401
Views
191
CrossRef citations to date
0
Altmetric
Research Article

Histones and Their Modification

, , &
Pages 201-263 | Published online: 26 Sep 2008

References

  • Kossel A. Ueber einen peptonartigen Bestandtheil des Zellkern. Hoppe-Seyler's Z. Physiol. Chem. 1884; 8: 511
  • Doenecke D., Karlson P. Albrecht Kossel and the discovery of histone. Trends Biochem. Sci. 1984; 9: 404
  • Hewish D., Burgoyne L. Chromatin sub-structure. The digestion of chromatin DNA at the regularly spaced sites by a nuclear deoxyribonucleas. Biochem. Biophys. Res. Commun. 1973; 52: 504
  • Noll M. Subunit structure of chromati. Nature (London) 1974; 251: 249
  • Sahasrabuddhe C. G., van Holde K. E. The effect of trypsin on nuclease resistant fragment. J. Biol. Chem. 1974; 249: 152
  • Shaw B. R., Corden J. L., Sahasrabuddhe C. G., van Holde K. E. Chromatographic separation of chromatin subunit. Biochem. Biophys. Res. Commun. 1974; 61: 1193
  • McGhee J. D., Felsenfeld G. Nucleosome structur. Annu. Rev. Biochem. 1980; 49: 1115
  • Woodcock C. L. F. Ultrastructure of inactive chromati. J. Cell Bid. 1973; 59: 368a
  • Olins A. L., Ollns D. E. Spheroid chromatin units (bodies. J. Cell Biol. 1973; 59: 252a
  • Oh A. L., Olins D. E. Spheroid chromatin units (bodies. Science 1974; 183: 330
  • Bradbury E. M. Histone nomenclatur. The Structure and Function of Chromatin. Associated Scientific Publ., Amsterdam 1975; 1, Ciba Foundation Symposium 28 (new series)
  • Isenberg I. Histone. Annu. Rev. Biochem. 1979; 48: 159
  • Von Holt C., Strickland W. N., Brandt W. F., Strickland M. S. More histone structure. FEBS Lett. 1979; 100: 201
  • Hunt L. T., Dayhoff M. O. Evolution of chromosomal protein. Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman. Plenum Press, New York 1982; 193
  • Klotz I. M., Darnall D. W., Langerman N. R. Quaternary structure of protein. The Proteins, H. Neurath, R. L. Hill. Academic Press, New York 1975; Vol. I: 293
  • D'Anna J. A., Jr., Isenberg I. Conformational changes of histone LAK (f2a2. Biochemistry 1974; 13: 2098
  • Spiker S., Isenberg I. Evolutionary conservation of histone-histone binding sites: evidence from interkingdom complex formatio. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 157
  • Mardian J. K. W., Isenberg I. Yeast inner histones and the evolutionary conservation of histone-histone interaction. Biochemistry 1978; 17: 3825
  • Brandt W. F., Strickland W. N., Strickland M., Carlisle L., Woods D., Von Holt C. A histone programme during the life cycle of the sea urchi. Eur. J. Biochem 1979; 94: 1
  • Maxson R., Mohun T., Kedes L. Expression of specific genes: histone gene. Eurcaryotic Genes: Their Structure. Activity and Regulations, N McLean, S. Gregory, R. Flavell. But-terworth, London 1982, chap. 3
  • Poccia D., Greenough T., Green G. R., Nash E., Erickson J., Gibbs M. Remodeling of sperm chromatin following fertilization: nucleosome repeat length and histone variant transitions in the absence of DNA synthesi. Dev. Biol. 1984; 104: 274
  • Hnilica L. S. The specificity of histones in chicken erythrocyte. Experientia. 1964; 20: 13
  • Neelin J. M., Callahan P. X., Lamb D. C., Murray K. The histones of chicken erythrocyte nucle. Can. J. Biochem. 1964; 42: 1743
  • Franklin S. G., Zweidler A. Nonallelic variants of histone 2a. 2b and 3 in mammal. Nature (London) 1977; 266: 273
  • West M. H. P., Bonner W. M. Histone 2A, a heteromorphous family of eight protein specie. Biochemistry 1980; 19: 3238
  • Gorovsky M. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nucle. J. Protozool. 1973; 20: 19
  • Hayashi H., Nomoto M., Iwai K. Tetrahymena histone sequences and their implications for phylogeny of protozo. Proc. Jpn. Acad. 1980; 56: 579
  • Ogawa Y., Quagliarotti G., Jordan J., Taylor C. W., Starbuck W. C., Busch H. Structural analysis of the glycine-rich. arginine-rich histone III. Sequence of the amino terminal half of the molecule containing the modified lysine residues and the total sequenc. J. Biol. Chem. 1969; 244: 4387
  • Quagliarotti G., Ogawa Y., Taylor C. W., Sautiere P., Jordan J. J., Starbuck W. C., Busch H. Structural analysis of glycine-rich. arginine-rich histone II. Sequence of the half of the molecule containing aromatic amino acid. J. Biol. Chem. 1969; 244: 1796
  • Wilson R. K., Starbuck W. C., Taylor C. W., Jordan J., Busch H. Structure of the glycine-rich, arginine-rich histone of the Novikoff hepatom. Cancer Res. 1970; 30: 2942
  • DeLange R. J., Fambrough D. M., Smith E. L., Bonner J. Calf and pea histone IV. III. Complete amino acid sequence of pea seedling histone IV; comparison with the homologous calf thymus histon. J. Biol. Chem. 1969; 244: 5669
  • Smith M. M., Andrésson O. S. DNA sequences of yeast H3 and H4 histone genes from two nonallelic gene sets encode identical H3 and H4 protein. J. Mol. Biol. 1983; 169: 663
  • Brandt W. F., Patterson K., Von Holt C. The histones of yeast: the isolation and partial structure of the core histone. Eur. J. Biochem. 1980; 110: 67
  • Bannon G. A., Bowen J. K., Yao M. C., Gorovsky M. A. Tetrahymena H4 genes: structure. evolution and organization in macro- and micronucle. Nucl. Acids Res. 1984; 12: 1961
  • Seiler-Tuyns A., Birnsteil M. L. Structure and expression in L-cells of a cloned H4 histone gene of the mous. J. Mol. Biol. 1981; 151: 607
  • Moorman A. F. M., de Boer P. A. J., deLear R. J. M., Van Dongen W. M. A. M., Destrée O. H. J. Primary structure of the histone H3 and H4 genes and their flanking sequences in a minor histone gene cluster of Xenopus laevi. FEES Lett. 1981; 136: 45
  • Busslinger M., Portmann R., Irmlnger J. C., Birnsteil M. L. Ubiquitous and gene-specific regulatory 5′ sequences in a sea urchin histone DNA clone coding for histone protein variant. Nucl. Acids Res. 1980; 8: 957
  • Wouters-Tyrou D., Sautiere P., Biserte G. Covalent structure of the sea urchin histone H4. FEES Lett. 1976; 65: 225
  • Strickland M., Strickland W. N., Brandt W. F., Von Holt C. Sequence of the cysteine-containing portion of histone F2al from sea urchin Parechinus angulosu. FEBS Lett. 1974; 40: 346
  • Wu R. S., Nishioka D., Bonner W. M. Differential conservation of histone 2A variants between mammals and sea urchin. J. Cell Biol. 1982; 93: 426
  • Felsenfeld G., Chromatin. Nature (London) 1978; 271: 115
  • Heintz N., Zcrnik M., Roeder R. G. The structure of the human histonc genes: clustered but not tandemly repeate. Cell. 1981; 24: 661
  • Zhong R., Roeder R., Heintz N. The primary structure and expression of four cloned human histone gene. Nucl. Acids Res. 1983; 11: 7409
  • Sautiere P., Lambelin-Breynaert M. D., Moschetto Y., Biserte G. A glycine and arginine rich histone from hog thymus: study of the tryptic peptides and complete sequenc. Biochimie. 1971; 53: 711
  • Sautiere P., Tyron D., Moschetto Y., Biserte G. Primary structure of thc glycine and arginine-rich histone isolated from cholor-leukemic tumor in the ra. Biochimie. 1971; 53: 479
  • Sugar man B. J., Dodgson J. B., Engel J. D. Genomic organiration, DNA sequence. and expression of chicken embryonic histone gene. J. Biol. Chem. 1983; 258: 9005
  • Candido E. P. M., Dixon G. H. Sites of in vitro acetylation in trout testis histone I. J. Biol. Chem. 1971; 246: 3182
  • Goldberg M. L. Sequence Analysis of Drosophilia Histone Genes. Stanford University, Stanford, Calif 1979, Ph.D. thesis
  • Tabala T., Sasaki K., Iwabuchl M. The structural organization and DNA sequence of a wheat histone H4 gen. Nucl. Acids Res. 1983; 11: 5865
  • Tabala T., Iwabuchi M. Molecular cloning and nucleotide sequence of a variant wheat histone gen. Gene. 1984; 31: 285
  • Marzluff W. F., Jr., Sanders L. A., Miller D. M., McCarty K. S. Two chemically and metabolically distinct forms of calf thymus histone F. J. Biol. Chem. 1972; 247: 2026
  • DeLange R. J., Hooper J. A., Smith E. L. Histone III. III. Sequence studies on the cyanogen bromide peptides; complete amino acid sequence of calf thymus histone II. J. Biol. Chem. 1973; 248: 3261
  • Palthy L., Smith E. L. Histone III. VI. Two forms of calf thymus histone II. J. Biol. Chem. 1975; 250: 1919
  • Brandt W. F., Von Holt C. The determination of the primary structure of histone F3 from chicken erythrocytes by automatic Edman degradation. I. Cleavage and alignment of fragment. Eur. J. Biochem. 1974; 46: 407
  • Brandt W. F., Von Holt C. The determination of the primary structure of histone F3 from chicken erythrocytes by automatic Edman degradation. II. Sequence analysis of histone F. Eur. J. Biochcm. 1974; 46: 418
  • Urban M., Franklin S. G., Zweidler A. The isolation and characterization of the histone variants in chicken erythrocyte. Biochemistry 1979; 18: 3952
  • Engel J. D., Sugarman B. J., Dadgson J. B. A chicken histone H3 gene contains interesting sequence. Nature (London) 1982; 297: 434
  • Patthy L., Smith E. L., Johnson J. Histone III. V. The amino acid sequence of pea embryo histone II. J. Biol. Chem. 1973; 248: 6834
  • Brandt W. F., Van Holt C. The primary structure of yeast histone H. Eur. J. Biochem. 1982; 121: 501
  • Hayashi T., Hayashi H., Fusauchi Y., Iwai K. Tetrahymena histone H3. Purification and two variant sequence. J. Biochem. 1984; 95: 1741
  • Bonner W. M., West M. H. P., Stedman J. D. Two dimensional gel analysis of histones in acid extracts of nuclei. cells and tissue. Eur. J. Biochem. 1980; 109: 17
  • Sittman D. B., Chiu I. M., Pan C. J., Cohn R. H., Kedes L. H., Marzluff W. F. Isolation of two clusters of mouse histone gene. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 4078
  • Marzluff W. F., Graves R. A. Organization and expression of mouse histone gene. Histone Genes: Structure, Organization and Regulution, G. S. Stein, J. L. Stein, W. F. Marzluff. Wiley/lnterscience, New York 1984; 281
  • Zweidler A. Nonallelic histone variants in development and differentiatio. Gene Families of Collagen and Other Proteins, D. J. Rockop, P. C. Champe. Elsevier, New York 1980; 47
  • Zweidkr A. Complexity and variability of the histone complemen. Life Sci. Rcs. Rep. 1976; 4: 187
  • Childs G., Maxson R., Cohn R., Kedes L. Orphons: dispersed genetic elements derived from tandem repetitive genes of eucaryote. Cell 1981; 23: 651
  • Wu R. S., Td S., Bonner W. M. Changes in histone H3 composition and synthesis pattern during lymphocyte activatio. Biochemistry 1983; 22: 3868
  • Allis C. D., Glover C. V. C., Gorovsky M. A. Micronuclei of Tetrahymena contain two types of histone H. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 4857
  • Candido E. P. M., Won G. H. Amino terminal sequences and sites of in vim acetylation of trout testis histones III and IIb2. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2015
  • Connor W., States J. C., Mezquita J., Dixon G. H. Organization and nucleotide sequence of a rainbow trout histone H2A and H3 gen. J. Mol. Evol. 1984; 20: 236
  • Brandt W. F., Strickland W. N., Von Holt C. The primary structure of histone F3 from shark erythrocyte. FEBS Lett. 1974; 40: 349
  • Hooper J. A., Smith E. L., Sommer K. R., Chalkley R. Histone III. IV. Amino acid sequence of histone III of the testes of the carp. Ictiobus bubalu. J. Biol. Chem. 1973; 248: 3275
  • Schaffner W., Kunz G., Daetwyler H., Telford J., Smith H. O., Birnstiel M. L. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencin. Cell. 1978; 14: 655
  • Sures I., Lowry J., Kedes L. H. The DNA sequence of sea urchin (S. purpuratus) H2A, H2B. and H3 histone coding and spacer region. Cell. 1978; 15: 1035
  • Ohe Y., Iwai K. Human spleen histone H3. Isolation and amino acid sequenc. J. Biochem. 1981; 90: 1205
