237
Views
63
CrossRef citations to date
0
Altmetric
Research Article

The Insulin Receptor: Structure and Functio

Pages 217-269 | Published online: 26 Sep 2008

References

  • Kahn C. R., Baird K. L., Fier J. S., Grunfeld C., Harmon J. T., Harrison L. C., Karlsson F. A., Kasuga M., King G. L., Lang U. C., Podskalny J. M., Van Obberghen E. Insulin receptors, receptor, antibodies, and the mechanism of insulin actio. Rec. Prog. Horm. Res 1981; 37: 477
  • The Molecular Basis of Insulin Action, M. P. Czech. Plenum Press, New York 1985
  • Denton R. M. Early events in insulin action. Advances in Cyclic Nucleotide and Protein Phosphorylation Research, P. Greengard, G. A. Robison. Raven Press, New York 1986; Vol. 20: 293
  • White M. F., Kahn C. R. The insulin receptor and tyrosine phosphorylatio. The Enzymes, P. D. Boyer, E. G. Krebs. Academic Press, New York 1986; Vol. 17: 247
  • Rosen O. M. After insulin bind. Science 1987; 237: 1452
  • Goldfine I. D., Jones A. L., Hradek G. T., Wong K. Y., Mooney J. S. Entry of insulin into human cultured lymphocytes: electron microscope autoradiographic analysi. Science 1978; 202: 760
  • Carpentier J. L., Gorden P., Freychet P., Lecam A., Orci L. Lysosomal association of internalized 125I-insulin in isolated rat hepatocytes. Direct demonstration by quantitative electron microscopic autoradiograph. J. Clin. Invest 1979; 63: 1249
  • Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage sit. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 2542
  • Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: apparent translocation of intracellular transport systems in the plasma membran. J. Biol. Chem 1980; 255: 4758
  • Oka Y., Mottola C., Oppenheimer C. L., Czech M. P. Insulin activates the appearance of insulin-like growth factor-II receptors on the adipocyte cell surfac. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 4028
  • Wardzala L. J., Simpson I. A., Rechler M. M., Cushman S. W. Potential mechanism of the stimulatory action of insulin on insulin-like growth factor-II binding to the isolated rat adipose cell. Apparent redistribution of receptors cycling between a large intracellular pool and plasma membrane. J. Biol. Chem 1984; 259: 8378
  • Davis R. J., Czech M. P. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth facto. EMBO J 1986; 5: 653
  • Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activit. Nature (london) 1982; 296: 613
  • Krebs E. G. The enzymology of control by phosphorylatio. The Enzymes, P. D. Boyer, E. G. Krebs. Academic Press, New York 1986; Vol. 17: 3
  • Schacter E., Boon Chock P., Rhee S. G., Stadtman E. R. Cyclic cascades and metabolic regulatio. The Enzymes, P. D. Boyer, E. G. Krebs. Academic Press, New York 1987; Vol. 17: 21
  • Hunter T. A thousand and one protein kinase. Cell 1987; 50: 823
  • Huganir R. L., Greengard P. Regulation of receptor function by protein phosphorylatio. Trends Biochem. Sci 1987; 8: 472
  • Heyworth C. M., Whetton A. D., Wong S., Martin R. B., Houslay M. D. Insulin inhibits the cholera-toxin catalyzed ribosylation of a Mr-25000 protein in rat liver plasma membrane. Biochem. J 1985; 228: 593
  • Roth R. A., Cassel D. J., Maddux B. A., Goldfine I. D. Regulation of insulin receptor kinase activity by insulin mimikers and an insulin antagonis. Biochem. Biophys. Res. Commun 1983; 115: 245
  • Zick Y., Rees-Jones R. W., Taylor S. I., Gorden P., Roth J. The role of antireceptor antibodies in stimulating phosphorylation of the insulin recepto. J. Biol. Chem 1984; 259: 4396
  • Czech M. P. The nature and regulation of the insulin receptor structure and functio. Annu. Rev. Physiol 1985; 47: 357
  • Gammeltoft S., Md Van Obberghen E. Protein kinase activity of the insulin recepto. Biochem. J 1986; 235: 1
  • Purchio A. F., Wells S. K., Collett M. S. Increase in phosphotransferase specific activity of purified rous sarcoma virus pp60v-src protein after incubation with ATP plus Mg2+. Mol. Cell. Biol 1983; 3: 1589
  • Haring H. U., Kasuga M., White M. F., Crettaz M., Kahn C. R. Phosphorylation and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatasc activit. Biochemistry 1984; 23: 3298
