524
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Chaperone-mediated specificity in Ras and Rap signaling

, &
Pages 194-202 | Received 18 Aug 2014, Accepted 14 Nov 2014, Published online: 09 Dec 2014

References

  • Aizman E, Mor A, Chapman J, et al. (2010). The combined treatment of Copaxone and Salirasib attenuates experimental autoimmune encephalomyelitis (EAE) in mice. J Neuroimmunol 229:192–203
  • Alberola-Ila J, Hernandez-Hoyos G. (2003). The Ras/MAPK cascade and the control of positive selection. Immunol Rev 191:79–96
  • Altschuler D, Lapetina EG. (1993). Mutational analysis of the cAMP-dependent protein kinase-mediated phosphorylation site of Rap1b. J Biol Chem 268:7527–31
  • Baines AT, Lim KH, Shields JM, et al. (2006). Use of retrovirus expression of interfering RNA to determine the contribution of activated K-Ras and ras effector expression to human tumor cell growth. Methods Enzymol 407:556–74
  • Ballester R, Furth ME, Rosen OM. (1987). Phorbol ester- and protein kinase C-mediated phosphorylation of the cellular Kirsten ras gene product. J Biol Chem 262:2688–95
  • Basso AD, Kirschmeier P, Bishop WR. (2006). Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res 47:15–31
  • Beranger F, Tavitian A, de Gunzburg J. (1991). Post-translational processing and subcellular localization of the Ras-related Rap2 protein. Oncogene 6:1835–42
  • Berg TJ, Gastonguay AJ, Lorimer EL, et al. (2010). Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J Biol Chem 285:35255–66
  • Bivona TG, Quatela SE, Bodemann BO, et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21:481–93
  • Bonnefoy-Berard N, Liu YC, von Willebrand M, et al. (1995). Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells. Proc Natl Acad Sci USA 92:10142–6
  • Bos JL. (1989). ras oncogenes in human cancer: a review. Cancer Res 49:4682–9
  • Bos JL. (1997). Ras-like GTPases. Biochim Biophys Acta 1333:M19–31
  • Bos JL. (2005). Linking Rap to cell adhesion. Curr Opin Cell Biol 17:123–8
  • Bourne HR, Sanders DA, Mccormick F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–32
  • Boussiotis VA, Freeman GJ, Berezovskaya A, et al. (1997). Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278:124–8
  • Cadwallader KA, Paterson H, Macdonald SG, Hancock JF. (1994). N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol Cell Biol 14:4722–30
  • Campa MJ, Chang KJ, Molina Y, Vedia L, et al. (1991). Inhibition of ras-induced germinal vesicle breakdown in Xenopus oocytes by rap-1B. Biochem Biophys Res Commun 174:1–5
  • Cantrell DA. (2003). GTPases and T cell activation. Immunol Rev 192:122–30
  • Carey KD, Dillon TJ, Schmitt JM, et al. (2000). CD28 and the tyrosine kinase lck stimulate mitogen-activated protein kinase activity in T cells via inhibition of the small G protein Rap1. Mol Cell Biol 20:8409–19
  • Chandra A, Grecco HE, Pisupati V, et al. (2012). The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14:148–58
  • Cherfils J, Zeghouf M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309
  • Chin L, Tam A, Pomerantz J, et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400:468–72
  • Chiu VK, Silletti J, Dinsell V, et al. (2004). Carboxyl methylation of Ras regulates membrane targeting and effector engagement. J Biol Chem 279:7346–52
  • Conklin DS, Galaktionov K, Beach D. (1995). 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA 92:7892–6
  • Conti M, Beavo J. (2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511
  • Cox AD, Der CJ. (2002). Ras family signaling: therapeutic targeting. Cancer Biol Ther 1:599–606
  • Dierks T, Klappa P, Wiech H, Zimmermann R. (1993). The role of molecular chaperones in protein transport into the endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci 339:335–41
  • Elad-Sfadia G, Haklai R, Balan E, Kloog Y. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279:34922–30
  • Elad-Sfadia G, Haklai R, Ballan E, et al. (2002). Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 277:37169–75
  • Ellis RJ. (2006). Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31:395–401
  • Fantl WJ, Muslin AJ, Kikuchi A, et al. (1994). Activation of Raf-1 by 14-3-3 proteins. Nature 371:612–4
  • Fernandez-Medarde A, Santos E. (2011). Ras in cancer and developmental diseases. Genes Cancer 2:344–58
  • Figueroa C, Taylor J, Vojtek AB. (2001). Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem 276:28219–25
  • Freed E, Symons M, Macdonald SG, et al. (1994). Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265:1713–16
  • Fu H, Subramanian RR, Masters SC. (2000). 14-3-3 Proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–47
  • Fu H, Xia K, Pallas DC, et al. (1994). Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266:126–9