  • Stein C. S., Sierra F., Plumb M., Marashi F., Baumbach L., Stein J. L., Carozzi N., Prokopp K. Organization and expression of human histone gene. Histone Genes: Structure. Organization and Regulation, G. S. Stein, J. L. Stein, W. F. Marzluff. Wiley/Insterscience, New York 1984; 397
  • Tabata T., Fukasawa M., Iwabuchi M. Nucleotide sequence and genomic organization of a wheat histone H3 gen. Mol. Gen. Genet. 1984; 196: 397
  • Iwai K., Hayashi H., Ishikawa K. Calf thymus lysine- and serine-rich histone. III. Complete amino acid sequence and its implication for interactions of histones with DN. J. Biochem. 1972; 72: 357
  • Grunstein M., Rykowski M., Kolodrubetz D., Choe J., Wallis J. A genetic analysis of histone protein subtypes in yeas. Histone Genes: Structure, Organization and Regulation, G. S. Stein, J. L. Stein, W. F. Marzluff. Wiley/Interscience, New York 1984; 35
  • Nomoto M., Hayashi H., Iwai K. Tetrahymena histone H2B. Complete amino acid sequenc. J. Biochem. 1982; 91: 897
  • Strickland M., Strickland W. N., Brandt W. F., Von Holt C. The partial amino acid sequences of the two H2B histones from sperm of the sea urchin. Psammechinus miliari. Biochim. Biophys. Acta. 1978; 536: 289
  • Von Holt C., de Groot P., Schwager S., Brandt W. F. The structure of sea urchin histones and considerations on their functio. Histone Genes: Structure. Organization and Regulation, G. S. Stein, J. L Stein, W. F. Manluff. Wiley/Interscience, New York 1984; 65
  • Hayashi H., Iwai K., Johnson J. D., Bonner J. Pea histones H2A and H2. J. Biochem. 1977; 82: 503
  • Zweidler A. Core histone variants of the mouse: primary structure and differential expressio. Histone Genes: Structure. Organization and Regulation, G. S. Stein, J. L Stein, W. F. Marzluff. Wiley/Interscience, New York 1984; 339
  • Ohe Y., Hayashi H., Iwai K. Human spleen histone H2B: isolation and amino acid sequenc. J. Biochem. 1979; 85: 615
  • Grandy D. K., Engel J. D., Dodgson J. B. Complete nucleotide sequence of a chicken H2B histone gen. J. Biol. Chem. 1982; 257: 8577
  • Harvey R. P., Robins A. J., Wells J. R. E. Independently evolving chicken histone H2B gene: identification of a ubiquitous H2B-specific 5′ elemen. Nucl. Acids Res. 1982; 10: 7851
  • Van Helden P., Strickland W. N., Brandt W. F., Von Holt C. Histone H2B variants from the erythrocytes of an amphibian. a reptile, and a bir. Biochim. Biopys. Acta. 1978; 533: 278
  • Kootstra A., Bailey G. S. Primary structure of histone H2B from trout (Salmo frutta) teste. Biochemistry 1978; 17: 2504
  • Elgin S. C. R., Schilling J., Hood L. E. Sequence of histone 2B of Drosophila melanogaste. Biochemistry 1979; 18: 5679
  • Strickland M. S., Strickland W. N., Von Holt C. The histone H2B from the sperm cell of the starfish Marthasterias glaciali. Eur. J. Biochem. 1980; 106: 541
  • Van Helden P. D., Strickland W. N., Brandt W. F., Von Holt C. The complete amino acid sequence of histone H2B from mollusc Patella granatin. Eur. J. Biochem. 1979; 93: 71
  • Olson M. O. J., Sugano N., Yeoman L. C., Johnson B. R., Jordan J., Taylor C. W., Star buck W. C., Busch H. Homology of the amino terminal sequences of the AL and GAR calf thymus histon. Physiol. Chem. Phys. 1972; 4: 10
  • Yeoman L. C., Olson M. O. J., Sugano N., Jordan J., Taylor C. W., Starbuck W. C., Busch H. Amino acid sequence of the center of the arginine-lysine rich histone from calf thymus: total sequenc. J. Biol. Chem. 1972; 247: 6018
  • Sugano N., Oison M. O. J., Yeoman L. C., Johnson B. R., Taylor C. W., Starbuck W. C., Busch H. Amino acid sequence of the arginine-lysine rich histone of calf thymu. J. Biol. Chem. 1972; 247: 3589
  • Sautiere P., Tyrou D., Laine B., Mizon J., Ruffin P., Biserte G. Covalent structure of calf thymus ALK-histon. Eur. J, Biochem. 1974; 41: 563
  • Ball D. J., Slaughter C. A., Hensley P., Garrard W. T. Amino acid sequence of N-terminal domain of calf thymus histone H2A. FEBS Lett. 1983; 154: 166
  • Blankstein L. A., Stoiiar B. D., Franklin S. G., Zweidler A., Levy S. B. Biochemical and immunological characterization of two distinct variants of histone H2A in Friend leukemi. Biochemistry 1977; 16: 4557
  • West M. H. P., Bonner W. M. Structural comparison of mouse histones 2A.X and 2A.Z with 2A. 1 and 2A. . Comp. Biochem. Physiol. 1983; 76B: 455
  • Laine B., Kmiecik P., Sautiere P., Biserte G. Primary structure of chicken erythrocyte histone H2. Biochimie. 1978; 60: 147
  • D'Andrea R., Hawey R., Wells J. R. E. Vertebrate histone genes: nucleotide sequence of a chicken H2A gene and regulatory Ranking sequence. Nucl. Acids Res. 1981; 9: 3119
  • Harvey R. P., Whiting J. A., Coles L. S., Krieg P. A., Wells J. R. E. H2A.F: an extremely variant histone H2A sequence expressed in the chicken embry. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 2819
  • Choe J., Kolodrubetz P., Grunstein M. The two yeast histone H2A genes encode similar protein subtype. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 1484
  • Fusanchi Y., Iwai K. Tetrahymena histone H2A. Isolation and two variant sequence. J. Biochem. 1983; 93: 1487
  • de Rodrigues J. A., Brandt W. F., Von Holt C. Plant histone 2 from wheat germ. a family of histone H2A variant. Biochim. Biophps. Acta. 1979; 578: 196
  • Wenhert D., Allis C. D. Timing of the appearance of macronuclear-specific histone variant hvl and gene expression in developing new macronuclei of Tetrahymena thermophil. J. Cell Biol. 1984; 98: 2107
  • Alfageme C. R., Zweidler A., Mahowald A., Cohen L. H. Histones of Drosophila embryos. Electrophoretic isolation and structural studie. J. Biol. Chem. 1974; 249: 3729
  • Palmer D., Snyder L. A., Blumenfeid M. Drosophila nucleosomes contain an unusual histone-like protei. Proc. Natl. Acad. U.S.A. 1980; 77: 2671
  • Donahue P. R., Palmer D. K., Condie J. M., Sabatini L. M., Blumenfeld M. H2A. 2: a Drosophila histone associated with the interbands of polytene chromosomes. 1985, personal communication
  • Allis C. D., Ziegler Y. S., Gorovsky M. A., Olmsted J. B. A conserved histone variant enriched in nucleoli of mammalian cell. Cell 1982; 31: 131
  • Bhatnagar Y. M., McCullar M. K., Chronister R. B. immunocytochemical localization of a histone H2A variant in the mammalian nucleolar chromati. Cell Biol. Int. Rep. 1984; 8: 971
  • Wouten D., Sautlere P., Biserte G. Primary stmcture of histone H2A from gonad of sea urchin Psammechimus miliari. Eur. J. Biochem. 1978; 90: 231
  • Strickland W. N., Strickland M. S., de Groot P. C., Von Holt C. The primary structure of histone H2A from the sperm cell of the sea urchin Parechinus angulosu. Eur. J. Biochem. 1980; 109: 151
  • Wouters-Tyrou P., Martin-Ponthieu A., Briand G., Sautiere P., Biserte G. The amino acid sequence of histone H2A from cuttlefish Sepia officiali. Eur. J. Biochem. 1982; 124: 489
  • Bailey G. S., Dixon G. H. HistoneIIbl from rainbow trout: comparison in amino acid sequence with calf thymus IIB. J. Biol. Chem. 1973; 248: 5463
  • Martinage A., Belaiche D., Dupressoir T., Sautiere P. Primary structure of histone 2A from gonads of the starfish Asterias ruben. Eur. J. Biochem. 1983; 130: 465
  • Kmiecik D., Couppz M., Belaiche D., Sautiere P. Primary structure of histone H2A from nucleated erythrocyte of the marine worm Sipunculus nudus: presence of two forms of H2A in the sipunculid chromati. Eur. J. Biochem. 1983; 135: 113
  • Leine B., Sautiere P., Biserte G. Primary structure and microheterogeneities of rat chloroleukemia histone H2A (histone ALK, IIb1 or F2a2. Biochemistry 1976; 15: 1640
  • Hayashi T., Ohe Y., Hayashi H., Iwai K. Human spleen histone H2A: isolation and four variant sequence. J. Biochem. 1980; 88: 27
  • Cole R. D. A mini review of microheterogeneity in H1 histone and its possible significanc. Anal. Biochem. 1984; 136: 24
  • Smith B. J., Johns E. W. Isolation and characterization of subfractions of nuclear protein H. FEBS Lett. 1980; 110: 25
  • Panyim S., Chalkley R. A new histone found only in mammalian tissues with little cell divisio. Biochem. Biophys. Res. Commun. 1969; 37: 1042
  • Lennox R. W., Cohen L. H. The H1 subtypes of mammals: metabolic characteristics and tissue distributio. Histone Genes: Structure, Organization and Regulation, G. S. Stein, J. L Stein, W. F. Marzluff. Wiley/Interscience, New York 1984; 373
  • Rall S. C., Cole R. D. Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histone. J. Biol. Chem. 1971; 246: 7175
  • Bannon G. A., Gorovsky M. A. Tetrahymena histones: proteins messages and gene. Histone Genes: Structure, Organization and Regulation, G. S. Stein, J. L. Stein, W. F. Marzluff. Wiley/Interscience, New York 1984; 163
  • Briand G., Kmiecik D., Sautiere P., Wouters D., Borie-Loy O., Biserte C., Mazen A., Champagne M. Chicken erythrocyte histone H. FEBS Lett. 1980; 112: 147
  • Jones G. M. T., RaII S. C., Cole R. D. Extension of the amino acid sequence of a lysine-rich histon. J. Biol. Chem. 1974; 249: 2548
  • Liao L. W., Cole R. D. The amino acid sequence of residues 1–104 of CTL-I a bovine H1 histon. J. Biol. Chem. 1981; 256: 3024
  • Cole R. D. 1984, personal communication
  • Pehrson L. R., Cole R. D. Bovine H1 histone subfractions contain an invariant sequence which matches histone H5 rather than H. Biochemistry 1981; 20: 2298
  • Smith B. J., Walker J. M., Johns E. W. Structural homology between a mammalian H1 subfraction and avian erythrocyte-specific histone H. FEBS Lett. 1980; 112: 42
  • Smith B. J., Harris M. R., Sigournay C. M., Mayes E. L. V., Bustin M. A survey of H1-and H5-like protein structure and distribution in higher and lower eukaryote. Eur. J. Biochem. 1984; 138: 309
  • Hsiang M. W., Cole R. D. 1984, personal communication
  • Cole K. D., York R. G., Kistler W. S. The amino acid sequence of boar Hlt, a testis-specific H1 histone varian. J. Biol. Chem. 1984; 259: 13695
  • Hsiang M. W., Largman C., Cole R. D. 1984, personal communication
  • Macleod A. R., Wong N. C. W., Dixon G. H. The amino acid sequence of trout testis histone H. Eur. J. Biochem. 1977; 78: 281
  • Strickland W. N., Strickland M., de Groot P. C., Von Holt C., Wittmann-Liebold B. The primary structure of histone H1 from sperm of sea urchin Parechinus angulosus. I. Chemical and enzymatic fragmentation of the protein and the sequence of amino acids in the four N-terminal cyanogen bromide peptide. Eur. J. Biochem. 1980; 104: 559
  • Strickland W. N., Strickland M., Brandt W. F., Von Holt C., Lehmann A., Wittmann-Liebold B. The primary structure of histone H1 from sperm of the sea urchin Parechinus angulosus. II. Sequences of the C-terminal CNBr peptide and the entire primary structur. Eur. J. Biochem. 1980; 104: 567
  • Yaguchi M., Roy C., Seligy V. L. Complete amino acid sequence of goose erythrocyte H5 histone and the homology between H1 and H5 histone. Biochem. Biophys. Res. Commun. 1979; 90: 1400
  • Yaguchi M., Roy C., Dove M., Seligy V. Amino acid sequence homologies between H1 and H5 histone. Biochem. Biophys. Res. Commun. 1977; 76: 100
  • Carozzi N., Marashi F., Plumb M., Zimmerman S., Zimmerman A., Coles L. S., Wells J. R. E., Stein G., Stein J. Clustering of human H1 and core histone gene. Science 1984; 224: 1115
  • Kolodrubetz D., Rykowski M. D., Grunstein M. Histone H2A subtypes associate interchangably in vivo with histone H2B subtype. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 7814
  • Wallis J. W., Hereford L., Grunstein M. Histone H2B genes of yeast encode two different protein. Cell 1980; 22: 799
  • Wallis J. W., Rykowski M., Grunstein M. Yeast histone H2B containing large amino terminus deletions can function in viv. Cell. 1983; 35: 711
  • Moreland R. B., Hereford L., in press.
  • Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. A short amino acid sequence able to specify nuclear locatio. Cell 1984; 39: 499
  • Simpson R. T. Modulation of nucleosome structure by histone subtypes in sea urchin embryo. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 6803
  • Simpson R. T., Bergman L. W. Structure of sea urchin sperm chromatin core particl. J. Biol. Chem. 1980; 255: 10702
  • Blankstein L. A., Levy S. B. Changes in histone f2a2 associated with proliferation of Friend leukemic cell. Nature (London) 1976; 260: 638
  • Criffith J. D. Visualization of prokaryotic DNA in a regularly condensed chromatin-like fibe. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 563
  • Eickbush T. H., Moudrianakis E. N. The compaction of DNA helices into either continuous supercoils or folded fiber rods and toroid. Cell 1978; 13: 295
  • Rouviere-Yaniv J., Gros F. Characterization of a novel, low molecular weight DNA binding protein from Escherichia col. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3428
  • Rouviere-Yaniv J. Localization of the HU protein on the Escherichia coli nucleoi. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 439
  • Geider K., Hoffman-Berlin H. Proteins controlling the helical structure of DN. Annu. Rev. Biochem. 1981; 50: 233
  • Rouviere-Yaniv J., Yaniv M., Germond J.-E. E. coli DNA binding protein HU forms nucleosome-like structure with circular double stranded DN. Cell. 1979; 17: 265
  • Haselkorn R., Rouviere-Yaniv J. Cyanobacterial DNA-binding protein related to Escherichia coli H. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1917
  • Laine B., Sautiere P., Biserte G., Cohen-Solal M., Gros F., Rouviere-Yaniv J. The amino-and carboxy-terminal amino acid sequences of protein HU from Escherichia col. FEBS Lett. 1978; 89: 116
  • Aitken A., Rouviere-Yaniv J. Amino and carboxy-terminal sequences of the DNA-binding protein HU from the cyanobacterium Synechocystis PCC 6701 (ATCC 27170. Biochem. Biophys. Res. Commun. 1979; 91: 461
  • Laine B., Belaiche D., Khondaka H., Sautiere P. Primary structure of the DNA binding protein HRm from Rhizobium melilot. Eur. J. Biochem. 1983; 131: 325
  • Laine B., Sautiere P., Spassky A., Rimsky S. A DNA binding protein from E. coli; isolation, characterization. and its relationship with proteins H1 and B. Biochem. Biophys. Res. Commun. 1984; 119: 1147
  • Brlat J.-F., Letoffe S., Mache R., Rouviere-Yaniv J. Similarity hetween the bacterial histone-like protein HU and a protein from spinach chloroplast. FEES Lett. 1984; 172: 75
  • Rouvierc-Yaniv J., Kjeldgaard N. O. Native Escherichia coli HU protein is a heterotypic dime. FEBS Lett. 1979; 106: 297
  • Vanhavsky A. J., Nedospasov S. A., Bakayev V. V., Bakayev T. G., Georgiev G. P. Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotei. Nucl. Acids Res. 1977; 4: 2725
  • Lathe R., Buc H., Lecocq J.-P., Bautz E. K. F. Prokaryotic histone-like protein interacting with RNA polymeras. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 3548
  • Jacquet M., Cukier-Kahn K., Pia J., Gros F. A thermostable protein factor acting on in vitro DNA transcriptio. Biochem. Biophys. Res. Commun. 1971; 45: 1597
  • Hubscher U., Lutz H., Kornberg A. Novel histone H2A-like-protein of Escherichia col. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 5097
  • Spassky A., Rimsky S., Garreau H., Buc H. H1a, an E. coli DNA-binding protein which accumulates in stationary phase strongly compacts DNA in vitr. Nucl. Acids Res. 1984; 12: 5321
  • Searcy D. G. Histone-like protein in the prokatyote Thennoplasma acidophilu. Biochim. Biophys. Acta. 1975; 395: 535
  • Searcy D. G., DeLange R. J. Thermoplasma acidophilum histone-like protein: partial amino acid sequence suggestive of homology to eukaryote histone. Biorhim. Biophys. Acta. 1980; 609: 197
  • Searcy D. G., Stein D. B. Nucleoprotein subunit structure in an unusual prokaryotic organism: Thermoplasma acidophilu. Biochim. Biophjs. Acta 1980; 609: 180
  • Stein D. B., Searcy D. C. Physiologically important stabilization of DNA by a prokaryotic histone-like protei. Science 1978; 202: 219
  • DeLange R. J., Smith E. L. Chromosomal protein. The Proteins, H. Neurath, R. L. Hill. Academic Press, New York 1979; Vol. 4: 119
  • DeLaagt R. J., Green G. R., Searcy D. C. A histone-like protein (HTa) from Thermoplasma acidophilum. l. Purification and propertie. J. Biol. Chem. 1981; 256: 900
  • DeLange R. J., Williams L. C., Searcy D. G. A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequenc. J. Biol. Chem. 1981; 256: 905
  • Simpson R. T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histone. Biochemistry 1978; 17: 5524
  • Noll M. Internal structure of the chromatin subuni. Nucl. Acids Res. 1974; 1: 1573
  • Noll M. DNA folding in the nucleosome. J. Mol. Biol. 1977; 116: 49
  • Simpson R. T., Whitlock J. P., Jr. Mapping DNAase I-susceptible sites in nucleosomes labeled at the 5′ end. Cell 1976; 9: 347
  • Simpson R. T., Whitlock J. P., Jr. Chemical evidence that chromatin DNA exists as 160 base pair bcads interspersed with 40 base pair bridge. Nucl. Acids Res. 1976; 3: 117
  • Sollner-Webb B., Melchior W., Jr., Felsenfeld G. DNAase I, DNAase II and staphylococcal nuclease cut at different yet symmetrically located sites in the nucleosome cor. Cell. 1978; 14: 611
  • Sollner-Webb B., Camerini-Otero R. D., Felsenfeld G. Chromatin structure as probed by nu-cleases and proteases: evidence for the central role of histones H3 and H. Cell. 1976; 9: 179
  • Lutter L. C. Precise location of DNAase l cutting sites in the nucleosome core determined by high resolution gel clcctrophorcsi. Nucl. Acids Res. 1979; 6: 41
  • Kelley R. I. Isolation of a histone Ilbl-Ilb2 comple. Biochem. Biophys. Res. Commun. 1973; 54: 1588
  • Roark D. E., Geoghegan T. E., Keller G. H. A two subunit histone complex from calf thymu. Biochem. Biophys. Rcs. Commun. 1974; 59: 542
  • Roark D. E., Geoghegan T. E., Keller G. H., Matter K. V., Engle R. L. Histones interactions in solution and susceptibiltiy to denaturatio. Biochemisrry. 1976; 15: 3019
  • D'Anna J. A., Jr., Isenberg I. A histone cross-complexing patter. Biochemistry 1974; 13: 4992
  • D'Anna J. A., Jr., Isenberg I. A complex of histones IIb2 and I. Biochemistry 1973; 12: 1035
  • D'Anna J. A., Jr., Isenberg I. Interaction of renatured histones f3 and f2a. Biochem. Biophys. Res. Commun. 1974; 61: 343
  • Spiker S., Knberg I. Cross-complexing pattern of plant histone. Biochemistry 1977; 16: 1819
  • Glover C. V. C., Gorovsky M. A. Histone-histone interactions in a lower eukaryote Tetrahymena thermophil. Biochemistry 1978; 17: 5705
  • Kornberg R. D., Thomas J. O. Chromatin structure: oligomers of the histone. Science 1974; 184: 865
  • Kornberg R. D. Chromatin structure: a repeating unit of histones and DN. Science 1974; 184: 868
  • Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solutio. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 2626
  • Thomas J. O., Kornberg R. D. Cleavable cross-links in the analysis of histonehistone association. FEBS Lett. 1976; 58: 353
  • Thorn J. O., Butler P. J. G. Characterization of the Octamer of histones free in solutio. J. Mol. Biol. 1977; 116: 769
  • Weintraub H., Paiter K., Van Lente F. Histones H2a. H2b. H3, and H4 form a tetrameric complex in solutions of high sal. Cell. 1975; 6: 85
  • Campbell A. M., Colter R. I. The molecular weight of nucleosome protein by laser light scatterin. FEBS Lett. 1976; 70: 209
  • Wooley J. C., Pardon J. F., Richards B. M., Worchesler D. L., Campbell A. M. Characterization of core proteins: a histone complex isolated from chromati. Fed. Proc. Fed. Am. Sor. Exp. Biol. 1977; 36: 810
  • Chung S. Y., Hill W. E., Doly P. Characterization of the histone core comple. Proc. Natl. Arod. Sci. U.S.A. 1978; 75: 1680
  • Philip M., Jamaluddin M., Sastry R. V. R., Chandra S. Nucleosome core histone complex isolated gently and rapidly in 2M NaCl is Octameri. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5178
  • Eickbush T. H., Moudrianakis E. N. The histone core complex: an Octamer assembled by two sets of protein-protein interaction. Biochemistry 1978; 17: 4955
  • Hatch C. L., Bonner W. M., Moudrianakis E. N. Minor histone 2A variants and ubiquitinated forms in the native HZA:H2B dime. Science 1983; 221: 468
  • Moss T., Cary P. D., Aberchrombie B. D., Crane-Robinson C., Bradbury E. M. A pH-dependent interaction between histones H2A and H2B involving secondary and tertiary foldin. Eur. J. Biochem. 1976; 71: 337
  • Bohm L., Hayashi H., Cary P. D., Moss T., Crane-Robinson C., Bradbury E. M. Sites of histone/histone interaction in the H3-H4 comple. Eur. J. Biochem. 1977; 77: 487
  • Godfrey J. E., Eickbush T. H., Moudrianakis E. N. Reversible association of calf thymus histones to form the symmetrical Octamer (H2A H2B H3 H4),: a case of a mixed-associating syste. Biochemistry 1980; 19: 1339
  • Whitlock J. P., Jr., Simpn R. T. The localization of the sites along nucleosomal DNA which interact with NH2--terminal histone region. J. Biol. Chem. 1977; 252: 6516
  • Whitlock J. P., Jr., Stein A. Folding of DNA by histones which lack their NH2--terminal region. J. Biol. Chem. 1978; 253: 3857
  • Böhm L., Crane-Robinson C., Sautiere P. Proteolytic digestion studies of chromatin core-histone structure: identification of a limit peptide of histone H2. Eur. J. Biochem. 1980; 106: 525
  • B&oUhm L., Briand G., Sautiere P., Crane-Robinson C. hoteolytic digestion studies of chromatin core-histone structure: identification of the limit peptides of histones H3 and H. Eur. J. Biochem. 1981; 119: 67
  • Böhm L., Briand G., Sautiere P., Crane-Robinson C. Proteolytic digestion studies of chromatin core-histone struclure: identification of the limit peptides from histone H2. Eur. J. Biochem. 1982; 123: 299
  • Wu R. S., Kohn K. W., Bonner W. M. Metabolism of ubiquitinated histone. J. Biol. Chem. 1981; 256: 5916
  • Goldknopf I. L., Busch H. lsopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A2. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 864
  • Hatch C. L., Bonner W. M., Moudrianakis E. N. Differential accessibility of the amino and carboxy termini of histone H2A in the nucleosome and its histone subunit. Biochemistry 1983; 22: 3016
  • Eickbush T. H., Moudrianakis E. H. 1983, personal communications
  • Azorin F., Martinez A. B., Subirana J. A. Organization of nucleosomes and spacer DNA in chromatin fiber. Int. J. Biol. Macromol. 1980; 2: 81
  • McGhee J. D., Nickol J. M., Felsenfeld G., Rau D. C. Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer lengt. Cell. 1983; 33: 831