  • Grunberger G., Zick Y., Gorden P. Defect in pbosphorylation of insulin receptors in cells from an insulin-resistant patient with normal insulin bindin. Science 1984; 223: 932
  • Grigorescu F., Flier J. S., Kahn C. R. Defect in insulin receptor phosphorylation in erythrocytes and fibroblasts associated with severe insulin resistanc. J. Biol. Chem 1984; 259: 15, 003
  • Grigorescu F., Flier J. S., Kahn C. R. Characterization of binding and phosphorylation defects of erythrocyte insulin receptors in the type A syndrome of insulin resistanc. Diabetes 1986; 35: 127
  • Friedenberg G. R., Henry R. R., Klein H. H., Reichart D. R., Olefsky J. M. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subject. J. Clin. Invest 1987; 79: 240
  • Caro J. F., Ittoop O., Pories W. J., Meelheim D., Flickinger E. G., Thomas F., Jenquin M., Silverman J. F., Khazanie P. G., Sinha M. K. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure and kinase activit. J. Clin. Invest 1986; 78: 249
  • Cod R. J., Grunberger G., Gorden P. Relationship of insulin binding and insulin-stimulated tyrosine kinase activity is altered in type II diabete. J. Clin. Invest 1987; 79: 453
  • Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabete. J. Clin. Invest 1987; 79: 1330
  • Kadowaki T., Kasuga M., Akanum Y., Ezaki D., Takuku F. Decreased autophosphorylation of the insulin-receptor kinase in streptozotocin-diabetic rat. J. Biol. Chem 1984; 259(14)208
  • Le Marchand-Brustel Y., Gremeaux T., Ballotti R., Van-Obberghen E. Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mic. Nature (london) 1985; 315: 676
  • Hayes G. R., Lockwood D. H. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxid. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 8115
  • Tamura S., Brown T. A., Dubler R. E., Lamer J. Insulin-like effect of Vanadate on adipocyte glycogen synthase and on phosphorylation of 95,000 dalton subunit of insulin recepto. Biochem. Biophys. Res. Commun 1983; 113: 80
  • Tamura S., Brown T. A., Whipple J. H., Fujita-Yamaguchi Y., Dubler R. E., Cheng K., Larner J. A novel mechanism for the insulin like effect of Vanadate on glycogen synthase in rat adipocyte. J. Biol. Chem 1984; 259: 6650
  • Kadota S., Funtus G. I., Deragon G., Guyda H. J., Hersh B., Posner B. I. Peroxide(s) of vanadium: a novel and potent insulin-mimetic agent which activates the insulin receptor kinas. Biochem. Biophys. Res. Commun 1987; 147: 259
  • Tamura S., Fujita-Yamaguchi Y., Larner J. Insulin-like effect of trypsin on the phosphorylation of rat adipocyte insulin recepto. J. Biol. Chem 1983; 258(14)749
  • Tamura S., Schwartz C. F. W., Whipple J. H., Dubler R. E., Fujita-Yamaguchi Y., Lamer J. Selective inhibition of the insulin-stimulated phosphorylation of the 95,000 dalton subunit of the insulin receptor by TAME OR BAE. Biochem. Biophys. Res. Commun 1984; 119: 465
  • Leef J. W., Larner J. Insulin-mimetic effect of trypsin on the insulin receptor tyrosine kinase in intact adipocyte. J. Biol. Chem 1987; 262(14)837
  • Heffetz D., Zick Y. Receptor aggregation is necessary for activation of the soluble insulin receptor kinas. J. Biol. Chem 1986; 261: 889
  • Taylor R., Soos M. A., Wells A., Argyraki M., Siddle K. Insulin-like and insulin-inhibitory effects of monoclonal antibodies for different epitopes on the human insulin recepto. Biochem. J 1987; 242: 123
  • Morgan D., Ho L., Korn L., Roth R. Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinas. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 328
  • Morgan D. O., Roth R. A. Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insuli. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 41
  • Takayama S., White M. F., Lauris V., Kahn C. R. Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cell. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 7797
  • Haring H., Kirsh D., Obermaier B., Ermel B., Machicao F. Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Biochem. J 1986; 234: 59
  • Ebina Y., Araki E., Taira M., Shimada F., Mori M., Craik C. S., Siddle K., Pierce S. B., Roth R. A., Rutter W. J. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activit. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 704