  • Furlanetto RW, Dey BR, Lopaczynski W, Nissley SP. (1997). 14-3-3 Proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem J 327:765–71
  • Gana-Weisz M, Haklai R, Marciano D, et al. (1997). The Ras antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation. Biochem Biophys Res Commun 239:900–4
  • Garcia-Guzman M, Dolfi F, Russello M, Vuori K. (1999). Cell adhesion regulates the interaction between the docking protein p130(Cas) and the 14-3-3 proteins. J Biol Chem 274:5762–8
  • Genot E, Cantrell DA. (2000). Ras regulation and function in lymphocytes. Curr Opin Immunol 12:289–94
  • Hahn WC, Counter CM, Lundberg AS, et al. (1999). Creation of human tumour cells with defined genetic elements. Nature 400:464–8
  • Hamel B, Monaghan-Benson E, Rojas RJ, et al. (2011). SmgGDS is a guanine nucleotide exchange factor that specifically activates RhoA and RhoC. J Biol Chem 286:12141–8
  • Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell 100:57–70
  • Hancock JF, Paterson H, Marshall CJ. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–9
  • Hanzal-Bayer M, Renault L, Roversi P, et al. (2002). The complex of Arl2-GTP and PDE delta: from structure to function. EMBO J 21:2095–106
  • Hariharan IK, Carthew RW, Rubin GM. (1991). The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell 67:717–22
  • Hauser AD, Bergom C, Schuld NJ, et al. (2014). The SmgGDS splice variant SmgGDS-558 is a key promoter of tumor growth and RhoA signaling in breast cancer. Mol Cancer Res 12:130–42
  • Heo WD, Inoue T, Park WS, et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–61
  • Herrmann JM, Neupert W. (2000). Protein transport into mitochondria. Curr Opin Microbiol 3:210–14
  • Hoffman GR, Nassar N, Cerione RA. (2000). Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100:345–56
  • Irie K, Gotoh Y, Yashar BM, et al. (1994). Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265:1716–19
  • Ismail SA, Chen YX, Rusinova A, et al. (2011). Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 7:942–9
  • Jaumot M, Hancock JF. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20:3949–58
  • Johnson DS, Chen YH. (2012). Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 12:458–63
  • Karan S, Zhang H, Li S, et al. (2008). A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Res 48:442–52
  • Kitayama H, Sugimoto Y, Matsuzaki T, et al. (1989). A ras-related gene with transformation suppressor activity. Cell 56:77–84
  • Kloog Y, Elad-Sfadia G, Haklai R, Mor A. (2013). Ras chaperones: new targets for cancer and immunotherapy. Enzymes 33:267–89
  • Koehler CM, Merchant S, Schatz G. (1999). How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem Sci 24:428–32
  • Lang P, Gesbert F, Delespine-Carmagnat M, et al. (1996). Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–19
  • Laskey RA, Honda BM, Mills AD, Finch JT. (1978). Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–20
  • Law BK, Norgaard P, Moses HL. (2000). Farnesyltransferase inhibitor induces rapid growth arrest and blocks p70s6k activation by multiple stimuli. J Biol Chem 275:10796–801
  • Li S, Janosch P, Tanji M, et al. (1995). Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. EMBO J 14:685–96
  • Linden J. (2013). Adenosine promotes tumor metastasis. Sci Signal 6:pe20
  • Lobell RB, Omer CA, Abrams MT, et al. (2001). Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res 61:8758–68
  • Macdonald JS, Mccoy S, Whitehead RP, et al. (2005). A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 23:485–7
  • Maridonneau-Parini I, de Gunzburg J. (1992). Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem 267:6396–402
  • Mcpherson RA, Harding A, Roy S, et al. (1999). Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene 18:3862–9
  • Mehta D, Rahman A, Malik AB. (2001). Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem 276:22614–20
  • Metcalfe DD, Peavy RD, Gilfillan AM. (2009). Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol 124:639–46; quiz 647–8
  • Mizuno T, Kaibuchi K, Yamamoto T, et al. (1991). A stimulatory GDP/GTP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. Proc Natl Acad Sci USA 88:6442–6
  • Moores SL, Schaber MD, Mosser SD, et al. (1991). Sequence dependence of protein isoprenylation. J Biol Chem 266:14603–10
  • Mor A, Aizman E, Chapman J, Kloog Y. (2013). Immunomodulatory properties of farnesoids: the new steroids? Curr Med Chem 20:1218–24
  • Mor A, Aizman E, George J, Kloog Y. (2011a). Ras inhibition induces insulin sensitivity and glucose uptake. PLoS One 6:e21712
  • Mor A, Haklai R, Ben-Moshe O, et al. (2011b). Inhibition of contact sensitivity by farnesylthiosalicylic acid-amide, a potential Rap1 inhibitor. J Invest Dermatol 131:2040–8