  • Allen J., Harborne N., Rau D. C., Gould H. Participation of core histone tails in the stabilization of the chromatin solenoi. J. Cell. Biol. 1982; 93: 285
  • Certa U., Colavito-Shepanski M., Grunstein M. Yeast may not contain histone H1: the only known “histone H1-like” protein in Saccharomyces cerevisiac. is a mitochondria1 protei. Nucl. Acids Res. 1984; 12: 7975
  • Sum P., Kneale G. C., Braddock G. W., Baldwin J. P., Bradbury E. M. A low resolution model for the chromatin core particle by neutron scatterin. Nucl. Acids Res. 1977; 4: 3769
  • Braddock G. W., Baldwin J. P., Bradbury E. M. Neutron scattering studies of the structure of chromatin core panicles in solutio. Biopolymers. 1981; 20: 327
  • Bent ley G. A., Finch J. T., Lewit-Bentley A. Neutron diffraction studies on crystals of nucleosome cores using contrast variatio. J. Mol. Biol. 1981; 145: 771
  • Cory P. D., Moss T., Bradbury E. M. High-resolution proton magnetic resonance studies of Chromatin core particle. Eur. J. Biochem. 1978; 89: 475
  • Palter K., Alberts B. The use of DNA cellulose for analyzing histone DNA interaction. J. Biol. Chem. 1979; 254: I1160
  • Richmond T. J., Finch J. T., Rushton B., Rhades D., Klug A. Structure of the nucleosome core particle of 7A resolutio. Nature (London) 1984; 311: 532
  • Mirzabekov A. D., Shick V. V., Belyavsky A. V., Bavykin S. G. Primary organization of nucleosome core particle of chromatin: sequence of histone arrangement along DN. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 4184
  • Shick V. V., Belyavsky A. C., Bavykin S. G., Mirzabekov A. D. Primary organization of the nucleosome core particles: sequential arrangement of histones along DN. J. Mol. Biol. 1980; 139: 491
  • Burlingame R. W., Love W. E., Moudrianakis E. N. Crystals of the octameric histone core of the nucleosom. Science 1984; 223: 413
  • Burlingame R. W., Love W. E., Wang B X., Hamlin R., Xuong N.-H., Moudrianakis E. N. Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 Å. Science 1985; 228: 546
  • Camerini-Otero R. D., Sollner-Webb B., Felsenfeld G. The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kerna. Cell. 1976; 8: 333
  • Simon R. H., Camerini-Otero R. D., Felsenfeld G. An Octamer of histones H3 and H4 forms a compact complex with DNA of nucleosome siz. Nucl. Acids Res. 1978; 5: 4805
  • Stockley P. G., Thomas J. O. A nucleosome-like panicle containing an octamer of the arginine-rich histones H3 and H. FEBS Lett. 1979; 99: 129
  • Stein A. DNA folding by histones: kinetics of Chromatin core particle reassembly and the interaction of nucleosomes with histone. J. Mol. Biol. 1979; 130: 103
  • Daban J.-R., Cantor C. R. Role of histone pairs H2A. H2B. and H3. H4 in the self-assembly of nucleosome core particle. J. Mol. Biol. 1982; 156: 771
  • Stein A., Whitlock J. P., Jr., Bina M. Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strengt. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5000
  • Laskey R. A., Mills A. D., Morris N. R. Assembly of SV40 chromatin: a cell-free system from Xenopus egg. Cell. 1977; 10: 237
  • Laskey R. A., Honda B. M., Mills A. D., Morris N. R., Whyllie A. H., Mertz J. E., DeRobertis E. M., Gurdon J. B. Chromatin assembly and transcription in eggs and mytes of X. laevi. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 171
  • Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes arc assembled by an acidic protein which binds histones and transfers them to DN. Nature (London) 1978; 275: 416
  • Laskey R. A., Earnshaw W. C. Nucleosome assembl. Nature (London) 1980; 286: 763
  • Krohne G., Franke W. Immunological identification and localization of the predominant nuclear protein of the amphibian oocyte nucleu. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1034
  • Kleinschmidt J. A., Fortkamp E., Krohne G., Zentgraf H., Franke W. Co-existence of two different types of soluble histone complexes in nuclei of Xenopus laevis oocyte. J. Biol. Chem. 1985; 260: 1166
  • Nelson T., Wiegand R., Brutlag D. Ribonucleic acid and other plyanions facilitate chromatin assembly in vitr. Biochemistry 1981; 20: 2594
  • Ruiz-Carrillo A., Jorcano J. L., Eder G., Lun R. In vitro core particle and nucleosome assembly at physiological ionic strengt. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 3284
  • Bonne-Andrea C., Harper G., Sobezak J., DeRecondo A. M. Rat liver HMG-I: a physiological nucleosome assembly facto. EMBO J. 1984; 3: 1193
  • Matthews H. R., Huebner V. D. Nuclear protein kinase. Mol. Cell. Biochem. 1984; 59: 81
  • Methods in Enzymology. Posttranslational Modifications. Part A, F. Wold, K. Moldave. Academic Press, Orlando, Fla 1984; Vol. 106
  • Bohm L., Crane-Robinson C. Proteases as structural probes for chromatin — the domain structure of histones. Revie. Biosci. Rep. 1984; 4: 365
  • Methods in Enzymology. Posttranslational Modifications, Part B, F. Wold, K. Moldave. Academic Press, Orlando, Fla 1984; Vol. 107
  • Annunziato A. T., Seale R. L. Chromatin replication. reconstitution and assembl. Mol. Cell. Biochem. 1983; 55: 99
  • Darzynkiewicz Z. Molecular interactions and cellular changes during the cell cycl. Pharmacol. Ther. 1983; 21: 143
  • Hohmann P. Phosphorylation of H 1 histone. Mol. Biochem. 1983; 57: 81
  • Posttranslational Covalent Modifications of Proteins, B. C. Johnson. Academic Press, Orlando, Fla 1983
  • Saxholm H. J. K., Pestana A., O'Connor L., Sattler C. A., Pitot H. C. Protein acetylatio. Mol. Cell. Biochem. 1982; 46: 129
  • Weisbrod S. Active chromati. Nature (London) 1982; 297: 289
  • Wielckens K., Bredehorst R., Adamietz P., Hilz H. Mono ADP-ribosylation and poly ADP-ribosylation of proteins in normal and malignant tissue. Advances in Enzyme Regulation, G. Weber. Pergamon Press, Oxford 1982; Vol. 20: 23
  • ADP-Ribosylation Reactions, O. Hayaishi, K. Ueda. Academic Press, New York 1982
  • Sperling R., Wachtel E. J. The histone. Advances in Protein Chemistry, C. B. Anfinsen, J. T. Edsall, F. M. Richards. Academic Press, New York 1981; Vol. 34: 1
  • Ciechanover A., Finley D., Varshavsky A. V. The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradatio. J. Cell. Biochem. 1984; 24: 27
  • Cohn W. E. Nomenclature and symbolism of α-amino acid. Merhods in Enzymology, Posttranslational Modifications. Part A, F. Wold, K. Moldave. Academic Press, Orlando, Fla 1984; Vol. 106: 3
  • Wold F. In vivo chemical modification of proteins (posttranslational modification. Annu. Rev. Biochem. 1981; 50: 783
  • Nomoto M., Kyogoku Y., Iwai K. N-trimethylalanine. a novel blocked amino terminal residue of Tetrahymena pyriformus histone H2. J. Biochem. 1982; 92: 1675
  • Hempel V. K., Lange H. W., Birkhofer L. -N-Trimethyllysin eine new Aminosaure in Histone. Naturwissenschaften 1968; 55: 37
  • Hempel K., Lange H. W., Birkhofer L. N. -Methylierte Lysine in Histonen aus Hühner Erythrocyte. Hoppe-Seyler's 2. Physiol. Chem. 1968; 349: 603
  • Shepherd G. R., Hardin J. M., Noland B. J. Methylation of lysinc residues of histone fractions in synchronized mammalian cell. Arch. Biochem. Biophys. 1971; 143: 1
  • Borun T. W., Pearson D., Paik W. K. Studies on histone methylation during the HeLa cell cyc. J. Biol. Chem. 1972; 247: 4288
  • Marsh W. H., Fitzgerald P. J. Pancreas acinar cell regeneration XIII. Histone synthesis and modificatio. Fed. Proc. Fed. Am. Soc. Erp. Biol. 1973; 32: 2119
  • Paik W. K., Kim S. &oM-N-methylarginine in histone. Biochem. Biophys. Res. Commun. 1970; 40: 224
  • GupIa A., Jensen D., Kim S., Paik W. K. Histone-specific protein arginine methyltransferase from wheat ger. 1. Biol. Chem. 1982; 257: 9677
  • Paik W. K. A simple analysis of methylated protein. Methods of Enzymology. Posttranslational Modifications, Part A, F. Wold, K Moldave. Academic Press, Orlando, Ha 1984; Vol. 106: 265
  • Tuck M., Paik W. K. S-adenosylmethionine: protein (arginine) N-methyltransferase (protein meth-ylase I) (wheat germ. Methods in Enzymology, Posttranslational Modifications. Part A, F. Wold, K. Moldave. Academic Press, Orlando, na 1984; Vol. 106: 268
  • DeLange R. J., Hooper J. A., Smith E. L. Complete amino acid sequence of calf thymus histone II. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 882
  • Brandt W. F., Von Holt C. The complete amino acid sequence histone F3 from chicken erythrocyte. FEBS Lett. 1972; 23: 357
  • Brandt W. F., Strickland W. N., Morgan M., Von Holt C. Comparison of the N-terminal amino acid sequences of histone F3 from a mammal, a bird, a shark, an echinoderm. a mollusc, and a plan. FEBS Lett. 1974; 40: 167
  • Honda B. M., Dixon H. G., Candido E. P. M. Sites of in vivo histone methylation in developing trout testi. J. Biol. Chem. 1975; 250: 8681
  • DeLange R. J., Fambrough D. M., Smith E. Z., Bonner J. Calf and pea histone IV. II. The comlplete amino acid sequence of calf thymus histone IV. Presence of N-acetyllysin. J. Biol. Chem. 1969; 244: 319
  • Trivedi L., Gupta A., Paik W. K., Kim S. Purification and propenies of protein methylase II from wheat ger. Eur. J. Biochem. 1982; 128: 349
  • Kim S. S-adenosylmethionine: protein-carboxyl O-methyltransferase (protein methylase II. Methods in Enzymology. Posttranslational Modifications. Part A, F. Wold, K. Moldave. Academic Press, Orlando, Fla 1984; Vol. 106: 295
  • Phillips D. M. P. The presence of acetyl groups in histone. Biochem. J. 1963; 87: 258
  • Allfrey V. G., Sterner R., Sun I. Y. C. Affinity probes for protein acetylation and phosphorylatio. Postranslational Covalent Modifications of Proteins, B. C. Johnson. Academic Press, New York 1983; 181
  • Fusauchl Y., Iwai K. Tetrahymena histone H2A. Acetylation in the N-terminal sequence and phosphorylation in the C-terminal sequenc. J. Biochem. 1984; 95: 147
  • Waterborg J. H., Matthews H. R. Acetylation and methylation sites in histone H4 from Physarum polycephalu. Eur. J. Biochem. 1983; 136: 245
  • Sung M. T., Dixon C. H. Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone-binding to DN. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 1616
  • Romhányi T., Seprödl J., Mézáros G., Antoni F., Farago A. The intrinsic substrate specificity of a cyclic nucleotide-independent protein (histone) kinas. FEES Lprr. 1982; 144: 223
  • Shoemaker C. B., Chalkley R. An H3 histone-specific kinase isolated from bovine thymus chromati. J. Biol. Chem. 1978; 253: 5802
  • Shoemaker C. B., Chalkley R. H3-specific nucleohistone kinase of bovine thymus chromati. J. Biol. Chem. 1980; 255: 11048
  • Whitlock J. P., Jr., Goleazzi D., Schulman H. Acetylation and calcium-dependent phosphorylation of histone H3 in nuclei from butyratc-treated HeLa cell. 1. Bid. Chem. 1983; 258: 1299
