40
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Proteolytic Processing and Compartmentalization of the Primary Translation Products of Mammalian Apolipoprotein Mrna

, , , , , & show all
Pages 37-71 | Published online: 26 Sep 2008

References

  • Scanu A. M., Edelstein C., Shen B. Lipid-protein interactions in plasma lipoproteins. Model: high density lipoprotein. Lipid Protein Interactions, P. C. Jost, O. H. Griffith. John Wiley & Sons, New York 1982; Vol. I: 259
  • Havel R. J. Lipoprotein biosynthesis and metabolis. Ann. N.Y. Acad. Sci. 1980; 348: 16
  • Eisenberg S. Plasma lipoprotein conversions: the origins of low density and high density lipoprotein. Ann. N.Y. Acad. Sci. 1980; 348: 30
  • Getz C. S., Hay R. V. The formation and metabolism of plasma lipoprotein. The Biochemistry of Atherosclerosis, A. M. Scanu. Marcel Dekker, New York 1979; 151
  • Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous component. J. Cell Biol. 1975; 67: 852
  • Straw A. W., Bolme I. Compartmentation of newly synthesized protein. CRC Crit. Rev. Biochem. 1982; 12: 205
  • Walter P., Ibrahimi I., Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro-assembled polysomes synthesizing secretory protei. J. Cell. Biol. 1981; 91: 545
  • Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in vitro-assembled polysomes synthesizing secretory protei. J. Cell Biol 1981; 91: 551
  • Walter P., Blobel G. Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membrane. J. Cell Biol. 1981; 91: 557
  • Gilmore R., Blobel G., Walter P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particl. J. Cell Biol. 1982; 95: 463
  • Gilmore R., Walter P., Blobel G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle recepto. J. Cell Biol. 1982; 95: 470
  • Gilmore R., Blobel G. Transient involvement of signal recognition particles and its receptor in the microsomal membrane prior to protein translocatio. Cell 1983; 35: 677
  • Walter P., Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulu. Nature (London) 1982; 299: 691
  • Meyer D., Dobberstein B. A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: requirements for its extraction and re association with the membran. J. Cell Biol. 1980; 87: 498
  • Meyer D., Krause E., Dobberstein B. Secretory protein translocation across membranes — the role of the “docking protein”. Nature (London) 1982; 297: 647
  • Anderson D. J., Walter P., Blobel G. SRP is required for the integration of acetylcholine receptor subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membran. J. Cell Biol. 1982; 93: 501
  • Anderson D. J., Mostov K. E., Blobel G. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 7249
  • Bar-Nun S., Kreibich G., Adesnik M., Alterman L., Negishi M., Sabatini D. Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 965
  • Pickett D. B., Telakowski-Hopkins C. A. Biosynthesis of endoplasmic reticulum membrane protein. Compartmentation of Proteins, A. W. Strauss, G. Kreil, I. Boime. Springer-Verlag, New York, in press.
  • Erickson A., Blobel G. Early events of the lysosomal enzyme cathepsin D*. J. Biol. Chem. 1979; 254: 11771
  • Meyer D. I. The signal hypothesis — a working mode. Trends Biochem. Sci. 1982; 7: 320
  • Wickner W. Assembly of proteins into membrane. Science 1980; 210: 861
  • Wickner W. The assembly of proteins into biological membranes: the membrane trigger hypothesi. Annu. Rev. Biochem. 1979; 48: 23
  • Inouye S., Wang S., Sekizawa J., Halegoua S., Inouye M. Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membran. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 1004
  • Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesi. Cell 1981; 23: 411
  • Braell W. A., Lodish H. F. Ovalbumin utilizes an NH2-terminal signal sequenc. J. Biol. Chem. 1982; 257: 4578
  • Schechler I., Burstein Y., Zemell R., Ziv E., Kantor F., Papermaster D. S. Messenger RNA of opsin from bovine retina: isolation and partial sequence of the in vitro translation produc. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 2654
  • Haugen D. A., Arms L. G., Yasunobu K. T., Coon M. J. Amino-terminal sequence of phenobarbital-inducible cytochrome P-450 from rabbit liver microsomes: similarity to hydrophobic amino-terminal segments of preprotein. Biochem. Biophpys. Res. Commun. 1977; 77: 967
  • Blobel G. Intracellular protein topogenesi. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1496
