutton MD. (2009). Coordinating DNA polymerase traffic during high and low fidelity synthesis. Biochim Biophys Acta 1804:1167–79
  • Tabor S, Richardson CC. (1989). Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I. Proc Natl Acad Sci USA 86:4076–80
  • Tadokoro T, Kanaya S. (2009). Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 276:1482–93
  • Tanaka N, Meineke B, Shuman S. (2011). RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286:30253–7
  • Thomas DC, Roberts JD, Kunkel TA. (1991). Heteroduplex repair in extracts of human HeLa cells. J Biol Chem 266:3744–51
  • Traut TW. (1994). Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22
  • Tumbale P, Williams JS, Schellenberg MJ, et al. (2014). Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity. Nature 506:111–15
  • Vaisman A, Kuban W, McDonald JP, et al. (2012). Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic Acids Res 40:6144–57
  • Vaisman A, McDonald JP, Huston D, et al. (2013). Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair. PLoS Genet 9:e1003878
  • Vaisman A, McDonald JP, Noll S, et al. (2014). Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutat Res Fundam Mol Mech Mutagen 761:21–33
  • Van de Sande JH, Loewen PC, Khorana HG. (1972). Studies on polynucleotides. 118. A further study of ribonucleotide incorporation into deoxyribonucleic acid chains by deoxyribonucleic acid polymerase I of Escherichia coli. J Biol Chem 247:6140–8
  • van der Ende A, Baker TA, Ogawa T, Kornberg A. (1985). Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proc Natl Acad Sci USA 82:3954–8
  • Vincent SD, Mahdi AA, Lloyd RG. (1996). The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol 264:713–21
  • Wang JD, Sanders GM, Grossman AD. (2007). Nutritional control of elongation of DNA replication by (p).ppGpp. Cell 128:865–75
  • Waters LS, Minesinger BK, Wiltrout ME, et al. (2009). Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–54
  • Wilkinson A, Day J, Bowater R. (2001). Bacterial DNA ligases. Mol Microbiol 40:1241–8
  • Williams JS, Kunkel TA. (2014). Ribonucleotides in DNA: origins, repair and consequences. DNA Repair (Amst) 19:27–37
  • Williams JS, Smith DJ, Marjavaara L, et al. (2013). Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol Cell 49:1010–15
  • Yakovleva L, Shuman S. (2006). Nucleotide misincorporation, 3′-mismatch extension, and responses to abasic sites and DNA adducts by the polymerase component of bacterial DNA ligase D. J Biol Chem 281:25026–40
  • Yang G, Franklin M, Li J, et al. (2002). A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase. Biochemistry 41:10256–61
  • Yao NY, Schroeder JW, Yurieva O, et al. (2013). Cost of rNTP/dNTP pool imbalance at the replication fork. Proc Natl Acad Sci USA 110:12942–7
  • Zhu H, Shuman S. (2005a). Novel 3′-ribonuclease and 3′-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. J Biol Chem 280:25973–81
  • Zhu H, Shuman S. (2005b). A primer-dependent polymerase function of pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J Biol Chem 280:418–27
  • Zhu H, Shuman S. (2006). Substrate specificity and structure-function analysis of the 3′-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D. J Biol Chem 281:13873–81
  • Zhu H, Shuman S. (2008). Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3′-OH monoribonucleotide. J Biol Chem 283:8331–9
  • Zhu H, Wang LK, Shuman S. (2005). Essential constituents of the 3′-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme. J Biol Chem 280:33707–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.