1,058
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Ion channel–transporter interactions

&
Pages 257-267 | Received 04 Feb 2016, Accepted 28 Mar 2016, Published online: 20 Apr 2016

References

  • Abbott GW. (2014). Biology of the KCNQ1 potassium channel. New J Sci 2014:1–26
  • Abbott GW, Tai KK, Neverisky DL, et al. (2014). KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci Signal 7:ra22
  • Abbott GW, Butler MH, Dalakas MC, et al. (2001). MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–31
  • Allison JH, Stewart MA. (1971). Reduced brain inositol in lithium-treated rats. Nat New Biol 233:267–8
  • Angelo K, Jespersen T, Grunnet M, et al. (2002). KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J 83:1997–2006
  • Barhanin J, Lesage F, Guillemare E, et al. (1996). K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80
  • Bellocq C, van Ginneken A, Bezzina C, et al. (2004). Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15159330 [last accessed 27 Nov 2013]
  • Berry GT, Wang Z, Dreha S, et al. (1999). In vivo brain myo-inositol levels in children with Down syndrome. J Pediatr 135:94–7
  • Berry GT, Wu S, Buccafusca R, et al. (2003). Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 278:18297–302
  • Berry GT, Mallee J, Kwon H, , et al. (1995). The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25:507–13
  • Boini KM, Graf D, Hennige A, et al. (2009). Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. Am J Physiol Regul Integr Comparat Physiol 296:22–6
  • Borden L. a, Caplan MJ. (1996). GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–56
  • Buccafusca R, Venditti C, Kenyon L, et al. (2008). Characterization of the null murine sodium/myo-inositol cotransporter 1 (Smit1 or Slc5a3) phenotype: myo-inositol rescue is independent of expression of its cognate mitochondrial ribosomal protein subunit 6 (Mrps6) gene and of phosphatidylinositol levels. Mol Genet Metabo 95:81–95
  • Carrasco N. (1993). Iodide transport in the thyroid gland. Biochim Biophys Acta Rev Biomembr 1154:65–82
  • Chau JFL, Lee MK, Law JWS, et al. (2005). Sodium/myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB J 19:1887–9
  • Chen YH, Xu S, Bendahhou S, et al. (2003). KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science (New York, N.Y.) 299:251–4
  • Choi E, Abbott GW. (2010). A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K + channel voltage sensor. FASEB J 24:1518–24
  • Coady MJ, Wallendorff B, Gagnon D, et al. (2002). Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277:35219–24
  • Cross BM, Hack A, Reinhardt T, et al. (2013). SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation. PloS One 8:e67348
  • Dai G, Levy O, Carrasco N. (1996). Cloning and characterization of the thyroid iodide transporter. Nature 379:458–60
  • Davanzo P, Thomas M, Yue K, et al. (2001). Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24:359–69
  • Dohán O, De la Vieja A, Paroder V, et al. (2003). The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24:48–77
  • Durr G, Strayle J, Plemper R, et al. (1998). The medial-Golgi Ion Pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9:1149–62
  • Faham S, Watanabe A, Besserer G, et al. (2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–14
  • Feng M, Grice D, Faddy H, et al. (2010). Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98
  • Feske S, Gwack Y, Prakriya M, et al. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–85
  • Frohlich H, Boini K, Seebohm G, et al. (2011). Hypothyroidism of gene-targeted mice lacking Kcnq1. Pflugers Arch 461:45–52
  • Grahammer F, Wittekindt O, Nitschke R, et al. (2001). The cardiac K + channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120:1363–71
  • Grunnet M, Jespersen T, Rasmussen H, et al. (2002). KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol 542:119–30
  • Hammami S, Willumsen N, Olsen H, et al. (2009). Cell volume and membrane stretch independently control K + channel activity. J Physiol (Lond) 587:2225–31
  • Harchi AE, Zhang H, Hancox J, et al. (2010). The S140G KCNQ1 atrial fibrillation mutation affects “IKs” profile during both atrial and ventricular action potentials. J Physiol Pharmacol 1:759–64
