872
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Drugging the undruggable: gabapentin, pregabalin and the calcium channel α2δ subunit

&
Pages 246-256 | Received 30 Sep 2015, Accepted 29 Mar 2016, Published online: 25 Apr 2016

References

  • Alden KJ, Garcia J. (2001). Differential effect of gabapentin on neuronal and muscle calcium currents. J Pharmacol Exp Ther 297:727–35.
  • Arikkath J, Campbell KP. (2003). Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13:298–307.
  • Barton ME, Eberle EL, Shannon HE. (2005). The antihyperalgesic effects of the T-type calcium channel blockers ethosuximide, trimethadione, and mibefradil. Eur J Pharmacol 521:79–85.
  • Bauer CS, Tran-Van-Minh A, Kadurin I, Dolphin AC. (2010). A new look at calcium channel α2δ subunits. Curr Opin Neurobiol 20:563–71.
  • Belliotti TR, Capiris T, Ekhato IV, et al. (2005). Structure-activity relationships of pregabalin and analogues that target the alpha(2)-delta protein. J Med Chem 48:2294–307.
  • Bertrand S, Ng GY, Purisai MG, et al. (2001). The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol Exp Ther 298:15–24.
  • Bertrand S, Nouel D, Morin F, et al. (2003). Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse 50:95–109.
  • Bockbrader HN, Wesche D, Miller R, et al. (2010). A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet 49:661–9.
  • Brown JP, Gee NS. (1998). Cloning and deletion mutagenesis of the alpha2 delta calcium channel subunit from porcine cerebral cortex. Expression of a soluble form of the protein that retains [3H]gabapentin binding activity. J Biol Chem 273:25458–65.
  • Canti C, Davies A, Dolphin AC. (2003). Calcium channel α2δ subunits: structure, functions and target site for drugs. Curr Neuropharmacol 1:209–17.
  • Catterall WA. (2011). Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947.
  • Chaires JB. (2008). Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–51.
  • Dalby NO, Nielsen EB. (1997). Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res 28:63–72.
  • Dolphin AC. (2009). Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–44.
  • Dolphin AC. (2012). Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 13:542–55.
  • Eroglu C, Allen NJ, Susman MW, et al. (2009). Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–92.
  • Errante LD, Petroff O. (2003). Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure 12:300–6.
  • Errante LD, Williamson A, Spencer DD, Petroff OAC. (2002). Gabapentin and vigabatrin increase GABA in the human neocortical slice. Epilepsy Res 49:203–10.
  • Field MJ, McCleary S, Hughes J, Singh L. (1999). Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80:391–8.
  • Field MJ, Cox PJ, Stott E, et al. (2006). Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA 103:17537–42.
  • Fink K, Dooley DJ, Meder WP, et al. (2002). Inhibition of neuronal Ca(2+) influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 42:229–36.
  • Froestl W. (2011). An historical perspective on GABAergic drugs. Future Med Chem 3:163–75.
  • Gale K. (1989). GABA in epilepsy: the pharmacologic basis. Epilepsia 30 Suppl s3:s1–11.
  • Gee NS, Brown JP, Dissanayake VU, et al. (1996). The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271:5768–76.
  • Goldlust A, Su T-Z, Welty DF, et al. (1995). Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA. Epilepsy Res 22:1–11.
  • Griffith M, Griffith OL, Coffman AC, et al. (2013). DGIdb: mining the druggable genome. Nat Methods 10:1209–10.
  • Hendrich J, Van Minh AT, Heblich F, et al. (2008). Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci USA 105:3628–33.
  • Hill DR, Suman-Chauhan N, Woodruff GN. (1993). Localization of [3H]gabapentin to a novel site in rat brain: autoradiographic studies. Eur J Pharmacol 244:303–9.
  • Honmou O, Kocsis JD, Richerson GB. (1995). Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro. Epilepsy Res 20:193–202.
  • Hopkins AL, Groom CR. (2002). The druggable genome. Nat Rev Drug Discov 1:727–30.
  • Hoppa MB, Lana B, Margas W, et al. (2012). α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486:122–5.
  • Hoppa MB, Gouzer G, Armbruster M, Ryan TA. (2014). Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals. Neuron 84:778–89.
  • Janssen SF, van der Spek SJF, Brink ten JB, et al. (2013). Gene expression and functional annotation of the human and mouse choroid plexus epithelium. PLoS One 8:e83345.
  • Jensen AA, Mosbacher J, Elg S, et al. (2002). The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol 61:1377–84.