  • Laugh J. Spermine-induced phosphorylation of myotube histones by endogenous nuclear protein kinase. Exp. Cell. Res. 1984; 150: 23
  • Masaracchia R. A., Kemp B. E., Walsh D. A. Histone H4 phosphotransferase activities of proliferating lymphocyte. J. Biol. Chem. 1977; 252: 7109
  • Fujitakl J. M., Fung G., Oh E. Y., Smith R. A. Characterization of chemical and enzymatic acid-labile phosphorylation of histone H4 using phosphorus-31 nuclear magnetic resonanc. Biochemistry 1981; 20: 3658
  • Chen C. C., Smith D. L., Bruegger B. B., Haipern R. M., Smith R. A. Occurrence and distribution of acid-labile histone phosphates in regenerating rat live. Biochemistry 1974; 13: 3785
  • Burzio L. O., Riquelme P. T., Koide S. S. ADP-ribosylation of rat liver nucleosomal core histone. J. Biol. Chem. 1979; 254: 3029
  • Bunlo L. O. ADP-ribosyl protein linkage. ADP-Ribosylation Reactions in Biology and Medicine, O. Hayaishi, K. Ueda. Academic Press, New York 1982; 103
  • Adamietz P., Rudolph A. ADP-ribosylation of nuclear proteins in vivo. identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cell. J. Biol. Chem. 1984; 259: 6841
  • Riquelme P. T., Bunlo L. O., Koide S. S. ADP ribosylation of mt liver lysine-rich histone in viv. J. Biol. Chem. 1979; 254: 3018
  • Ogata N., Ueda K., Kagamiyama H., Hayaishl O. ADP-ribosylation of histone H1. Identification of glutamine acid residues 2. 14, and the COOH-terminal lysine residue as modification site. J. Biol. Chem. 1980; 255: 7616
  • West H. P., Bonner W. M. Histone 28 can be modified by the attachment of ubiquiti. Nucl. Acids Res. 1980; 8: 4671
  • Murray K. The Occurrence of N-methyl lysinc in histone. Biochemistry 1964; 3: 10
  • Paik W. K., Kim S. N-dimethylysine in histone. Biochem. Biophys. Res. Commun. 1967; 27: 479
  • Polk W. K., Dimaria P. Enzymatic methylation and demethylation of protein-bound lysine residue. Methods in Enzymology, Posttranslational Modifications. Part A, F. Wold, K. Moldave. Academic Ress, Orlando, Ra 1984; Vol. 106: 274
  • Paik W. K., Kim S. Protein methylase I. Purification and properties of the enyzm. J. Biol. Chem. 1968; 243: 2108
  • Lee H. W., Kim S., Paik W. K. S-adenosylmethioninc: protein-arginine methyltransferase. Purification and mechanism of the enzym. Biochemistry 1977; 16: 78
  • Gershey E. L., Haslett C. W., Vidall G., Allfrey V. G. Chemical studies of histone methylatio. J. Biol. Chem. 1969; 244: 4871
  • Turberville C., Craddock V. M. Methylation of nuclear proteins with dimethylnitrosamine and by methionine in the rat in viv. Biochem. J. 1971; 124: 725
  • Cooper H. K., Itzhaki R. F. Studies on liver chromatin from rats treated with dimethylnitrosamin. Biochim. Biophys. Acta. 1975; 407: 263
  • Marushige K., Marushige Y. Alkylation of isolated chromatin with N-methyl-N-nitrosourea and N-ethyl-N-nitrosoure. Chem. Biol. Interact. 1983; 46: 165
  • Lebhen H. G., Bales O. J., Bradshaw R. A. Cellular fructose P2 aldolase has a derivatized (blocked) NH2--terminu. J. Biol. Chem. 1984; 259: 1132
  • Wold F. Acetylated N-terminals in proteins —a perennial enigm. Trends Biochem. Sci. 1984; 9: 256
  • Allfrey V. G., Faulkner R., Mirsky A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesi. Proc. Natl. Acad. Sri. U.S.A. 1964; 51: 786
  • Kelner D. N., McCarthy K. S. Porcine liver nuclear histone acetyltransferase. Partial purification and basic propertie. J. Biol. Chem. 1984; 259: 3413
  • Yikioka M., Sasaki S., Le Qi S., Inoue A. Two species of histone acetyltransferase in rat liver nucle. J. Eiol. Chem. 1984; 259: 8372
  • Duncan M. R., Robinson M. J., Dell'Orco R. T. Histone acetylation and deacetylation in senescent human diploid fibroblast. Mechanisms Ageing Dev. 1984; 27: 173
  • Hay C. W., Candido E. M. Histone deacetylase from HeLa cells. Properties of the high molecular weight comple. Biochemistry 1983; 22: 6175
  • Boffa L. C., Vidali G., Mann R. S., Allfrey V. C. Suppression of histone acetylation in vivo and in vitro by sodium butyrat. J. Biol. Chem 1978; 253: 3364
  • Ord M. G., Stocken L. A. Metabolic properties of histones from rat liver and thymus glan. Biochem. J. 1966; 98: 888
  • Kleinsmith L. J., Allfrey V. C., Mirsky A. E. Phosphoprotein metabolism in isolated lymphocyte nucle. Proc. Natl. Acad. Sci. U.S.A. 1966; 55: 1182
  • Smith D. L., Chen C. C., Bruegger B. B., Holtz S. L., Halpern R. M., Smith R. A. Characterization of protein kinases forming acid lahile histone phosphates in Walker 256 carcinoma cell nucle. Biochemistry 1974; 13: 3780
  • Quirin-Stricker C. Histone H1 kinase from mouse plasmocytoma. Further characterization and molecular structur. Eur. J. Biochem. 1984; 142: 317
  • Lake R. S., Salzman N. P. Occurrence and properties of a chromatin-associated F1-histone phos-phokinase in mitotic Chinese hamster cell. Biochemistry 1972; 11: 4817
  • Biswas R., MaJumder G. C. Characteristics of a nuclear protein kinase from rat epididymi. J. Biosci. 1984; 6: 69
  • Halleck M. S., Gurley R. Histone H2A subfractions and their phosphorylation in cultured Peromyscus cell. Exp. Cell. Res. 1980; 125: 377
  • Sterner R., Allfrey V. G. Selective isolation of polypeptide chains bearing multiple types of postsynthetic modifications: recovery of simultaneously acetylated and phosphorylated forms of histone H2A and high mobility group proteins 14 and 1. J. Biol. Chem. 1983; 258: 12135
  • Le Vine H., III, Sahyoun N., McConnell R., Bronson D., Cuatrecasas P. Specificity of a phosphatase for phospholipid. Ca2-−dependent protein kinase— phosphorylated histone H1 resides in the catalytic subuni. Biochem. Biophys. Res. Commun. 1984; 118: 278
  • Nahas N., Juhl H., Esmann V. Chromatographic characteristics and subcellular localization of synthase phosphatase. phosphorylase phosphatase and histone phosphatase in human polymorphonuclear leukocyte. Mol. Cell. Biochem. 1984; 58: 147
  • Fambrough D. M., Bonner J. Sequence homology and role of cysteine in plant and animal arginine-rich histone. J. Biol. Chem. 1968; 243: 4434
  • Sadgopal A., Bonner J. Chromosomal proteins of interphase HeLa cell. Biochim. Biophys. Acta. 1970; 207: 206
  • Sadgopal A., Bonner J. Proteins of interphase and metaphase chromosomes compare. Biochim. Biophsy. Acta 1970; 207: 227
  • Panyim S., Sommer K. R., Chalkley R. Oxidation of the cysteine-containing histone F3. Detection of an evolutionary mutation in a conservative histon. Biochemistry 1971; 10: 3911
  • Creighton T. E. Disulfide bond formation in protein. Methods in Enzymology. Posttranslational Modifications. Part B, F. Wold, K. Moldave. Academic Press, Orlando, Ra 1984; Vol. 107: 305
  • Ausio J., Seger D., Eisenberg H. Nucleosome core particle stability and conformational change. Effect of temperature, particle and NaCl concentrations, and crosslinking of histone H3 sulfhydryl group. J. Mol. Eiol. 1984; 176: 77
  • Gould H. J., Cowling G. J., Harborne N. R., Allan J. An examination of models of chromatin transcriptio. Nucl. Acids Res. 1980; 8: 5255
  • Lewis P. N., Chiu S. Effect of histone H3 sulfhydryl modifications on histone-histone interactions and nucleosome formation and structur. Eur. J. Biochem. 1980; 109: 369
  • Prior C. P., Cantor C. R., Johnson E. M., Allfrey V. G. Incorporation of exogenous pyrcne-labelled histone into Physarum chromatin: a system studying changes in nucleosomes assembled in viv. Cell 1980; 20: 597
  • Dietrick A. E., Axel R., Cantor C. R. Dynamics of nucleosome structures by fluorescenc. Cold Spring Horbor Symp. Quant. Biol. 1978; 42: 199
  • Oda C., Kaplan H. Reactivity of individual functional groups of histones in calf thymus chromati. Biochim. Biophys. Acta 1980; 625: 72
  • Mooney D., Thompson L., Simpkins H. The in situ labelling of histone H3 in chromatin by a fluorescent prob. Biochim. Biophys. Acta 1980; 625: 51
  • Prior C. P., Cantor C. R., Johnson E. M., Littau V. C., Allfrey V. G. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromati. Cell 1983; 34: 1033
  • Palau J., Dabán J. R. Kinetic studies of the reaction of thiol groups of calf-thymus histone F3 with 5–5′dithiobis (2-nitrobcnzoic acid. Eur. J. Biochem. 1974; 49: 151
  • Moore E. C. A thioredoxin-thioredoxin reductase system from rat tumo. Biochem. Biophys. Res. Com-mun. 1967; 29: 264
  • Holmgress A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reductio. J. Biol. Chem. 1977; 252: 4600
  • Tietze F. Disulfide reduction in rat liver. I. Evidence for the presence of nonspccific nucleotide-dependent disulfide nductase and GSH-disulfide transhydrogenase activities in the high-speed supernatant fractio. Arch. Biochem. Biophys. 1970; 138: 177
  • Hatch M. D., Turner J. E. A protein disulphide reductase from pea seed. Biochem. J. 1960; 76: 556
  • Nishizuka Y., Ueda K., Honjo T., Hayaishi O. Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in ra. J. Biol. Chem. 1968; 243: 3765
  • Ueda K., Ehang J., Hayalshi O. Poly (ADP-ribose) synthetas. Methods in Enzymology, Posttanslational Modifcations, Part A, F. Wold, K. Moldave. Academic Press, Orlando, Fla 1984; Vol. 106: 500
  • Stone P. R., Lorimer W. S., Kidwell W. R. Properties of the complex between histone H1 and ply (ADP-ribose) synthesized in HeLa cell nucle. Eur. J. Biochem. 1977; 81: 9
  • Wong M., Allan J., Smulson M. The mechanism of histone H1 cross-linking by poly (ADP-ribosylation). Reconstitution with peptide domain. J. Biol. Chem. 1984; 259: 7963
  • Adamletz P., Hilz H. Poly (adenosine diphosphate ribose) is covalently linked to nuclear proteins by two types of bond. Hoppe Seyler's Z. Physiol. Chem. 1976; 357: 527
  • Kameshita I., Matsuda Z., Taniguchi T., Shlzuta Y. Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA-binding domain, and the auto-modification domai. J. Biol. Chem. 1984; 259: 4770
  • Adamletz P., Bredchorst R., Hilz H. ADP-ribosylated histone H 1 from HeLa cultures. Fundamental differences to (ADP-ribose).-histone H 1 conJugates formed in vi. Eur. J. Biochem. 1978; 91: 317
  • Adamletz P., Hilz H. Covalent linkage of poly (adenosine diphosphate ribose) to nuclear proteins of rat liver by two types of bond. Biochem. Soc. Trons. 1975; 3: 1118
  • Ueda K., Hayaishil O. Evidence for poly (ADP-ribosyl) derivatives of carboxylates in histon. Methods of Enzymology. Posttronslationl Modifications, Part A, F. Wold, K. Moldave. Academic Press, Orlando, Ha 1984; Vol. 106: 450
  • Shimoyama M., Tanigawa A., Kitamura A., Kawakami K., Nomura H. Mono (ADP-rib sy1ation reaction in chicken liver nuclei, in 12th Int. Cong. Biochemistry, PerchAustralia 1982; 180, Abstr.