  • Harwood AJ. (2005). Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 10:117–26
  • Hayashi E, Maeda T, Tomita T. (1974). The effect of myo-inositol deficiency on lipid metabolism in rats. Biochim Biophys Acta (BBA) Lipids Lipid Metab 360:134–45
  • Hegsted DM, Hayes K, Gallagher A, et al. (1973). Inositol deficiency: an intestinal lipodystrophy in the gerbil. J Nutr 103:302–7
  • Heitzmann D, Grahammer F, von Hahn T, et al. (2004). Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol 561:547–57
  • Heitzmann D, Koren V, Wagner M, et al. (2007). KCNE beta subunits determine pH sensitivity of KCNQ1 potassium channels. Cell Physiol Biochem 19:21–32
  • Hersey SJ, Sachs G. (1995). Gastric acid secretion. Physiol Rev 75:155–89
  • Hilgemann DW, Feng S, Nasuhoglu C. (2001). The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:re19
  • Hitomi K, Tsukagoshi N. (1994). cDNA sequence for rkST1, a novel member of the sodium ion-dependent glucose cotransporter family. Biochim Biophys Acta (BBA) Biomembranes 1190:469–72
  • Holub BJ. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr 6:563–97
  • Hou X, Pedi L, Diver M, et al. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–13
  • Huang CL. (2001). Regulation of ROMK trafficking and channel activity. Curr Opin Nephrol Hypertens 10:693–8
  • Indriati DW, Kamasawa N, Matsui K, et al. (2013). Quantitative localization of Cav2.1 (P/Q-Type) voltage-dependent calcium channels in purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. J Neurosci 33:3668–78
  • Jentsch TJ. (2000). Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30
  • Jin XT, Galvan A, Wichmann T, et al. (2011a). Localization and function of GABA transporters GAT-1 and GAT-3 in the basal ganglia. Front Syst Neurosci 5:63. doi:10.3389/fnsys.2011.00063
  • Jin XT, Paré JF, Smith Y. (2011b). Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur J Neurosci 33:1504–18
  • Kwon HM, Yamauchi A, Uchida S, et al. (1992). Cloning of the cDNA for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem 267:6297–301
  • Labro AJ, Boulet I, Choveau F, et al. (2011). The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure. J Biol Chem 286:717–25
  • Lee MP, Ravenel J, Hu R, et al. (2000). Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–55
  • Long SB, Campbell EB, MacKinnon R. (2005). Crystal structure of a mammalian voltage-dependent shaker family K + channel. Science 309:897–903
  • Loussouarn G. (2003). Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K + channels. EMBO J 22:5412–21
  • Lubrich B, van Calker D. (1999). Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs? Neuropsychopharmacology 21:519–29
  • Marrion NV, Tavalin SJ. (1998). Selective activation of Ca2+-activated K + channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395:900–5
  • Mercer JC, DeHaven W, Smyth J, et al. (2006). Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–90
  • Morelle J, Goffin E, Devuyst O. (2015). Molecular physiology of water balance. N Engl J Med 373:196
  • Morreale de Escobar G, Obregon MJ, Escobar del Rey F. (2004). Role of thyroid hormone during early brain development. Eur J Endocrinol 151 Suppl:U25–37
  • Nesin V, Wiley G, Kousi M, et al. (2014). Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 111:4197–202
  • Ou JW, Kumar Y, Alioua A, et al. (2009). Ca2+- and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: from microtubules to the plasma membrane. Glia 57:1280–95
  • Panaghie G, Abbott GW. (2007). The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes. J Gen Physiol 129:121–33
  • Pedersen PL, Carafoli E. (1987a). Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–50
  • Pedersen PL, Carafoli E. (1987b). Ion motive ATPases. II. Energy coupling and work output. Trends Biochem Sci 12:186–9
  • Porcellati F, Hosaka Y, Hlaing T, et al. (1999). Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms. Am J Physiol 276:C1325–37
  • Porcellati F, Hlaing T, Togawa M, et al. (1998). Human Na(+)-myo-inositol cotransporter gene: alternate splicing generates diverse transcripts. Am J Physiol 274:C1215–25
  • Prakriya M, Feske S, Gwack Y, et al. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–3