  • McClain D. A., Maegawa H., Lee J., Dull T. J., Ullrich A., Olfesky J. M. A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosi. J. Biol. Chem 1987; 262(14)663
  • Russell D. S., Gherzi R., Johnson E. L., Chou C. K., Rosen O. M. The protein tyrosine kinase activity of the insulin receptor is necessary for insulin-mediated receptor down-regulatio. J. Biol. Chem 1987; 262(11)833
  • Chou C. K., Dull T. J., Russell D. S., Gherzi R., Lebwohl D., Ullrich A., Rosen O. M. Human insulin receptors mutated at the ATP binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insuli. J. Biol. Chem 1987; 262: 1842
  • Ellis L., Clausner E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucos. Cell 1986; 45: 721
  • Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masian F., Kan Y., Goldflne I. D., Roth R. A., Rutter W. J. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signallin. Cell 1985; 40: 747
  • Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M., Mason A., Seeburg P. H., Grunfeld C., Rosen O. M., Ramachandran J. Human insulin receptor and its relationship to the tyrosine kinase family of oncogene. Nature (london) 1985; 313: 756
  • Cuatrecasas P. Affinity chromatography and purification of the insulin receptor of liver cell membrane. Proc. Natl. Acad. Sci. U.S.A 1972; 69: 1277
  • Jacobs S., Shechter Y., Bissell K., Cuatrecasas P. Purification and properties of insulin receptors from rat liver membrane. Biochem. Biophys. Res. Commun 1977; 77: 981
  • Fugita-Yamapchi Y., Choi S., Sakamoto Y., Itakura K. Purification of insulin receptor with full binding activit. J. Biol. Chem 1983; 258: 5045
  • Massape J., Pilch P. F., Czech M. P. A unique proteolytic cleavage site on the β subunit of the insulin recepto. J. Biol. Chem 1981; 256: 3182
  • Kahn C. R., Flier J. S., Bar R. S., Archer J. A., Gorden P., Martin M., Roth J. The syndromes of insulin resistance and acantosis nigrican. N. Engl. J. Med 1976; 294: 739
  • Flier S. S., Kahn C. R., Jarrett D. B., Roth J. Autoantibodies to the insulin receptor. Effect on the insulin-receptor interaction in IM-9 lymphocyte. J. Clin. Invest 1977; 60: 784
  • Baldwin D., Terris J. S., Steiner D. Characterization of insulin-like actions of anti-insulin receptor antibodies. Effects on insulin binding, insulin degradation, and glycogen synthesis in isolated rat hepatocyte. J. Biol. Chem 1980; 255: 4028
  • Van Obberghen E., Spooner P. M., Kahn C. R., Chernick S. S., Garrison M. M., Karlsson F. A., Grunfeld C. Insulin-receptor antibodies mimic a late insulin effec. Nature (london) 1979; 280: 500
  • Jacobs S., Chang K.-J., Cuatrecasas P. Antibodies to purified insulin receptor have insulin-like activit. Science 1978; 200: 1283
  • Roth R. A., Cassell D. J., Wong K. Y., Maddux B. A., Goldfine I. D. Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin actio. Proc. Nutl. Acad. Sci. U.S.A 1982; 79: 7312
  • Kull F. C., Jr., Jacobs S., Su Y. F., Svoboda M. E., Van Wyk J. J., Cuatrecasas P. Monoclonal antibodies to receptors for insulin and somatomedin-. J. Biol. Chem 1983; 258: 6561
  • Herrera R., Petruzzelli L., Thomas N., Bramson H. N., Kaiser E. M., Rosen O. M. An antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activit. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 7899
  • Lang U., Kahn C. R., Harrison L. C. Subunit structure of the insulin receptor of the human lymphocyt. Biochemistry 1980; 19: 64
  • Van Ohberghen E., Kasuga M., Le Cam A., Hedo J. A., Itin A., Harrison L. C. Biosynthetic labeling of insulin receptor: studies of subunits in cultured human IM-9 lymphocyte. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 1052
  • Hedo J., Kahn C. R., Hayashi M., Yamada K. M., Kasuga M. Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunit. J. Biol. Chem 1983; 258(10)020
  • Pilch P. F., Czech M. P. The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membrane. J. Biol. Chem 1980; 255: 1722
  • Pilch P. F., Czech M. P. Interaction of cross linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 dalton. J. Biol. Chem 1979; 254: 3375