  • Kanehisa M, Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30.
  • Kim C. (2001). Altered nociceptive response in mice deficient in the α1B subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–45.
  • Klugbauer N, Marais E, Hofmann F. (2003). Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenergetics Biomembr 35:639–47.
  • Kocsis JD, Honmou O. (1994). Gabapentin increases GABA-induced depolarization in rat neonatal optic nerve. Neurosci Lett 169:181–4.
  • Krall RL, Penry JK, Kupferberg HJ, Swinyard EA. (1978). Antiepileptic drug development: I. History and a program for progress. Epilepsia 19:393–408.
  • Lanneau C, Green A, Hirst WD, et al. (2001). Gabapentin is not a GABAB receptor agonist. Neuropharmacology 41:965–75.
  • Leach JP, Sills GJ, Butler E, et al. (1997). Neurochemical actions of gabapentin in mouse brain. Epilepsy Res 27:175–80.
  • Li Z, Taylor CP, Weber M, et al. (2011). Pregabalin is a potent and selective ligand for α2δ-1 and α2δ-2 calcium channel subunits. Eur J Pharmacol 667:80–90.
  • Lotarski SM, Donevan S, El-Kattan A, et al. (2011). Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants. J Pharmacol Exp Ther 338:615–21.
  • Lotarski S, Hain H, Peterson J, et al. (2014). Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure assay in α2δ1 (R217A) and α2δ2 (R279A) mouse mutants. Epilepsy Res 108:833–42.
  • Löscher W, Hönack D, Taylor CP. (1991). Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 128:150–4.
  • Löscher W, Rogawski MA. (2012). How theories evolved concerning the mechanism of action of barbiturates. Epilepsia 53:12–25.
  • Luan C-H, Light SH, Dunne SF, Anderson WF. 2014. Ligand screening using fluorescence thermal shift analysis (FTS). In: Williams M, Daviter T, eds. Protein-ligand interactions. Methods in molecular biology. New York, NY: Springer, 263–289.
  • Macdonald RL. (1989). Antiepileptic drug actions. Epilepsia 30 Suppl:S19–S28. discussion S64–8.
  • Macdonald RL, Kelly KM. (1995). Antiepileptic drug mechanisms of action. Epilepsia 36 Suppl:S2–S12.
  • Magano J, Bowles D, Conway B, et al. (2009). Diastereoselective, large-scale synthesis of β-amino acids via asymmetric aza-Michael addition as α2δ ligands for the treatment of generalized anxiety disorder and insomnia. Tetrahedron Lett 50:6325–28.
  • Martin DJ, McClelland D, Herd MB, et al. (2002). Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 42:353–66.
  • McLean MJ. (1995). Gabapentin. Epilepsia 36 Suppl:S73–S86.
  • Merritt HH, Putnam TJ. (1938). A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiatry 39:1003–15.
  • Mewes HW. (2004). MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32:41D–4D.
  • Morgan PT, Pace-Schott EF, Mason GF, et al. (2012). Cortical GABA levels in primary insomnia. Sleep 35:807–14.
  • Morrow J. (2006). Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatr 77:193–8.
  • Mølgaard-Nielsen D, Hviid A. (2011). Newer-generation antiepileptic drugs and the risk of major birth defects. JAMA 305:1996–2002.
  • Neely GG, Hess A, Costigan M, et al. (2010). A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene. Cell 143:628–38.
  • Ng GY, Bertrand S, Sullivan R, et al. (2001). Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol 59:144–52.
  • Pedruzzi I, Rivoire C, Auchincloss AH, et al. (2012). HAMAP in 2013, new developments in the protein family classification and annotation system. Nucleic Acids Res 41:D584–9.
  • Petroff OA, Rothman DL, Behar KL, et al. (1996). The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. AnnNeurol 39:95–9.
  • Polc P, Mohler H, Haefely W. (1974). The effect of diazepam on spinal cord activities: possible sites and mechanisms of action. Naunyn-Schmiedeberg's Arch Pharmacol 284:319–37.
  • Petroff OA, Rothman DL, Behar KL, et al. 2012. Mechanisms of action of antiseizure drugs. Handb Clin Neurol 108:663–81.
  • Radulovic LL, Türck D, Hodenberg von A, et al. (1995). Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab Dispos 23:441–8.
  • Rock DM, Kelly KM, Macdonald RL. (2002). Gabapentin actions on ligand-and voltage-gated responses in cultured rodent neurons. Epilepsy Res 16:89–98.