  • Sabatini D. D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelle. J. Cell Biol. 1982; 92: 1
  • Rose J. K., Bergmann J. E. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotei. Cell 1983; 34: 513
  • Szczesna E., Boime I. mRNA-Dependent synthesis of authentic precursor to human placental lactogen: conversion to its mature hormone form in ascites cell-free extract. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1179
  • Chan L., Bradley W. A., Jackson R. L., Means A. R. Lipoprotein synthesis in the cockerel liver: effects of estrogen on hepatic polysomal messenger ribonucleic acid activities for the major apoproteins in very low and high density lipoproteins and for albumin and evidence for precursors to these secretory protein. Endocrinology 1980; 106: 275
  • Lin-Su M. H., Lin-Lee Y. C., Bradley W. A., Chan L. Characterization, cell-free synthesis, and processing of apolipoprotein A-I of rat high density lipoprotein. Biochemistry 1981; 20: 2470
  • Stoffel W., Blobel G., Walter P. Synthesis in vitro and translocation of apolipoprotein AI across microsomal vesicle. Eur. J. Biochem. 1981; 120: 519
  • Gordon J. I., Smith D. P., Andy R., Alpers D. H., Schonfeld G., Strauss A. W. The primary translation product of rat intestinal apolipoprotein AI mRNA is an unusual preproprotei. J. Biol. Chem. 1982; 257: 971
  • Gordon J. I., Sims H. F., Lentz S., Edelstein C., Scanu A. M., Strauss A. W. Proteolytic processing of human preproapolipoprotein A. J. Biol. Chem. 1983; 258: 4037
  • Stoffel W., Kruger E., Deutzmann R. Cell-free translation of human liver apolipoprotein AI and AII mRNA. Processing of primary translation product. Hoppe-Seyler's Z. Physiol. Chem. 1983; 364: 227
  • Gordon J. I., Budelier K. A., Sims H. F., Edelstein C., Scanu A., Strauss A. W. Biosynthesis of human preproapolipoprotein AI. J. Biol. Chem. 1983; 258: 14054
  • Gordon J. I., Smith D. P., Alpers D. H., Strauss A. W. Proteolytic processing of the primary translation product of rat intestinal apolipoprotein AIV mRN. J. Biol. Chem. 1982; 257: 8418
  • Gordon J. I., Bisgaier C. L., Sims H. F., Sachdev O. P., Glickman R. M., Strauss A. W. Biosynthesis of human preapolipoprotein AI. J. Biol. Chem. 1984; 259: 468
  • Blaufuss M. C., Gordon J. I., Schonfeld G., Strauss A. W., Alpers D. H. Biosynthesis of apolipoprotein CIII in rat liver and small intestinal mucos. J. Biol. Chem. 1984; 259: 2452
  • Lin-Lee Y.-C., Bradley W. A., Chan L. mRNA-Dependent synthesis of rat apolipoprotein E in vitro: co-translational processing and identification of an endoglycosidase H-sensitive glycopeptide intermediat. Biochem. Biophys. Res. Commun. 1981; 99: 654
  • Reardon C. A., Hay R. B., Gordon J. I., Gelz G. S. Processing of rat liver apoprotein E primary translation produc. J. Lipid Res. 1984; 25: 348
  • Zannis V. I., McPherson J., Goldberger G., Karathanasls S. K., Breslow J. L. Synthesis, intracellular processing and signal peptide of human apolipoprotein . J. Biol. Chem. 1984; 259: 5495
  • Knott T. J., Robertson M. E., Priestley L. M., Urdea M., Wallis S., Scott J. Characterization of mRNAs encoding the precursor for human apolipoprotein C. Nucl. Acids Res. 1984; 12: 3909
  • Sharp C. R., Sidoli A., Shelley C. S., Lucero M. A., Shoulders C. C., Baralle F. E. Human apolipoproteins AI. AII. CII, and CIII. cDNA sequences and mRNA abundanc. Nucl. Acids Res. 1984; 12: 3917
  • Fojo S. S., Law S. W., Brewer H. B., Jr. Human apolipoprotein CII: complete nucleic acid sequence of preapolipoprotein CI. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 6354
  • Fitch W. M. Phylogenies constrained by the crossover process as illustrated by human hemoglobins and a thirteen-cycle. eleven-amino-acid repeat in human apolipoprotein A. Genetics 1977; 86: 623
  • McLachan A. D. Repeated helical pattern in apolipoprotein A. Nature (London) 1977; 267: 465
  • Boguski M. S., Eishourbagy N., Taylor J. M., Gordon J. I. Rat apolipoprotein AIV contains 13 tandem repetitions of a 22-amino acid segment with amphipathic helical potentia. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 5021
  • Boguski M. S., Elshourbagy N., Taylor J. M., Gordon J. I. Comparative analysis of repeated sequences in rat apolipoproteins Al, AIV and . Proc. Natl. Acad. Sci. U.S.A., in press.