  • Massape J., Pilch P. F., Czeeh M. P. Electrophoretic resolution of three major insulin receptor stmctures with unique subunit stoichiometr. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 7137
  • Siegel T. W., Ganguly S., Jacobs S., Rosen O. M., Rubin C. S. Purification and properties of the human placental insulin recepto. J. Biol. Chem 1981; 256: 9266
  • Jacobs S., Hazum E., Schechter Y., Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunit. Proc. Natl. Acad. Sci. U.S.A 1979; 76: 4918
  • Wisher M. H., Baron M. D., Jones R. H., Sonken P. H. Photoreactive insulin analogues used to characterize the insulin recepto. Biochem. Biophys. Res. Commun 1980; 92: 492
  • Kasuga M., Van Obberghen E., Yamada K., Harrison L. C. Autoantibodies against the insulin receptor recognize the insulin binding subunits of an oligomeric recepto. Diabetes 1981; 30: 354
  • Zick Y., Whittaker J., Roth J. Insulin stimulated phosphorylation of its own receptor. Activation of a tyrosine-specific protein kinase that is tightly associated with the recepto. J. Biol. Chem 1983; 258: 3431
  • Yip C. C., Yeung C. W. T., Moule M. L. Photoaffinity labeling of insulin receptor of rat adipocyte plasma membran. J. Biol. Chem 1978; 253: 1743
  • Hedo J. A., Kasuga M., Van Obberghen E., Roth J., Kahn C. R. Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling: evidence for heterogeneit. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 4791
  • Kasuga M., Kahn C. R., Hedo J., Van Obberghen E., Yamada K. M. Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradatio. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 6917
  • Kasuga M., Karlsson F. A., Kahn C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own recepto. Science 1982; 215: 185
  • Fugita-Yamaguchi Y. Characterization of purified insulin receptor subunit. J. Biol. Chem 1984; 259: 1206
  • Kasuga M., Hedo J. A., Yamada K. M., Kahn C. R. The structure of insulin receptor and its subunits. Evidence for multiple nonreduced forms and a 210,000 possible prorecepto. J. Biol. Chem 1982; 257(10)392
  • Massague J., Czech M. P. Role of disulfides in the subunit structure of the insulin receptor. Reduction of class I disulfides does not impair transmembrane signallin. J. Biol. Chem 1982; 257: 6729
  • Hedo J., Simpson I. A. Internalization of insulin receptors in the isolated rat adipose cell. Demonstration of the vectorial disposition of receptor subunit. J. Biol. Chem 1984; 259(11)083
  • Jacobs S., Hazum E., Cuatrecasas P. The subunit structure of rat liver insulin recepto. J. Biol. Chem 1980; 255: 6937
  • Ronnett G. V., Knuston V. P., Kohanski R. A., Simpson T. L., Lane M. D. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocyte. J. Biol. Chem 1984; 259: 4566
  • Tkacz J. S., Lampen J. O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf liver microsome. Biochem. Biophys. Res. Commun 1975; 65: 248
  • Lane D. M., Ronnett G. V., Kohanski R. A., Simpson T. L. Curr. Top. Cell. Regul 1984; 24
  • Blackshear P. J., Nemenoff R. A., Avruch J. Insulin binds to and promotes the phosphorylation of a Mr 210,000 component of its receptor in detergent extracts of liver microsome. FEES Lett 1983; 158: 243
  • Rees-Jones R. W., Hedo J. A., Zick Y., Roth J. Insulin-stimulated phosphorylation of the insulin receptor precurso. Biochem. Biophys. Res. Commun 1983; 116: 417
  • Reed B. C., Lane M. D. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocyte. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 285
  • Krupp M., Lane M. D. On the mechanisms of ligand-induced down regulation of insulin receptor level in the liver cel. J. Biol. Chem 1981; 256: 1689
  • Bar R. S., Gorden P., Roth J., Kahn C. R., De Meyts P. Fluctuations in the affinity and concentration of insulin receptors on circulating monocytes of obese patients. Effects of starvation, refeeding, and dietin. J. Clin. Invest 1976; 58: 1123
  • Smith R. M., Jarret L. Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocyte. J. Cell. Physiol 1983; 115: 199
  • Pilch P. F., Shia M. A., Benson R. J. J., Fine R. E. Coated vesicles participate in the receptormediated endocytosis of insuli. J. Cell Biol 1983; 96: 133