  • Mor A, Philips MR, Pillinger MH. (2007). The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol 125:215–23
  • Nancy V, Callebaut I, el Marjou A, de Gunzburg J. (2002). The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J Biol Chem 277:15076–84
  • Nomanbhoy TK, Erickson JW, Cerione RA. (1999). Kinetics of Cdc42 membrane extraction by Rho-GDI monitored by real-time fluorescence resonance energy transfer. Biochemistry 38:1744–50
  • Ntantie E, Gonyo P, Lorimer EL, et al. (2013). An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 6:ra39
  • Ogihara T, Isobe T, Ichimura T, et al. (1997). 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 272:25267–74
  • Pallas DC, Fu H, Haehnel LC, et al. (1994). Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265:535–7
  • Paz A, Haklai R, Elad-Sfadia G, et al. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–93
  • Pizon V, Desjardins M, Bucci C, et al. (1994). Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci 107:1661–70
  • Quilliam LA, Mueller H, Bohl BP, et al. (1991). Rap1A is a substrate for cyclic AMP-dependent protein kinase in human neutrophils. J Immunol 147:1628–35
  • Raaijmakers JH, Bos JL. (2009). Specificity in Ras and Rap signaling. J Biol Chem 284:10995–9
  • Rao S, Cunningham D, de Gramont A, et al. (2004). Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22:3950–7
  • Ravichandran A, Low BC. (2013). SmgGDS antagonizes BPGAP1-induced Ras/ERK activation and neuritogenesis in PC12 cell differentiation. Mol Biol Cell 24:145–56
  • Repasky GA, Chenette EJ, Der CJ. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14:639–47
  • Reuther GW, Fu H, Cripe LD, et al. (1994). Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science 266:129–33
  • Rotblat B, Niv H, Andre S, et al. (2004). Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res 64:3112–18
  • Rousseau-Merck MF, Pizon V, Tavitian A, Berger R. (1990). Chromosome mapping of the human RAS-related RAP1A, RAP1B, and RAP2 genes to chromosomes 1p12—-p13, 12q14, and 13q34, respectively. Cytogenet Cell Genet 53:2–4
  • Roy S, Mcpherson RA, Apolloni A, et al. (1998). 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol 18:3947–55
  • Schmitt JM, Stork PJ. (2001). Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 21:3671–83
  • Seabra MC. (1998). Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 10:167–72
  • Sun J, Qian Y, Hamilton AD, Sebti SM. (1998). Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16:1467–73
  • Takahashi M, Dillon TJ, Liu C, et al. (2013). Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem 288:27712–23
  • Takai Y, Sasaki T, Matozaki T. (2001). Small GTP-binding proteins. Physiol Rev 81:153–208
  • Tew GW, Lorimer EL, Berg TJ, et al. (2008). SmgGDS regulates cell proliferation, migration, and NF-kappaB transcriptional activity in non-small cell lung carcinoma. J Biol Chem 283:963–76
  • Vikis HG, Stewart S, Guan KL. (2002). SmgGDS displays differential binding and exchange activity towards different Ras isoforms. Oncogene 21:2425–32
  • Vincenz C, Dixit VM. (1996). 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 271:20029–34
  • Wakui H, Wright AP, Gustafsson J, Zilliacus J. (1997). Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3 eta protein. J Biol Chem 272:8153–6
  • Wennerberg K, Rossman KL, Der CJ. (2005). The Ras superfamily at a glance. J Cell Sci 118:843–6
  • Whyte DB, Kirschmeier P, Hockenberry TN, et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–64
  • Williams CL. (2003). The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal 15:1071–80
  • Williams CL. (2013). A new signaling paradigm to control the prenylation and trafficking of small GTPases. Cell Cycle 12:2933–4
  • Winter-Vann AM, Casey PJ. (2005). Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5:405–12
  • Wright LP, Philips MR. (2006). Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47:883–91
  • Yamamoto T, Kaibuchi K, Mizuno T, et al. (1990). Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J Biol Chem 265:16626–34
  • Zha J, Harada H, Yang E, et al. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–28
  • Zhang H, Li S, Doan T, et al. (2007). Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci USA 104:8857–62
  • Zhang H, Liu XH, Zhang K, et al. (2004). Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein. J Biol Chem 279:407–13
  • Zhang SH, Kobayashi R, Graves PR, et al. (1997). Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem 272:27281–7
  • Zhi H, Yang XJ, Kuhnmuench J, et al. (2009). SmgGDS is up-regulated in prostate carcinoma and promotes tumour phenotypes in prostate cancer cells. J Pathol 217:389–97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.