  • Devillers-Thiery A., Kindt T., Scheele G., Blobel G. Homology in amino-terminal sequence of precursors to pancreatic secretory protein. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 5016
  • Strauss A. W., Bennett C. D., Donohue A. M., Rodkey J. A., Alberts A. W. Rat liver pre-proalbumin: complete amino acid sequence of the prepiec. J. Biol. Chem. 1977; 252: 6846
  • Fitch W. M., Margoliash E. The usefulness of amino acid and nucleotidc sequences in evolutionary studie. Evol. Biol. 1970; 4: 67
  • Von Heijne G. Patterns of amino acids near signal-sequence cleavage site. Eur. J. Biochem. 1983; 133: 17
  • Schechter I., McKean D. J., Guyer R., Terry W. Partial amino acid sequence of the precursor of immunoglobulin light chain programmed by messenger RN. in vitro, Science 1975; 188: 160
  • Austen B. M. Predicted secondary structures of amino-terminal extension sequences of secreted protein. FEBS Lett. 1979; 103: 308
  • Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryolic and prokaryotic signal peptidc. J. Mol. Biol. 1983; 167: 391
  • Wu H. C. Proteolytic processing of signal peptide. Compartmentation of Proteins, A. W. Strauss, G. Kreil, I. Boime. Springer-Verlag, New York, in press.
  • McLean J. W., Fulcazawa C., Taylor J. M. Rat apolipoprotein E mRNA — cloning and sequencing of double-stranded cDN. J. Biol. Chem. 1983; 258: 8993
  • Boguskl M. S., Elshourbagy N., Taylor J. M., Gordon J. I. Rat apolipoprotein AIV: application of computational methods for studying the structure. function and evolution of a protei. Meth. Enzym., in press.
  • Karathanasis S. K., Zannis V. I., Breslow J. L. Isolation and characterization of the human apolipoprotein AI gen. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 6147
  • Shoulders C. C., Kornblihtt A. R., Munro B. S., Baralle F. E. Gene structure of human apolipoprotein A. Nucl. Acids Res. 1983; 11: 2827
  • Paik Y.-K., Chang D. J., Reardon C. A., Davies G. E., Mahley R. W., Taylor J. M. Nucleotide sequence and structure of the human apo E gen. Proc. Natl. Acad. Sci. U.S.A., in press.
  • Kreil G. Transfer of proteins across membrane. Annu. Rev. Biochem. 1981; 50: 317
  • Emr S. D., Hall M. N., Silhavy T. J. A mechanism of protein localization: the signal hypothesis and bacteri. J. Cell Biol. 1980; 86: 701
  • Hortln G., Boime I. Inhibition of preprotein processing in ascites tumor lysates by incorporation of a leucine analo. Proc. Natl. Acad. Sci. 1980; 77: 1356
  • Farquhar M., Palade G. The Golgi apparatus (complex) — (1954–1981) from artifact to center stag. J. Cell Biol. 1981; 91: 77
  • Whaley S. G. The Golgi Apparatus. Springer-Verlag, New York 1975
  • Novikoff A. The endoplasmic reticulum: a cytochemist's view (a review. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2781
  • Palade G. Intracellular aspects of the process of protein secretio. Science 1975; 189: 347
  • Rothman J. E., Bursztyn-Pettegrew H., Fine R. E. Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicle. J. Cell Biol. 1980; 86: 162
  • Rothman J. E., Fine R. Coated vesicles transport newly synthesized membrane glycoproteins irom endoplasmic reticulum to plasma membrane in two successive stage. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 780
  • Ungewlckell E., Branton D. Assembly units of clathrin coat. Nature (London) 1981; 289: 420
  • Rothman J. The Golgi apparatus: two organelles in tande. Science 1981; 213: 1212
  • Steiner D. F., Kemmler W., Tager H. S., Peterson J. D. Proteolytic processing in the biosynthesis of insulin and other protein. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1974; 33: 2105
  • Patzelt C., Labrecque A. D., Duguid J. R., Carroll R. J., Keim P. S., Heinrikson R. L., Steiner D. F. Detection and kinetic behavior of preproinsulin in pancreatic islet. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1260
  • Dacherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesi. Annu. Rev. Physiol. 1982; 44: 625
  • Steiner D. F., Dacherty K., Carroll B. Golgi/granule processing of peptide hormone and neuropeptide precursors: a minirevie. J. Cell. Biochem. 1984; 24: 121