  • Forgac M., Cantley L., Weidenmann B., Altstiel L., Branton D. Clathrin-coated vesicles contain an ATE'-dependent proton pum. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 1300
  • Marshall S., Green A., Olefsky J. M. Evidence for recycling of insuh receptors in isolated rat adipocyte. J. Biol. Chem 1981; 256(11)464
  • Levy J. R., Olefsky J. M. Retroendocytosis of insulin in rat adipyte. Endocrinology 1986; 119: 572
  • Smith R. M., Jarett L. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-LI adipocytes by an insulin-receptor mediated proces. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 459
  • Bishop J. M. The molecular genetics of cance. Science 1987; 235: 305
  • Hunter T., Cooper J. A. Viral oncogenes and tyrosine phosphorylatio. The Enzymes (Part A), P. D. Boyer, E. G. Krebs. Academic Press, New York 1986; Vol. 17: 192
  • Bishop J. M. Viral oncogene. Cell 1985; 42: 23
  • Foulkes J. C., Rosner M. R. Tyrosine-specific protein kinases as mediators of growth contro. Molecular Mechunisms of Transmembrane Signalling, P. Cohen, M. Houslay. Elsevier, Amsterdam 1985; 217
  • Cohen S., Carpenter G., King J. L. Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activit. J. Biol. Chem 1980; 255: 4834
  • Hunter T., Cooper J. A. Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cell. Cell 1981; 24: 741
  • Carpenter G., King L., Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitr. Nature (london) 1978; 276: 409
  • Carpenter G., King L., Cohen S. Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth facto. J. Biol. Chem 1979; 254: 4884
  • Ek B., Westermark B., Wasteson A., Heldin C. H. Stimulation of tyrosine-specific phosphorylation by platelet-derived growth facto. Nature (london) 1982; 295: 419
  • Heldin C. H., Ek B., Ronnstrand L. Characterization of the receptor for platelet-derived growth factor on human fibroblast. J. Biol. Chem 1983; 258(10)054
  • Nishimura J., Huang J. S., Deud T. F. Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membrane. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 4303
  • Ed B., Heldin C. H. Characterization of a tyrosine-specific kinase activity in human fibroblast membranes stimulated by platelet-derived growth facto. J. Biol. Chem 1982; 257(10)486
  • Jacobs S., Kule F. C., Earp H. S., Svoboda M. E., Van Wyk J. J., Cuatrecasas P. Somatomedin-C stimulates the phosphorylation of the beta-subunit of its own recepto. J. Biol. Chem 1983; 258: 9581
  • Rubin J. B., Shia M. A., Pilch P. F. Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor-. Nature (london) 1983; 305: 438
  • Zick Y., Sasaki N., Rees-Jones R. W., Grunberger G., Nissley S. P., Rechler M. Insuli-like growth factor-I (IGF-1) stimulates tyrosine kinase activity in purified receptors from a rat liver cell lin. Biochem. Biophys. Res. Commun 1984; 119: 6
  • Sherr C. J., Rettenmier C. W., Sacca R., Roussel M. F., Look A. T., Stanley E. R. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-. Cell 1985; 41: 665
  • Rettenmier C. W., Chen J. H., Roussel M. F., Shorr C. J. The product of the c-fms proto oncogene: a glycoprotein with associated tyrosine kinase activit. Science 1985; 228: 320
  • Ullrich A., Coussells L., Hayflick J. S., Dull T. J., Gray A., Tam A. W., Lee J., Yarden Y., Libermann T. A., Schlessinger J., Downward J., Mayes E. L. V., Whittle N., Waterfield M. D., Seeburg P. H. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cell. Nature (london) 1984; 309: 418
  • Downward J., Yarden Y., Mayes E., Scrace G., Totty N., Stockwell P., Ullrich A., Schlessinger J., Waterfield M. D. Close similarity of epidermal growth factor receptor and V-erb-B oncogene protein sequence. Nature (London). 1984; 307: 521
  • Ullrlch A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E., Jacobs S., Francke U., Ramachandran J., Fujita-Yamaguchi Y. Insulin-like growth factor-I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional speificit. EMBO J 1986; 5: 2503
  • Schechter A. L., Stern D. G., Vaidyanathan L., Decker S. J., Drebin J. A., Greene M. I., Weinberg R. A. The neu oncogene: an erbB-related gene encoding a 185,000-Mr, tumor antige. Nature (london) 1984; 312: 513