  • Yan S.-C. B. An unexpected twist in the reversal of ADP-ribosylatio. Trends Biochem. Sci. 1984; 9: 331
  • Ueda K., Okr J., Narumiya S., Miyakawa N., Hayaishi O. Poly ADP-ribose glycohydrolase from rat liver nuclei. A novel enzyme degrading the polyme. Biochem. Biophys. Res. Commun. 1972; 46: 516
  • Miwa M., Tanaka M., Matsushima T., Sugimura T. Purification and properties of a glycohydrolase from thymus splitting ribose-ribose linkages of poly (adenosine diphosphate ribose. J. Biol. Chem. 1974; 249: 3475
  • Oh J., Ueda K., Hayaishi O., Komura H., Nakanishi K. ADP-ribosyl protein lyase. Purification, properties. and identification of the produc. J. Biol. Chem. 1984; 259: 986
  • Futal M., Mizuno D., Sugimura T. Mode of action of rat liver phosphodiesterase on a polymer of phosphoribosyl adenosine monophosphate and related compound. J. Biol. Chem. 1968; 243: 6325
  • Hershko A., Leshinsky E., Ganoth D., Heller H. ATP-dependent degradation of ubiquitin-protein conjugate. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 1619
  • Kanda F., Matsui S. I., Sykes D. E., Sandberg A. A. Affinity of chromatin constituents for isopeptidas. Biochem. Biophys. Res. Commun. 1984; 122: 1296
  • Kanda F., Sykes D. E., Matsui S., Sandberg A. A. lsopeptidase has strict specificity for the chromatin protein A24 (uH2A). a conJugate of histone and ubiquiti. J. Cell Biol. 1984; 99: 135a
  • Finley D., Ciechanover A., Varshavsky A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant-ts8. Cell. 1984; 37: 43
  • Allis C. D., Bowen J. K., Abraham G. N., Glover C. V. C., Gorovsky M. A. Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena nucle. Cell 1980; 20: 55
  • Allis C. D., Wiggins J. C. Proteolytic processing of micronuclear H3 and histone phosphorylation during conJugation in Tetrahymena thermophil. Exp. Cell Res. 1984; 153: 287
  • Dyson M., Walker J. M. Chromatin associated protease from calf thymu. Int. J. Pept. Protein Res. 1984; 24: 201
  • Shalitin C., Vishlizky A. Spermidine inhibits degradation of yeast chromati. Biochim. Biophys. Acta. 1984; 782: 328
  • Dingwall C., Allan J. Accumulation of the isolated carboxy-terminal domain of histone H1 in the Xenopus oocyte nucleu. EMBO J. 1984; 3: 1933
  • Krueger R. C. The inhibition of a chromatin-bound proteolytic activit. Arch. Biochem. Biophys. 1982; 218: 619
  • Kim Y. J., Chae C. B. A protease is bound to rat liver nucleosome. Biochim. Biophys. Acta. 1983; 755: 151
  • Surowy C. S., Berger N. A. Proteolysis of histone H1 and poly (ADP-ribose) polymeras. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1983; 42: 1957, (Abstr. 1170)
  • Eickbush T. H., Watson D. K., Moudrianakis E. N. A chromatin bound proteolytic activity with unique specificity for histone H2. Cell. 1976; 9: 785
  • Kreimeyer A., Wielckens K., Adamietz P., Hilz H. DNA repair associated ADP ribosylation in vivo. Modification of histone H 1 differs from that of the principal acceptor protein. J. Biol. Chem 1984; 259: 890
  • Horiuchi K., FuJimoto D., Uto N. Histone acetylation and deacetylation of nuclei from sea urchin Hemicentrotus pulcherrimus embryos during early stages of developmen. J. Exp. Zool. 1984; 231: 75
  • Laugh J. Declining phosphorylation of histones H2A. H3 and H4 during myogenesis revealed by in vitro and in vivo labellin. J. Cell Biol. 1982; 95: 371a
  • Giancotti V., Russo E., De Cristini F., Graziosi G., Micali F., Crane-Robinson C. Histone modification in early and late Drosophila embryo. Biochem. J. 1984; 218: 321
  • Leiler J. M. E., Heliiger W., Puschendorf B. Increase in histone acetylation and transitions in histone variants during Friend cell differentiatio. Exp. Cell Res. 1984; 155: 222
  • McCue P. A., Gubler M. L., Sherman M. I., Cohen B. N. Sodium butyrate induces histone hyperacetylation and differentiation of murine embryonal carcinoma cell. J. Cell Biol. 1984; 98: 602
  • Nakaya K., Nakamura Y. Changes in histone H1 phosphorylation during differentiation of mouse myeloid leukemia cell. Chem. Pharm. Bull. 1984; 32: 2353
  • Allis C. D., Allen R. L., Wiggins J. C., Chincoine L., Richman R. Proteolytic processing of H1-like histone in chromatin: a physiological and developmentally regulated event in Tetrahymena nucle. J. Cell Biol. 1984; 99: 1669
  • Christensen M. E., Ratner J. B., Dixon H. G. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trou. Nucl. Acids Res. 1984; 12: 4575
  • Grimes S. R., Jr., Henderson H. Hyperacetylation of histone H4 in rat testis spermatid. Exp. Cell Res. 1984; 152: 91
  • Grimes S. R., Jr., Henderson N. Acetylation of rat testis histones H2B and TH2. Dev. Biol. 1984; 101: 516
  • Bode J. Nucleosomal conformations induced by the small HMG proteins Physarum polyephalum. H2A and H2B acetylation is functionally distinct from H3 and H4 acetylatio. Eur. J. Biochem. 1984; 142: 329
  • Malik N., Smuison M., Bustin M. Environment of acetylated histones in polynucleosomes containing high mobility group protein 17 revealed by immuno-affinity chromatograph. J. Biol. Chem. 1984; 259: 699
  • Bertrand E., Erard M., Gomez-Lira M., Bode J. Influence of histone acetylation on nucleosomal panicles as visualized by electron microscop. Arch. Biochem. Biophys. 1984; 229: 395
  • Kaplan L. J., Bauer R., Morrison E., Langan T. A., Fasman G. D. The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studie. J. Biol. Chem. 1984; 259: 8777
  • Malik N., Smulson M. A relationship between nuclear poly (adenosine diphosphate ribosylation) and acetylation posttranslational modifications. I. Nucleosome studie. Biochemistry 1984; 23: 3721
  • Wong M., Smulson M. A relationship between nuclear poly (adenohine diphosphate ribosylation) and acetylation posttranslational modifications. I. Histone studies, Biochemistry 1984; 23: 3726
  • Okayama H., Hayaishi O. ADP-ribosylation of nuclear protein A2. Biochem. Biophys. Res. Commun. 1978; 84: 755
  • Waterborg J. H., Matthews H. R. Patterns of histone acetylation in Physarum polycephalum. H2A and H2B acetylation is functionally distinct from H3 and H4 acetylatio. Eur. J. Biochem. 1984; 142: 329
  • Loidl P., Loidl A. Puschendorf, B., and Grobner, P., RNA polymerase activity and templale activity of chromatin after butyrate induced hyperacetylation of histone in Physaru. Nucl. Acids Res. 1984; 12: 5405
  • Ruiz-Carrillo A., Wangh L. J., Allfrey V. C. Processing of newly synthesized histone molecules. Nascent histone H4 chains are reversibly phosphorylated and acetylate. Seience 1975; 190: 117
  • Wu R. S., Perry L. J., Bonner W. M. Fate of newly synthesized histones in G1 and G0 cell. FEBS Lett. 1983; 162: 161
  • Gurley L. R., Waiters R. A., Tobey R. A. Cell-cycle specific changes in histone phosphorylation associated with cell proliferation and chromosome condensatio. J. CeN Biol. 1974; 60: 356
  • Chambers S. A. M., Shaw B. R. Levels of histone H4 diacetylation decrease dramatically during sea urchin embryonic development and correlate with cell doubling rat. J. Biol. Chem. 1984; 259: 13458
  • Rubenstein P. A., Martin D. J. NH2--terminal processing of actin in mouse L-cells in viv. J. Biol. Chem. 1983; 258: 3961
  • Bradbury E. M., Inglis R. J., Matlhews H. R., Sarner N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensatio. Eur. J. Biochem. 1973; 33: 131
  • Matsui S. I., Seon B. K., Sandberg A. A. Disappearance of a structural chromatin protein A24 in mitosis: implications for molecular basis of chromatin condensatio. Pror. Natl. Acad. Sci. U.S.A. 1979; 76: 6386
  • Tanuma S., Kanai Y. Poly(ADP-ribosyl)ation of chromosomal proteins in the HeLa S3 cell cycl. J. Biol. Chem. 1982; 257: 6565
  • Matsumoto Y., Yasuda H., Marunouchi T., Yamada M. Decrease in uH2A (protein A24) of a mouse temperaturesensitive mutan. FEBS Lett. 1983; 151: 139
  • Kidwell W. R., Mage M. C. Changes in poly(adenosine diphosphate-ribose) and ply (adenosine diphosphate-ribose)polymerase in synchronous HeLa cell. Biochemistry 1976; 15: I213
  • Howard A., Pelc S. R. Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakag. Heredity Suppl. 1953; 6: 261
  • Mitchison J. M. The Biology of the Cell Cvcle. Cambridge University Press, New York 1971
  • Sierra F., Lichtler A., Marashi F., Rickles R., Van Dyke T., Clark S., Wells J., Stein G., Stein J. Organization of human histone gene. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 1795
  • Fahrner K., Yarger J., Hereford L. Yeast histone mRNA is polyadenyfate. Nucl. Acids Res. 1980; 8: 5725
  • Pederson T. Cellular aspects of histone synthesi. Protein Synthesis, E. H. McConkey. Marcel Dekker, New York 1976; Vol. 2: 69
  • Wu R. S., Bonner W. M. Separation of basal histone synthesis from S-phase histone synthesis in dividing cell. Cell. 1981; 27: 321
  • Wu R. S., Tsai S., Bonner W. M. Patterns of histone variant synthesis can distinguish G0 from G1 cell. Cell. 1982; 31: 367
  • Butler M. B., Mueller C. C. Control of histone synthesis in HeLa cell. Biochim. Biophys. Acta. 1973; 294: 481
  • Plumb M., Stein J., Stein C. Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa Cell. Nucl. Acids Res. 1983; 11: 2391
  • Hirschhorn R. R., Marashi F., Baserga R., Stein J., Steln G. Expression of histone genes in a G1--specific temperature-sensitive mutant of the cell cycl. Biochemistry 1984; 23: 3731
  • Green L., Stein G., Stein J. Histone gene expression in human diploid fibroblasts: analysis of histone mRNA levels using cloned human histone gene. Mol. Cell. Biochem. 1984; 60: 123
  • Rickels R., Marashi F., Sierra F., Clark S., Wells J., Stein J., Stein G. Analysis of histone gene expression during the cell cycle in HeLa cells by using cloned human histone gene. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 749
  • Alterman R. M., Ganguly S., Schulze D. H., Marzluff W. F., Schildkraut C. L., Skoultchi A. I. Cell cycle regulation of mouse H3 histone mRNA metabolis. Mol. CeN. Biol. 1984; 4: 123
  • DeLisle A. J., Graves R. A., Marzluff W. F., Johnson L. F. Regulation of histone mRNA production and stability in serum-stimulated mouse 3T6 fibroblast. Mol. Cell. Biol. 1983; 3: 1920