  • Orcl L. A portrait of the pancreatic B-cel. Diabetologia 1974; 10: 163
  • Orci L. Macro- and micro-domains in the endocrine pancrea. Diabetes 1982; 31: 538
  • Orci L., Halban P., Amherdt M., Ravazzola M., Vassali J. D., Perrelet A. A clathrin-coated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensi. Cell 1984; 39: 39
  • Brennan S. O., Carrell R. W. A circulating variant of human proalbumi. Nature (London 1978; 274: 908
  • Abdo Y., Rousseaux J., Dautrevaux M. Proalbumin Lille. a new variant of human serum albumi. FEBS Lett. 1981; 131: 286
  • Noe B. D. Inhibition of islet prohormone to hormone conversion by incorporation of arginine and lysine analog. J. Biol. Chem. 1981; 256: 4940
  • Mains R. E., Eipper B. A., Ling N. Common precursor to conicotropins and endorphin. Proc. Natl. Acod. Sci. U.S.A. 1977; 74: 3014
  • Eipper B. A., Mains R. E. Structure and biosynthesis of proadrenoconicotropin/endorphin and related peptide. Endocr. Rev. 1980; 1: 1
  • Hobart P., Crawford R., Shen L., Pictet R., Rutter W. J. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfis. Nature (London) 1980; 288: 137
  • Coodman R. H., Jacobs J. W., Chin W. W., Lund P. K., Dee P. C., Habener J. F. Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostari. Proc. Notl. Acad. Sci. U.S.A. 1980; 77: 5869
  • Goodman R. H., Jacobs J. W., Dee P. C., Habener J. F. Somatostatin-28 encoded in a cloned cDNA obtained from a rat medullary thyroid carcinom. 1. Biol. Chem. 1982; 257: 1156
  • Minth C. D., Taylor W. L., MagazAn M., Tavianini M. A., Collier K., Weith H. L., Dixon J. E. The structure of cloned DNA complementary to catfish pancreatic somatostatin-14 messenger RN. J. Biol. Chem. 1982; 257: 10372
  • Lend H., Schutz G., Schmale H., Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precurso. Nature (London) 1982; 295: 299
  • Ryder S. W., Straus E., Yalow R. S. Further characterization of brain cholecystokinin-converting enzyme. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 3669
  • Itoh N., Obata K., Yanaihara N., Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-2. Nature (London) 1983; 304: 547
  • Schwartz T. W., Tager H. S. Post-translational modification in the biogenesis of peptides in endocrine F cells of the pancrea. Hoppe-Seyler's Z. Physiol. Chem. 1982; 363: 889
  • Kreil G. The post-translational processing of the precursors of secreted peptide. Compartmentation of Proteins, A. W. Strauss, I. Boime, G. Kreil. Springer-Verlag, New York, in press.
  • Tager H. S., Emdin S. O., Clark J. L., Steiner D. F. Studies on the conversion of proinsulin to insuli. J. Biol. Chem. 1973; 248: 3476
  • Kuzuya H., Chance R. E., Steiner D. F., Rubinstein A. H. On the preparation and characterization of standard materials for natural human proinsulin and C-peptid. Diabetes 1978; 27: 161
  • Hudson P., Haley J., Cronk M., Shine J., Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxi. Nature (London) 1981; 291: 127
  • Fletcher D. J., Qulgley J. P., Bauer G. E., Noe B. D. Characterization of proinsulin- and proglucagon-convening activities in isolated islet secretory granule. J. Cell. Biol. 1981; 90: 312
  • Loh Y. P., Gainer H. Characterization of pro-opioconin-convening activity in purified secretory granules from rat pituitary neurointermediate lob. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 108
  • Loh Y. P., Chang T. L. Pro-opiocortin converting activity in rat intermediate and neural lobe secretory granule. FEBS Lett. 1982; 137: 57
  • Judah J. D., Quinn P. S. Calcium ion-dependent vesicle fusion in the conversion of proalbumin to albumi. Nature (London) 1978; 271: 384
  • Docherty K., Carroll R. J., Steiner D. F. Conversion of proinsulin to insulin: involvement of a 31, 500 molecular weight thiol proteas. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 4613
  • Docherly K., Carroll R. J., Steiner D. F. Identification of a 31, 500 molecular weight islet cell protease as cathepsin . Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3245