  • Stern D. F., Hefferman P. A., Weinberg P. A. p185, a product of the neu proto-oncogene, is a receptor-like protein associated with tyrosine kinase activit. Mol. Cell. Biol 1986; 6: 1729
  • Coussens L., Yang-Feng T. L., Liao Y. C., Chen E., Gray A., McGrath J., Seiburg P. H., Libermann T. A., Schlessinger J., Francke U., Levinson A., Ullrich A. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogen. Science 1985; 230: 1132
  • Rechler M. M. The nature and regulation of the receptors for insulin-like growth factor. Annu. Rev. Physiol 1985; 47: 425
  • Froesch E. R., Schmid C., Schwander J., Zapf J. Actions of insulin-like growth factor. Annu. Rev. Physiol 1985; 47: 443
  • Yamamoto T., Davis C. G., Brown M. S., Schneider W. J., Casey M. L., Goldstein J. L., Russell D. W. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRN. Cell 1984; 39: 27
  • Sabatini D., Kreibich D., Morimoto G., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelle. J. Cell. Biol 1982; 92: 1
  • Neckameyer W. S., Wang L. Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene famil. J. Virol, 53
  • Martin-Zanca D., Hughes S., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequence. Nature (london) 1986; 319: 743
  • Hunter T. The proteins of oncogene. Sci. Am 1984; 251: 70
  • Sternberg M. J. E., Taylor W. R. Modelling the ATP-binding site of oncogene products, the epidermal growth factor receptor and related protein. FEES Lett 1984; 175: 387
  • Kemps M. P., Taylor S. S., Sefton B. M. Direct evidence that oncogene tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding site. Nature (london) 1984; 310: 589
  • Zoller M. J., Nelson N. C., Taylor S. S. Affinity labeling of cAMP-dependent protein kinase with p-fluorosulfonylbenzoyl adenine. Covalent modification of lysine 7. J. Biol. Chem. 1981; 256(10)837
  • Russo M. W., Lukas T. J., Cohen S., Staros J. V. Identification of residues in the nucleotide binding site of the epidermal growth factor receptor/kinas. J. Biol. Chem 1985; 260: 5205
  • Roth R. A., Cassell D. J. Insulin receptor: evidence that it is a protein kin. Science 1983; 219: 299
  • Van-Ohberghen E., Rossi B., Kowalski A., Gazzano H., Ponzio G. Receptor-mediated phosphorylaton of the hepatic insulin receptor: evidence that the Mr-95,000 receptor subunit is its own kinas. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 945
  • Shia M., Pilch P. F. The β-subunit of the insulin receptor is an insulin activated protein kinas. Biochemistry 1983; 22: 717
  • Chen W. S., Lazar C. S., Poenie M., Tsein R. Y., Gill G. N., Rosenfeld M. G. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF recepto. Nature (London), 328: 820
  • Czernilofsky A. P., Levinson A., Varmus H., Bishop J., Tischer E., Goodman H. Corrections to the nucleotide sequence of the src gene of Rous sarcoma viru. Nature (london) 1983; 301: 736
  • Czernilofsky A. P., Levinson A., Varmus H., Bishop J., Tiseher E., Goodman H. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for genes produc. Nature (london) 1980; 287: 198
  • Yarden Y., Escobedo J. A., Kuang W.-J., Yang-Feng T. L., Daniel T. O., Tremble P. M., Chen E. Y., Ando M. E., Harkins R. A., Francke U., Fried V. A., Ullrich A., Williams L. T. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptor. Nature (london) 1986; 323: 226
  • Van Obberghen E., Kowalsky A. Phosphorylation of the hepatic insulin recepto. FEES Lett 1982; 143: 179
  • Petruzzelli L. M., Ganguly S., Smith C. J., Cobb M. H., Rubin C. S., Rosen O. M. Insulin activates a tyrosine-specific protein base in extracts of 3T3-LI adipocytes and human placent. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 6792
  • Kasuga M., Zick Y., Blithe D. L., Karlsson F. A., Haring H. U., Kahn C. R. Insulin stimulation of phosphorylation of the beta subunit of the insulin recepto. J. Biol. Chem 1982; 257: 9891
  • White M. F., Maron R., Kahn C. R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cell. Nature (london) 1985; 318: 183