  • Purtell K, Paroder-Belenitsky M, Reyna-Neyra A, et al. (2012). The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I-uptake. FASEB J 26:3252–9
  • Roepke TK, King E, Reyna-Neyra A, et al. (2009). Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 15:1186–94
  • Roepke TK, Kanda VA, Purtell K, et al. (2011a). KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. FASEB J 25:4264–73
  • Roepke TK, King EC, Purtell K, et al. (2011b). Genetic dissection reveals unexpected influence of beta subunits on KCNQ1 K + channel polarized trafficking in vivo. FASEB J 25:727–36
  • Roepke TK, Purtell K, King E, et al. (2010). Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia. PLoS One 5:e11451
  • Roepke TK, Anantharam A, Kirchhoff P, et al. (2006). The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 281:23740–7
  • Rundén-Pran E, Haug FM, Storm JF, et al. (2002). BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience 112:277–88
  • Sanguinetti MC, Curran ME, Zou A, et al. (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–3
  • Schneider S. (2015). Inositol transport proteins. FEBS Lett 589:1049–58
  • Schroeder BC, Waldegger S, Fehr S, et al. (2000). A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–9
  • Sesti F, Goldstein SAN. (1998). Single-channel characteristics of wild-type IKs channels and channels formed with two MinK mutants that cause long QT syndrome. J Gen Physiol 112:651–63
  • Shaltiel G, Shamir A, Shapiro J, et al. (2004). Valproate decreases inositol biosynthesis. Biol Psychiatry 56:868–74
  • Singh H, Li M, Hall L, et al. (2016). MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience 317:76–107
  • Soboloff J, Spassova M, Tang X, et al. (2006). Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–5
  • Spitzweg C, Dutton C, Castro M, et al. (2001). Expression of the sodium iodide symporter in human kidney. Kidney Int 59:1013–23
  • Suh BC, Hille B. (2008). PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195
  • Tester DJ, Will M, Haglund C, et al. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–17
  • Than BLN, Goos J, Sarver A, et al. (2014). The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 33:3861–8
  • Tinel N. (2000). KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J 19:6326–30
  • Toro L, Li M, Zhang Z, et al. (2014). MaxiK channel and cell signalling. Pflugers Archiv Eur J Physiol 466:875–86
  • Tristani-Firouzi M, Sanguinetti MC. (1998). Voltage-dependent inactivation of the human K + channel KvLQT1 is eliminated by association with minimal K + channel (minK) subunits. J Physiol 510:37–45
  • Unoki H, Takahashi A, Kawaguchi T, et al. (2008). SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–102
  • Vanoevelen J, Dode L, Van Baelen K, et al. (2005). The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem 280:22800–8
  • Vayre L, Sabourin J, Caillou B, et al. (1999). Immunohistochemical analysis of Na+/I- symporter distribution in human extra-thyroidal tissues. Eur J Endocrinol 141:382–6
  • Vergara C, Latorre R, Marrion N, et al. (1998). Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–9
  • Vucic E, Alfadda T, MacGregor G, et al. (2015). Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflugers Arch 467:1457–68
  • Warth R, Garcia Alzamora M, Kim J, et al. (2002). The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pflügers Archiv Eur J Physiol 443:822–8
  • Willmroth F, Drieling T, Lamla U, et al. (2007). Sodium-myo-inositol co-transporter (SMIT-1) mRNA is increased in neutrophils of patients with bipolar 1 disorder and down-regulated under treatment with mood stabilizers. Int J Neuropsychopharmacol 10:63–71
  • Xiang M, Mohamalawari D, Rao R. (2005). A novel isoform of the secretory pathway Ca2+,Mn(2+)-ATPase, hSPCA2, has unusual properties and is expressed in the brain . J Biol Chem 280:11608–14
  • Yasuda K, Miyake K, Horikawa Y, et al. (2008). Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genetics 40:1092–7
  • Zhou JB, Yang J, Zhao L, et al. (2010). Variants in KCNQ1, AP3S1, MAN2A1, and ALDH7A1 and the risk of type 2 diabetes in the Chinese Northern Han population: a case-control study and meta-analysis. Med Sci Monit 16:BR179–83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.