  • Docherly K., Hutton J. C., Steiner D. F. Cathepsin B-related proteases in the insulin secretory granul. J. Biol. Chem. 1984; 259: 6041
  • Richter D. Vasopressin and oxytocin are expressed as polyprotein. Trends Biochem. Sci. 1983; 8: 278
  • Docherty K., Hutton J. C. Carboxypeptidase activity in the insulin secretory granul. FEBS Lett. 1983; 162: 137
  • Fricker L. D., Snyder S. H. Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granule. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 3886
  • Fricker L. D., Supattapone S., Snyder S. H. Enkephalin convertase: a specific enkephalin synthesizing carboxypeptidase in adrenal chromaffin granules, brain, and pituitary glan. Life Sci. 1982; 31: 1841
  • Fricker L. D., Snyder S. H. Purification and characterization of enkephalin convertase. an enkephalin-synthesizing carboxypeptidas. J. Biol. Chem. 1983; 258: 10950
  • Mains R. E., Eipper B. A., Glembotski C. C., Dores R. M. Strategies for the synthesis of bioactive peptide. Trends Neuro. Sci. 1983; 6: 229
  • Kreil G. Occurrence, detection and biosynthesis of carboxy-terminal amide. Meth. Enzym. 1984; 106: 218
  • Tatemoto K., Carlquist M., Mutt V. Neuropepride Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptid. Nature (London) 1982; 296: 659
  • Rehfeld J. F. Four basic characleristics of the gastrin-cholecystokinin syste. Am. J. Physiol. 1981; 240: 6255
  • Bradbury A. F., Finnie M. D. A., Smyth D. G. Mechanism of C-terminal amide formation by pituitary enzyme. Nature (London) 1982; 298: 686
  • Eipper B. A., Mains R. E., Glembotski C. C. Identification in pituitary tissue of a peptide alpha amidation activity that acts on glycine-extended peptides and requires molecular oxygen. copper. and ascorbic aci. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 5144
  • Suchanek G., Kreil G., Hermodson M. A. Amino acid sequence of honeybee prepromelittin synthesized in vitr. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 701
  • Kreil G., Mollay C., Kaschnitz R., Haiml L., Vilas U. Prepromelittin: specific cleavage of the pre- and the propeptide in vitr. Ann. N.Y. Acad. Sci. 1980; 343: 338
  • Kreil G., Haiml L., Suchanek G. Stepwise cleavage of the pro part of promelittin by dipepti-dylpeptidase IV — evidence for a new type of precursor-product conversio. Eur. J. Biochem. 1980; 111: 49
  • Kurjan J., Herskowitz I. Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-facto. Cell 1982; 30: 933
  • Singh A., Chen E. Y., Lugovoy J. M., Chang C. N., Hitzeman R. A., Seeburg P. H. Saccharomyccs cercvisiae contains two discrete genes coding for the α factor pherom. Nucl. Acids Res. 1983; 11: 4049
  • Julius D., Blair L., Brake A., Sprague G., Thorner J. Yeast α-factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidas. Cell 1983; 32: 839
  • Brewer H. B., Jr., Lux S. E., Ronan R., John K. M. Amino acid sequence of human apo Lp-Gln-II (apo A-II), an apolipoprotein isolated from the high-density lipoprotein comple. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 1304
  • Edelstein D., Halari M., Scanu A. M. On the mechanism of the displacement of apolipoprotein AI by apolipoprotein AII from the high density lipoprotein surface. Effect of concentration and molecular forms of apolipoprotein AI. J. Biol. Chem. 1982; 257: 7189
  • Osborne J. C., Jr., Palumbo G., Brewer H. B., Jr., Edelhoch. H. The self-association of the reduced apo All apoprotein from the human high density lipoprotein comple. Biochemistry 1975; 14: 3741
  • Jahn C. E., Osborne J. C., Jr., Schaefer E. J., Brewer H. B., Jr. In vitro activation of the enzymatic activity of hepatic lipase by apo Al. FEBS Lett. 1981; 131: 366
  • Ritter M. C., Scanu A. M. Apolipoprotein All and the structure of human serum high density lipoproteins: an approach by reassembly technique. J. Biol. Chem. 1979; 254: 2517
  • Knott T. J., Priestly L. M., Urdea M., Scott J. Isolation and characterization of a cDNA encoding the precursor for human apolipoprotein Al. Biochem. Biophys. Res. Commun. 1984; 120: 734