  • Sittman D. B., Graves R. A., Marzluff W. F. Histone mRNA concentrations are regulated at the level of transrription and mRNA degradatio. Proc. Natl. Acad. Sri. U.S.A. 1983; 80: 1849
  • Graves R. A., Manluff W. F. Rapid reversible changes in the rate of histone gene transcription and histone mRNA levels in mou.se myeloma cell. Mol. Cell. Biol 1984; 4: 351
  • Plumb M., Marashi F., Green L., Zimmerman A., Zimmerman S., Stein J., Stein G. Cell cycle regulation of human histone H1 mRN. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 434
  • Baumbach L. L., Marashi F., Plumb M., Stein C., Stein J. Inhibition of DNA replication coordinately reduces cellular levels of core and H1 histone mRNAs: requirement for protein synthesi. Biochemistry 1984; 23: 1618
  • Helms S., Baumbach L., Stein G., Stein J. Requirement of protein synthesis for coupling of histone mRNA levels and DNA replicatio. FEBS Lett. 1984; 168: 65
  • Heintz N., Sive H. L., Roeder R. G. Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycl. Mol. Cell. Biol. 1983; 3: 539
  • Stimac E., Groppi V. E., Jr., Cofino P. Inhibition of protein synthesis stabilizes histone mRN. Mol. Cell. Biol. 1984; 4: 2082
  • Stimac E., Groppi V. E., Jr., Coffino P. Increased histone mRNA levels during inhibition of protein synthesi. Biochem. Biophys. Res. Commun. 1983; 114: 131
  • Wu R. S., Sariban E., Bonner W. M. The effect of various inhibitors on the pattern of histone synthesi. J. Cell Biol. 1984; 99: 134a
  • Sariban E., Wu R. S., Erickson L. C., Bonner W. M. Interrelationships of protein and DNA syntheses during replication of mammalian cell. Mol Cell. Biol. 1985; 5: 1279
  • Nagata K., Enomoto T., Yamada M. A system of DNA replication in HeLa nuclei treated with inhibitors of protein synthesi. Biochim. Riophys. Acta. 1981; 653: 316
  • Gautschi J. R., Kern R. M. DNA replication in mammalian cells in the presence of cycloheximid. Exp. Cell Res. 1973; 80: 15
  • Seale R. L., Simpson R. T. Effects of cycloheximide on chromatin biosynthesi. J. Mol. Biol. 1975; 94: 479
  • Oliver D., Granner D., Chalkley R. Identification of a distinction between cytoplasmic histone synthesis and subsequent histone deposition within the nucleu. Biochemistry 1974; 13: 746
  • Senshu T., Ohashi M. Fate of newly synthesized histones shortly after intemption of DNA replicatio. J. Biochem. 1979; 86: 1259
  • Heintz N., Roeder R. G. Transcrption of human histone genes in extracts from synchronized HeLa cell. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 2713
  • Rossow P. W., Riddle V. G. H., Pardee A. B. Synthesis of labile serum-dependent protein in early G1 controls animal cell growt. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 4446
  • Liskay R. M., Kornfeld B., Fullerton P., Evans R. Protein synthesis and the presence or absence of a measurable G1 in cultured Chinese hamster cell. J. Cell. Physiol. 1980; 104: 461
  • Wu R. S., Bonner W. M., in press
  • Panhzis P., Bonner W. M. Specific alterations in the pattern of histone-3 synthesis during conversion of human leukemic cells to terminally differentiated cells in cultur. Differentiation 1984; 28: 186
  • Commerford S. L., Carsten A. L., Cronkite E. P. Histone turnover within nonproliferating cell. Pror. Natl. Acad. Sri. U.S.A. 1982; 79: 1163
  • Piha R. S., Cuenod M., Waelsch H. Metabolism of histones of brain and live. J. Biol. Chem. 1966; 241: 2397
  • Duerre J. A., Lee C. T. In vitro methylation and turnover of rat hrain histone. J. Neurochem 1974; 23: 541
  • Djondjurov L. P., Yancheva N. Y., Ivanova E. C. Histones of terminally differentiated cells undergo continuous turnove. Biochemistry 1983; 22: 4095
  • Grove G. W., Zweidler A. Regulation of nucleosomal core histone variant levels in differentiating murine erythroleukemia cell. Biochemistry 1984; 23: 4436
  • Leffak I. M., Crainger R., Weintraub H. Conservative assembly and segregation of nucleosomal histone. Cell. 1977; 12: 837
  • Jackson V., Chalkley R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DN. Cell. 1981; 23: 121
  • Seale R. Chromatin replicatio. The- Cell Nucleus, H. Busch. Academic Press, New York 1978; Vol. 9: 155
  • Seidman M. M., Levine A. J., Weintraub H. The asymmetric segregation of parental nucleosomes during chromosome replicatio. Cell. 1979; 18: 439
  • Cusick M., DePamphilis M. L., Wasserman P. M. Dispersive segregation of nucleosomes during replications of simian virus 40 chromosome. J. Mol. Biol. 1984; 178: 249
  • Leffak I. M. Stability of the conservative mode of nucleosome assembl. Nucl. Acids Res. 1983; 11: 2717
  • Leffak I. M. Conservative segregation of nucleosomc core histone. Nature (London) 1984; 307: 82
  • Russev G., Hancock R. Assembly of new histones into nucleosomes and their distribution in replicating chromati. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 3143
  • Fowler E., Farb R., El-Saidy S. Distribution of the core histones H2a. H2B, H, and H3 during cell replicatio. Nucl. Acids Res. 1982; 10: 735
  • Scale R. L. In vitro assembly of newly synthesized histone. Biochemistry 1981; 20: 6432
  • Annunziato A. T., Schinkler R. K., Riggs M. G., Seale R. L. Association of newly Synthesized histones with replicating and nonreplicating regions of chromati. J. Biol. Chem. 1982; 257: 8507
  • Annunziato A. T., Seale R. L. Maturation of nucleosomal and nonnucleosomal components of nascent chromatin: differential requirements for concurrent protein synthesi. Biochemistry 1982; 21: 5431
  • Igo-Kemenes T., Horz W., Zachau H. G. Chromati. Annu. Rev. Biochem. 1982; 51: 89
  • Cartwright I. L., Abmayr S. M., Fleischmann G., Lowenhaupt K., Elgin S. C. R., Keene M., Howard G. C. Chromatin strucrure and gene activity: the role of nonhistone chromosomal protein. CRC Crit. Rev. Biochem. 1982; 13: 1
  • Reeves R. Transcriptionally active chromati. Biochim. Biophys. Acta. 1984; 782: 343
  • Kornberg R. The location of nucleosomes in chromatin: specific or statistica. Nature (London) 1981; 292: 579
  • LaFond R. E., Coguen J., Einck L., Woodcock C. L. F. Micrococcal nuclease cleavage of chromatin displays nonrandom propertie. Biochemistry 1981; 20: 2127
  • Dingwall C., Lomonossoff G. P., Laskey R. A. High sequence specificity of micrococcal nucleas. Nucl. Acids Res. 1981; 9: 2659
  • Hon W., Alternburger W. Sequence specific cleavage of DNA by micrococcal nuclea. Nucl. Acids Res. 1981; 9: 2643
  • Lohr D., Van Holde K. Organization of spacer DNA in chromati. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 6326
  • Gottschling D. E., Cech T. R. Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: phased nucleosomes and a telomeric comple. Cell 1984; 38: 501
  • Cartwright I. L., Hertzberg R. P., Dervan P. B., Elgin S. C. R. Cleavage of chromatin with methidiumpropyl-EDTA-iron (II. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3213
  • Edwards C. A., Firtel R. A. Site-specific phasing in the chromatin of the rDNA in Dictyostelium discoideu. J. Mol. Biol. 1984; 180: 73
  • Rosenberg H., Singer M., Rosenberg M. Highly repeated sequences of simian DN. Science 1978; 200: 394
  • Smith M. R., Lieberman M. W. Nucleosome arrangement in a-satellite chromatin of African green monkey cell. Nucl. Acids Res. 1984; 12: 6493
  • Xhang X.-Y., Flttler F., Hon W. Eight different highly specific nucleosomc phases on α-satellite DNA in the African green monke. Nucl. Acids Res. 1983; 11: 4287
  • Straw F., Varshavsky A. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosom. Cell 1984; 37: 889
  • Wu K. C, Strauss F., Varshavsky A. Nucleosome arrangement in green monkey α-satellite chromati. J. Mol. Eiol. 1983; 170: 93
  • Mayfleld J. E., Serunian L. A., Silver L., Elgin S. C. R. A protein released by DNAase I digestion of Drosophila nuclei is preferentially associated with puff. Cell. 1978; 14: 539
  • Weisbrod S., Groudine M., Weintraub H. Interaction of HMG 14 and 17 with actively transcribed gene. Cell 1980; 19: 289
  • Weisbrod S., Weintraub H. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I sensitive structure on globin chromati. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 631
  • Mardian J. K. W., Paton A. E., Bunick G. J., Olins D. E. Nucleosome cores have two binding sites for nonhistone chromosomal proteins HMG 14 and 1. Science 1980; 209: 1534
  • Sandeen G., Wood W. I., Feisenfeld G. The interaction of proteins HMG 14 and 17 with nucleosome. Nucl. Acids Res. 1980; 8: 3757
  • Biolney D. L., Reeck C. R. Purification from cultured hepatoma cells of two nonhistone chromatin proteins with preferential affinity for single-stranded DNA: apparent analogy with calf thymus HMG protein. Biochem. Eiophys. Res. Commun. 1978; 85: 1211
  • Isackson P. J., Fishback J. L., Bldney D. L., Reeck G. R. Preferential affinity of high molecular weight high mobility group non-histone chromatin proteins for single-stranded DN. J. Biol. Chem. 1979; 254: 5569
  • Isackson P. J., Reeck G. R. Nonhistone chromatin proteins HMG-14 and HMG-I7 bind preferentially to single-stranded DN. Nucl. Acids Res. 1981; 9: 3779
  • Shastri K., Isackson P. J., Fishbach J. L., Land M. D., Reeck G. R. Influence of nonhistone chromatin protein HMG-I on the enzymatic digestion of purified DN. Nucl. Acids Res. 1982; 10: 5059
  • Thoma F., Bergman L. W., Simpson R. T. Nuclease digestion of circular TRPIARSI chromatin reveals positioned nucleosomes separated by nuclease-sensitive region. J. Mol. Biol. 1984; 177: 715
  • Bloom K. S., Carbon J. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosome. Cell. 1982; 29: 305
  • Simpson R. T., Stafford D. W. Structural features of a phased nucleosome core particl. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 51
  • Gottesfeld J. M., Bloomer L. S. Nonrandom alignment of nucleosomes on 5S RNA genes . Xenopus laevis. Cell. 1980; 21: 751
  • Louis C., Schedl P., Samal B., Worcel A. Chromatin structure of the 5S RNA genes of D. melanogaste. Cell. 1980; 22: 392