  • Rogawski MA, Löscher W. (2004). The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10:685–92.
  • Saegusa H, Kurihara T, Zong S, et al. (2000). Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 97:6132–7.
  • Saegusa H, Matsuda Y, Tanabe T. (2002). Effects of ablation of N- and R-type Ca(2+) channels on pain transmission. Neurosci Res 43:1–7.
  • Saegusa H, Kurihara T, Zong S, et al. (2003). Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psych 160:577–9.
  • Satzinger G. (1974). Antiepileptics from gamma-aminobutyric acid. Arzneimittel-Forschung 44:261–6.
  • Scannell JW, Blanckley A, Boldon H, Warrington B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200.
  • Schechter PJ. (1989). Clinical pharmacology of vigabatrin. Br J Clin Pharmacol 27 Suppl:19S–22S.
  • Schumacher TB, Beck H, Steinhäuser C, et al. (1998). Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39:355–63.
  • Shimizu S, Honda M, Tanabe M, Ono H. (2004). GABAB receptors do not mediate the inhibitory actions of gabapentin on the spinal reflex in rats. J Pharmacol Sci 96:444–9.
  • Silverman RB. (2008). From basic science to blockbuster drug: the discovery of Lyrica. Angew Chem Int Ed 47:3500–4.
  • Silverman RB, Andruszkiewicz R. (1991). 3-Alkyl-4-aminobutyric acids: the first class of anticonvulsant agents that activates L-glutamic acid decarboxylase. J Med Chem 34:2295–8.
  • Stahl SM, Porreca F, Taylor CP, et al. (2013). The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacological activities? Trends Pharmacol Sci 34:332–9.
  • Stefani A, Spadoni F, Bernardi G. (1998). Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37:83–91.
  • Sternbach LH. (1979). The benzodiazepine story. J Med Chem 22:1–7.
  • Streeter CC, Whitfield TH, Owen L, et al. (2010). Effects of yoga versus walking on mood, anxiety, and brain GABA levels: a randomized controlled MRS study. J Alternat Complement Med 16:1145–52.
  • Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN. (1993). Characterisation of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol 244:293–301.
  • Suzdak PD, Jansen JA. (1995). A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–26.
  • Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. (2004). Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comparat Neurol 477:360–70.
  • Takada M, Kang Y, Imanishi M. (2001). Immunohistochemical localization of voltage-gated calcium channels in substantia nigra dopamine neurons. Eur J Neurosci 13:757–62.
  • Taylor CP, Vartanian MG, Po-Wai Y, et al. (2002). Potent and stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at a novel site labeled by tritiated gabapentin. Epilepsy Res 14:11–5.
  • Thorpe AJ, Offord J. (2010). The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target. Curr Opin Investig Drugs (London, England: 2000) 11:761–70.
  • Timmerman W, Bouma M, De Vries JB, et al. (2000). A microdialysis study on the mechanism of action of gabapentin. Eur J Pharmacol 398:53–7.
  • Tran-Van-Minh A, Dolphin AC. (2010). The alpha2/delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2/delta-2. J Neurosci 30:12856–67.
  • van Hooft JA, Dougherty JJ, Endeman D, et al. (2002). Gabapentin inhibits presynaptic Ca(2+) influx and synaptic transmission in rat hippocampus and neocortex. Eur J Pharmacol 449:221–8.
  • Vartanian MG, Radulovic LL, Kinsora JJ, et al. (2006). Activity profile of pregabalin in rodent models of epilepsy and ataxia. Epilepsy Res 68:189–205.
  • Venter JC, Adams MD, Myers EW, et al. (2001). The sequence of the human genome. Science 291:1304–51.
  • Wafford KA, Ebert B. (2008). Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time. Nat Rev Drug Discov 7:530–40.
  • Wang M, Offord J, Oxender DL, Su T-Z. (1999). Structural requirement of the calcium-channel subunit alpha2delta for gabapentin binding. Biochem J 342:313–20.
  • Wermeling DP. (2005). Ziconotide, an intrathecally administered N‐type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy: J Hum Pharmacol Drug Ther 25:1084–94.
  • Yamamoto H, Shimoshige Y, Yamaji T, et al. (2009). Pharmacological characterization of standard analgesics on mechanical allodynia in streptozotocin-induced diabetic rats. Neuropharmacology 57:403–8.
  • Yokoyama CT, Westenbroek RE, Hell JW, et al. (1995). Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. J Neurosci 15:6419–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.