  • Moore M. N., Koo F. T., Tsao Y. K., Chan L. Human apolipoprotein All: nucleotide sequence of a cloned cDNA and localization of its structural gene on human chromosome . Biochem. Biophys. Res. Commun. 1984; 123: 1
  • Zannis V. I., Breslow J. L., Sanciacomo T. R., Aden D. P., Knowles B. B. Characterization of the major apolipoproteins secreted by two human hepatoma cell line. Biochemistry 1981; 20: 7089
  • Redman C. M., Avellino G., Yu S. Secretion of proalbumin by conavanine-treated Hep-G2 cell. J. Biol. Chem. 1983; 258: 3446
  • Morris K. M., Aden D. P., Knowles B. B., Colten H. R. Complement biosynthesis by the human hepatoma-derived cell line Hep G. J. Clin. Invest. 1982; 70: 906
  • Morris K. M., Goldberger G., Colten H. R., Aden D. P., Knowles B. B. Biosynthesis and processing of a human precursor complement protein. pro-C3, in a hepatoma-derived cell lin. Science 1982; 215: 399
  • Gordon J. I., Sims H. F., Edeistein C., Scanu A. M., Strauss A. W. Human proapolipoprotein All is cleaved following secretion from Hep G2 cells by a thiol proteas. J. Biol. Chem. 1984; 259: 15556
  • Recklies A. D., Mort J. S., Poole A. R. Secretion of a thiol proteinase from mouse mammary carcinomas and its characterizatio. Cancer Res. 1982; 42: 1026
  • Recklies A. D., Poole A. R., Mort J. S. A cysteine proteinase secreted from human breast tumors is immunologically related to cathepsin . Biochem. J. 1982; 207: 633
  • Mort J. S., Leduc M. S., Recklies A. D. Characterization of a latent cysteine proteinase from ascitic fluid as a high molecular weight form of cathepsin . Biochim. Biophys. Acta 1983; 755: 369
  • Zannis V. I., Kurnit D. M., Breslow J. L. Hepatic apo Al and Apo E and intestinal apo Al are synthesized in precursor isoprotein forms by organ cultures of human fetal tissue. J. Biol. Chem. 1982; 257: 536
  • Brewer H. B., Jr., Fairwell T., Kay L., Meng M., Roman R., Law S., Light J. A. Human plasma proapo AI: isolation and amino-terminal sequenc. Biochem. Biophys. Res. Commun. 1983; 113: 626
  • Lackner K. J., Edge S. B., Gregg K. E., Hoeg J. M., Brewer H. B., Jr. Isofons of apolipoprotein A-II in human plasma and thoracic duct lymp. J. Biol. Chem. 1985; 260: 703
  • Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr. A molecular theory of lipid-protein interactions in the plasma lipoprotein. FEBS Lett. 1974; 38: 247
  • Sparrow J. L., Morrisett J. D., Pownall H. J., Jackson R. L., Gotto A. M. Peptides: Chemistry, Structure and Biology, R Walter, J. Meienhofer. Ann Arbor Science, Ann Arbor, Mich. 1975; 597
  • Yokoyama S., Fukushima D., Kupferberg J. P., Kezdy F. J., Kaiser E. T. The mechanism of activation of lecithin-cholesterol acyltransferase by apolipoprotein AI and an amphiphilic peptid. J. Biol. Chem. 1980; 255: 7333
  • Kaiser E. T., Kezdy F. J. Secondary structure of proteins and peptides. in apphiphilic environments (a review. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 1137
  • Law S. W., Gray G., Brewer H. B., Jr. cDNA cloning of human apo AI: amino acid sequence of preproapo A. Biochem. Biophys. Res. Commun. 1983; 112: 257
  • Law S. W., Brewer H. B., Jr. Nucleotide sequence and the encoded amino acids of human apolipoprotein AI-mRN. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 66
  • Cheung P., Chan L. Nucleotide sequence of cloned cDNA of human apolipoprotein A. Nucl. Acids Res. 1983; 11: 3703
  • Zannis V. I., Karathanasis S. K., Keutmann H. T., Goldberger G., Breslow J. L. Intracellular and extracellular processing of human apolipoprotein AI: secreted apolipoprotein AI isoprotein 2 is a propeptid. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 2574
  • Stoffel W., Bode C., Knyrim K. Serum apolipoprotein AI synthesis in rat hepatocytes and its secretion as a profor. Hoppe-Seyler's Z. Physiol. Chem. 1983; 364: 439
  • Sliwkowski M. B., Windmueller H. G. Rat liver and small intestine produce proapolipoprotein AI which is slowly processed to apolipoprotein AI in the circulatio. J. Biol. Chem. 1984; 259: 6459
  • Poncin J. E., Martial J. A., Gielen J. E. Cloning and structure analysis of the rat apolipoprotein AI cDN. Eur. J. Biochem. 1984; 140: 493