  • Mathis D., Oudet P., Chambon P. Structure of transcribing chromati. Progr. Nucl. Acids Res. Mol. Biol. 1980; 24: 1
  • Lacy E., Axel R. Analysis of DNA of isolated chromatin subunit. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3978
  • Kuo M. T., Sahasrabuddhe C. G., Saunden G. F. Presence of messenger specifying sequences in the DNA of chromatin subunit. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1572
  • Miller O. L., Hamkalo B. Visualization of RNA synthesis on chromosome. Int. Rev. Cytol. 1972; 33: 1
  • Franke W. W., Scheer U., Trendelenburg M. F., Spring H., Zentgrad H. Absence of nucleosomes in transcriptionally active chromati. Cytobiologie 1976; 13: 401
  • Woodcock C. L. F., Frado L. L. Y., Hatch C. L., Ricciardiello L. Fine structure of active ribosomal gcne. Chromosoma (Berlin) 1976; 58: 33
  • Foe V. E., Wilkinson L. E., Laird C. D. Comparative organization of active transcription units in Oncapeltus fasciatu. Cell. 1976; 9: 131
  • Oudet B., Spadafora C., Chambon P. Nucleosome structure II: structure of the SV40 minichro-mosome and electron microscopic evidence for reversible transitions of the nucleosome structur. Cold Spring Harbor Sympt. Quant. Biol. 1977; 42: 301
  • Chooi W.-Y., Laird C. D. Morphological analyses of active genes and chromati. JAMA 1983; 250: 82
  • Pruit S. C., Grainger R. M. A mosaicism in the higher order structure of Xenopus oocyte nucleolar chromatin prior to and during ribosomal gene transcriptio. Cell. 1981; 23: 711
  • Rsttner J. B., Saunders C., Davie J. R., Hamkalo B. A. Ultrastructural organization of yeast chromati. J. Cell Biol. 1982; 93: 217
  • Foe V. E. Modulation of ribosomal RNA synthesis in Oncopeltus fasciatus: an electron microscope study of the relationship between changes in chromatin structure and transcriptional activit. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 723
  • Reeves R. Structure of Xenopus ribosomal gene chromatin during changes in genomic transcription rate. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 709
  • Bazett-Jones D. P., Ottensmeyer F. P. DNA organization in nucleosome. Can. J. Biochem. 1982; 60: 364
  • Colavito-Shepansky M., Corovsky M. A. The histone content of Tetrahymena ribosomal gene-containing chromati. J. Biol. Chem. 1983; 258: 5944
  • Gottschling D. E., Palen T. E., Cech T. R. Different nucleosome spacing in transcribed and non-transcribed regions of the ribosomal RNA gene in Tetrahymena thennophil. Nucl. Acids Res. 1983; 11: 2093
  • McKnight S., Bustin M., Miller O. L. Electron microscope analysis of chromosome metabolism in the Drosophila melanogaster embry. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 741
  • Labhart P., Koller T. Structure of the active nucleolar chromatin of Xenopus laevis oocyte. Cell. 1982; 28: 279
  • Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformatio. Science 1976; 93: 848
  • Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nucle. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 3966
  • Garel A., Zolan M., Axel R. Genes transcribed at diverse rates have a similar conformation in chromati. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4867
  • Flint S. J., Weintraub H. An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus gene. Cell. 1977; 12: 783
  • Palmiter R., Mulvihill E., McKnight S., Senear A. Regulation of gene expression in the chick oviduct by steroid hormone. Cold Spring Harbor Symp. Quant. Biol. 1977; 42: 639
  • Stalder J., Seebeck T., Braun R. Degradation of the ribosomal genes by DNase I in Physarum polycephalu. Eur. J. Biochem. 1978; 90: 391
  • Wu C., Bingham P. M., Livak K. J., Holmgren R., Elgin S. C. R. The chromatin structure of specific genes. I. Evidence for higher order domains of defined DNA sequenc. Cell. 1979; 16: 797
  • Wu C., Wong Y.-C., Elgin S. C. R. The chromatin structure of specific genes. II. Disruption of chromatin structure during gene activit. Cell 1979; 16: 807
  • Wu C. The 5′ ends of Drosophila heat shock genes in chromatin arc hypersensitive to DNase . Nature (London) 1980; 286: 854
  • Elgin S. C. R. Anatomy of hypersensitive sites, News and views sectio. Nature (London) 1984; 309: 213
  • Barsh G. S., Roush C. L., Gelinas R. E. DNA and chromatin structure of the human 1(I) collagen gen. J. Biol. Chem. 1984; 259: 14906
  • Elgin S. C. R., Cartwright I. L., Flekhmann G., Lowenhaupt K., Kecne M. A. Cleavage reagents as probes of DNA sequence organization and chromatin structure: Drosophila melanogaster locus 67B. Cold Spring Harbor Symp. Quant. Biol. 1982; 47: 529
  • Elgin S. C. R. DNAase I hypersensitive sites of chromati. Cell. 1981; 27: 413
  • Burch J. B. E., Weintraub H. Temporal order of chromatin structural changes associated with activation of the maJor chicken vitellogenin gen. Cell 1984; 33: 65
  • Shepard J. H., Mulvihill E. R., Thomas P. S., Palmlter R. D. Commitment of chick oviduct tubular gland cells to produce ovalbumin mRNA during hormonal withdrawal and stimulatio. J. Cell Biol. 1980; 87: 142
  • Fritton J. P., Igo-Kemenes T., Nowock J., Strerh-Jurk U., Theisen M., Sippel A. E. Alternative sets of DNase I hypersensitive sites characterize the various functional states of the chicken lysozyme gen. Nature (London) 1984; 311: 163
  • Stadler J., Groudine M., Dodgson J. B., Engel J. D., Weintraub H. Hb switching in chicken. Cell 1980; 19: 973
  • Stadler J., Larsen A., Engel J. D., Man M., Groudlne M., Weintraub H. Tissue-specific DNA changes in the globin chromatin introduced by DNAase . Cell. 1980; 20: 451
  • McChee J. D., Wood W. I., Man M., Engel J. D., Felsenfeld G. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestio. Cell 1981; 27: 45
  • Wu C. Two protein binding sites in chromatin implicated in the activation of heat shock gene. Nature (London) 1984; 309: 229
  • Emerson B. M., Feisenfeld G. Specific factor conferring nuclease hypersensitivity at the 5′ end of the chicken adult β-globin gen. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 95
  • Lam A., Weintraub H. An altered DNA conformation detected by Sl nuclease occurs at specific regions in active chick globin chromati. Cell. 1982; 29: 609
  • Weintrauh H. A dominant role of DNA secondary structure in forming hypersensitive structures in chromati. Cell. 1983; 32: 1191
  • McKnight S., Kingsbury R. Transcriptional control signals of a eukaryotic proteincoding gen. Science 1982; 217: 316
  • Bergman L. W., Kramer R. A. Modulation of chromatin structure associated with derepression of the acid phosphatase gene of Saccharomyces cerevisia. J. Biol. Chem. 1983; 258: 7223
  • Karpov V. L., Preohrnzhenskaya O. V., Mirzabekov A. D. Chromatin structure of hsp 70 genes. activated by heat shock selective removal of histones from coding region and their absence from the 5′ regio. Cell 1984; 36: 423
  • von Beroldinger C. H., Reynolds W. F., Millstein L., Bazett-Jones D. P., Gottesfeld J. M. Eukaryotic transcription complexe. Mol. Cell. Biochem. 1984; 62: 97
  • Brown D. D. How a simple animal gene work. Harvey Lect. 1982; 76: 27
  • Wegnez M., Monier R., Dents H. Sequence heterogeneity of 5s RNA in Xenopus laevi. FEBS Lett. 1972; 25: 13
  • Ford P. J., Southern E. M. Different sequences for 5S RNA in kidney cells and ovaries of Xenopus laevi. Nature (New Biol.) 1973; 241: 7
  • Parker C. S., Roeder R. C. Selective and accurate transcription of the Xenopus laevis 5S RNA genes in isolated chromatin by purified RNA polymeras. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 44
  • Bogenhagen D. F., Wormington W. M., Brown D. D. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated stat. Cell. 1982; 28: 413
  • Birkemneier E. H., Brown D. D., Jordan E. A nuclear extract of Xenopus læwis that accurately transcribes 5S RNA gene. Cell 1978; 15: 1077
  • SnkonJu S., Bogenhagen D. F., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription. I. The 5′ border of the regio. Cell. 1980; 19: 13
  • Bogenhqen D. F., Sakonju S., Brown D. D. A control region in the center of the 55 RNA gene directs specific initiation of transcription. II. The 3′ border of the regio. Cell 1980; 19: 27
  • Engelke D. R., Ng S.-Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA gene. Cell. 1980; 19: 717
  • SakonJu S., Brown D. D. Contact points between a positive transcription factor and the Xenopus 5S RNA gen. Cell. 1982; 31: 395
  • Schlissel M. S., Brown D. D. The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of active stable transcription complexes and histone H. Cell. 1984; 37: 903
  • Marekov L. N., Beltchev B. Selective removal of histone H1 from chromatin at low salt concentratio. Anal. Biochem. 1981; 115: 93
  • Pederson D. S., Shupe K., Gorovsky M. A. Changes in chromatin structure accompany modulation of the rate of transcription of 5S ribosomal genes in Tetrahymen. Nurl. Acids Res. 1984; 12: 8489
  • Johnson E. M., Allfrey V. G., Bradbury E. M., Matthews H. R. Altered nucleosome structure containing DNA sequences complementary to 19S and 26S ribosomal RNA in Physarum polycephalu. Pror. Natl. Acad. Sri. U.S.A. 1978; 75: 1116
  • Johnson E. M., Matthews H. R., Littau V. C., Lothstein L., Bradbury E. M., Allfrey V. G. Structure of chromatin containing DNA complementary to 19S and 26S rRNA in active and inactive stages of Physarum polycephalu. Arch. Biochem. Biophys. 1978; 191: 537
  • Johnson E. M., Campbell G. R., Allfrey V. G. Different nucleosome structures on transcribing and nontranscribing ribosomal gene sequence. Science 1979; 206: 1192
  • Ness P. J., Labhart P., Banz E., Koller T., Parish R. W. Chromatin structure along the ribosomal DNA of Dictyosteliu. J. Mol. Biol. 1983; 166: 361
  • Boer B. W., Rhoda D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed gene. Nature (London) 1983; 301: 482
  • Wittig S., Wittig B. Function of a tRNA gene promoter depends on nucleosome positio. Nature (London) 1982; 287: 31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.