  • Eisenberg S., Windmueller H. G., Levy R. I. Metabolic fate of rat and human lipoprotein apoproteins in the ra. J. Lipid Res. 1973; 14: 446
  • Zannis V. I., Breslow J. L., Katz A. J. Isoproteins of human apolipoprotein AI demonstrated in plasma and intestinal organ cultur. J. Biol. Chem. 1980; 255: 8612
  • Ghiselli G., Schaefer E. J., Light J. A., Brewer H. B., Jr. Apolipoprotein AI isoforms in human lymph: effect of fat absorptio. J. Lipid Res. 1983; 24: 731
  • Zannis V. I., Lees A. M., Lees R. S., Bresiow J. L. Abnormal apoprotein AI isoprotein composition in patients with Tangier diseas. J. Biol. Chem. 1982; 257: 4978
  • Bojanovski D., Gregg R. E., Ghiselli G., Schaefer E. J., Light J. A., Brewer H. B., Jr. Human apolipoprotein AI isoprotein metabolism: proapo AI conversion to mature apo A. J. Lipid Res. 1985; 26: 185
  • Edeistein C., Gordon J. I., Toscas K., Sims H. F., Strauss A. W., Scanu A. M. In vitro conversion of proapoprotein AI to apoprotein A. J. Biol. Chem. 1983; 258: 11430
  • Bojanovski D., Gregg R. E., Brewer H. B., Jr. In vitro conversion of proapo AITungier to mature apo AITangier. J. Biol. Chem. 1984; 259: 6019
  • Edelstein C. E., Gordon J. I., Verganl C. A., Catapano A. L., Pietrini V., Scanu A. M. Comparison in vitro study of the proapolipoprotein AI to apolipoprotein AI converting activity between normal and Tangier plasm. J. Clin. Invesr. 1984; 74: 1098
  • Sasaki M., Yoshikane K., Noabata E., Katagirl K., Takeuchi T. Succinyl trialanine pnitroanilide-hydrolytic enzymes in human serum. Partial purification and characterizatio. J. Biochem. 1981; 89: 609
  • Maeda H., Kobori S., Uzawa H. Hydrolysis of succinyl-trialanine p-nitroanilide by two enzymes associated with human high density lipoprotein. Arch. Biochem. Biophys. 1983; 226: 629
  • Janero D. R., Siuta-Mnngnno P., Miller K. W., Lane M. D. Synthesis. processing, and secretion of hepatic very low density lipoprotei. J. Cell. Biochem. 1984; 24: 131
  • Fries E., Gustafsson L., Peterson P. A. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rate. EMBO J. 1984; 3: 147
  • Lodish H. F., Kong N., Snider M., Strous G. J.A.M. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rate. Nature (London) 1983; 304: 80
  • Ledford B. E., Davis D. F. Kinetics of serum protein secretion by cultured hepatoma cell. J. Biol. Chem. 1983; 258: 3304
  • Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcellular organelle. J. Biol. Chem. 1982; 257: 14011
  • Wu G. E., Hozumi N., Murialdo H. Secretion of a λ2 immunoglobulin chain is prevented by a single amino acid substitution in its variable regio. Cell 1983; 33: 77
  • Rothman J. E., Kennedy E. F. Rapid transmembrane movement of newly synthesized phospholipids during membrane assembl. Proc. Natl. Acad, Sci. U.S.A. 1977; 74: 1821
  • Coleman R., Bell R. M. Evidence that biosynthesis of phosphatidyl-ethanolamine, phosphatidyi-choline and triacylglycerol occurs on the cytoplasmic side of microsomal vesicle. J. Cell Biol. 1978; 76: 245
  • Banerjee D., Redman C. M. Biosynthesis of high density lipoprotein by chicken liver: nature of nascent intracellular high density lipoprotei. J. Cell Biol. 1983; 96: 651
  • Kudzma D. J., Swaney J. B., Ellis E. N. Effects of estrogen administration on the lipoproteins and apoproteins of the chicke. Biochim. Biophys. Acta 1979; 572: 257
  • Jackson R. L., Lin H. U., Chan L., Means A. R. Isolation and characterization of the major apolipoprotein from chicken high density lipoprotein. Biochim. Biophys. Acta 1976; 420: 342
  • Kruski A. W., Scanu A. M. Properties of rooster serum high density lipoprotein. Biochim. Biophys. Acta 1975; 409: 26
  • Alexander C. A., Hamilton R. L., Havel B. J. Subcellular localization of B apoprotein of plasma lipoproteins in rat live. J. Cell. Biol. 1976; 69: 241
  • Bungenberg de Jong J. J., Marsh J. B. Biosynthesis of plasma lipoproteins by rat liver ribosome. J. Biol. Chem. 1968; 243: 192
  • Nestruck A. C., Rubinstein D. The synthesis of apoproteins of very low density lipoproteins isolated from the Golgi apparatus of rat live. Can. J. Biochem. 1976; 54: 617
  • Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat live. J. Lipid Res. 1968; 9: 720
  • Glaumann H., Bergstrand A., Ericsson J. L. E. Studies on the synthesis and intracellular transport of lipoprotein particles in rat live. J. Cell Biol. 1975; 64: 356
  • Stein O., Stein Y. Lipid synthesis. intracellular transport, storage and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and cthanoitreated rat. J. Cell Biol. 1967; 33: 319
  • Van Goide L. M.G., Fleischer B., Fleischer S. Some studies on the metabolism of phospholipids in Golgi complex from bovine and rat liver in comparison to other subcellular fraction. Biochim. Biophys. Acta 1971; 249: 318
  • Mahley R. W., Hamilton R. L., LcQuire V. S. Characterization of lipoprotein particles isolated from the Golgi apparatus of rat live. J. Lipid Res. 1969; 10: 433
  • Mahley R. W., Bersot T. P., LeQuire V. S., Levy R. I., Windmueller H. G., Brown W. V. Identity of very low density lipoprotein apoproteins of plasma and liver Golgi apparatu. Science 1970; 168: 380
  • Hamilton R. L., Williams M. C., Fielding C. J., Havel R. J. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat live. J. Clin. Invest. 1976; 58: 667
  • Tonvik H., Solaas M. H., Cjone E. Serum lipoproteins in plasma lecithin:cholesterol acyltrans-ferasc deficiency. studied by electron microscop. Clin. Genet. 1970; 1: 139
  • Hamilton R. L., Havel R. J., Williams M. C. Lipid bilayer structure of plasma lipoproteins in cholestasi. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1974; 33: 351
  • Goldberg R. B., Soltys P. A., Cary D., Getz G. S. Release of apoproteins AI and All by the perfused primate live. Circulation 1984; 70(Suppl. II), (Abstr.), 119
  • Alpers D. H., Lock D. R., Lancaster N., Poksay K., Schonfeld G. Distribution of apolipoproteins AI and B among intestinal lipoprotein. J. Lipid Res. 1985; 26: 1
  • Sly W. S., Fischer H. D. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzyme. J. Cell Biochem. 1982; 18: 67
  • Sly W. S., Stahl P. Receptor mediated uptake by lysosomal enzyme. Transport of Macromolecules in Cellular Systems, S. C. Silverstein. Dahlem Konferenzen., Berlin 1978; 229
  • Neufeld E., Ashwell G. Carbohydrate recognition system for receptor-mediated pinocytosi. The Biochemistry of Glycoproteins and Proteoglycans, W. J. Lennarz. Plenum Press., New York 1980; 241
  • Sahagian G. G., Neufeld E. F. Biosynthesis and turnover of the mannose-6-phosphate receptor in cultured Chinese hamster ovary cell. J. Biol. Chem. 1983; 258: 7121
  • Sahagian G. G., Distler J., Jourdian C. W. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular β-galactosidas. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 4289
  • Steiner A. W., Rome L. H. Assay and purification of a solubilized membrane receptor that binds the lysosomal enzyme alpha-l-iduronidas. Arch. Biochem. Biophys. 1982; 214: 681
  • Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisterna. Cell 1984; 36: 295
  • Gumbiner B., Kelly R. B. Two distinct intracellular pathways transport secretory and membrane glydoproteins to the surface of pituitary tumor cell. Cell 1982; 28: 51
  • Moore H. P., Gumbiner B., Kelly R. B. Chloroquine diverts ACTH from a regulated to a constitutive pathway in AtT-20 cell. Nature (London) 1983; 302: 434
  • Moore H. P.H., Walker M. D., Lee F., Kelly R. B. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage. proteolytic processing. and secretion on stimulatio. Cell 1983; 35: 531
  • Schmitz G., Assmann G., Rall S. C., Jr., Mahley R. W. Tangier disease: defective recombination of a specific Tangier apolipoprotein AI isoform (proapo AI) with high density lipoprotein. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 6081
  • Menzel H. J., Assmann G., Rall S. C., Weisgraber K. H., Mahley R. W. Human apolipoprotein Al polymorphis. J. Biol. Chem. 1984; 259: 3070
  • Segrest J. P., Felman R. J. Amphipathic helixes and plasma lipoproteins: a computer stud. Biopolymers 1977; 16: 2053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.