  • Kadowaki T., Koyasu S., Nishida E., Tobe K., Izumi T., Takaku F., Sakai H., Yahara I., Kasuga M. Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-lie growth factor-I, and epidermal growth factor in an intact cel. J. Biol. Chem 1987; 262: 7342
  • Izumi T., White M. F., Kadowaki T., Takaku F., Akanumo Y., Kasuga M. Insulin-like growth factor-I rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cell. J. Biol. Chem 1987; 262: 1282
  • Shemer J., Adamo M., Wilson G. L., Heffez D., Zick Y., Leroith D. Insulin and IGF-1 stimulate a common endogenous phosphoprotein substrate (pp 185) in intact neuroblastoma cell. J. Biol. Chem 1987; 262(15)476
  • White M. F., Stegmann E. W., Dull T. J., Ullrich A., Kahn C. R. Characterization of an endogenous substrate of the insulin receptor in cultured cell. J. Biol. Chem 1987; 262: 9769
  • Maehicao F., Urumow T., Wieland O. H. Phosphorylation-dephosphorylation of purified insulin receptor from human placent. FEBS Lett 1982; 149: 96
  • Kasuga M., Zick Y., Blithe D. L., Crettaz M., Kahn C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free syste. Nature (london) 1982; 298: 667
  • Avruch J., Nemenoff R. A., Blackshear P. J., Pierce M. W., Osathanondh R. Insulinstimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membrane. J. Biol. Chem 1982; 257(15)162
  • Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., Kahn C. R. Tyrosine-specific protein kinase activity is associated with the purified insulin recepto. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 2137
  • Stadtmauer L. A., Rosen O. M. Phosphorylation of exogenous substrates by the insulin receptor-associated protein kinas. J. Biol. Chem 1983; 258: 6682
  • Zick Y., Rees-Jones R. W., Grunberger G., Taylor S. I., Moncada V., Gordern P., Roth J. The insulin-stimulated receptor kinase is a tyrosine-specific casein kinas. Eur. J. Biochem 1983; 137: 631
  • Zick Y., Kasuga M., Kahn C. R., Roth J. Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free syste. J. Biol. Chem 1983; 258: 75
  • Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., White M. F., Kahn C. R. Characterization of the insulin receptor kinase purified from human placental membrane. J. Biol. Chem 1983; 258(10)973
  • Shemer J., Perrotti N., Roth J., Leroith D. Characterization of an endogenous substrate related to insulin and insulin-like growth factor-I receptors in lizard brai. J. Biol. Chem 1987; 262: 3436
  • Petruzzeli L. M., Herrera R., Rosen O. M. Insulin receptor is an insulin dependent tyrosine protein kinase: copurification of insulin binding activity and protein kinase activity to homogeneity from human placent. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 3227
  • Crettaz M., Kahn C. R. Analysis of insulin action using differentiated and dedifferentiated hepatoma cell. Endocrinology 1983; 113: 1201
  • Ballotti R., Kowalsky A., White M. F., Le Marchand-Brustel Y., Van-Obberghen E. Insulin stimulates tyrosine phosphorylation of its receptor β-subunit in intact rat hepatocyte. Biochem. J 1987; 241: 99
  • Fehlmann M., Morin O., Kitabgi P., Freycbet P. Insulin and glucagon receptors of isolated rat hepatocytes: comparison between hormone binding and amino acid transport stimulatio. Endocrinology 1981; 101: 253
  • King G. L., Kahn C. R. Non-parallel evolution of metabolic and growth promoting functions of insuli. Nature (london) 1981; 292: 644
  • White M. F., Takayama S., Kahn C. R. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitr. J. Biol. Chem 1985; 260: 9470
  • Swarup G., Cohen S., Bargers D. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatase. J. Biol. Chem 1981; 256: 8197
  • Pang D. T., Sharma B. R., Shafer J. A., White M. F., Kahn C. R. Predominance of tyrosine phosphorylation of insulin receptors during the initial response of intact cells to insuli. J. Biol. Chem 1985; 260: 7131
  • Herrera R., Rosen O. M. Autophosphorylation of the insulin receptor in vitro. Designation of phosphorylation sites and correlation with receptor kinase activatio. J. Biol. Chem 1986; 261(11)980
  • Tornqvist H. E., Pierce M. W., Frackelton A. R., Nemenoff R. A., Avruch J. Identification of insulin receptor tyrosine residues autophosphorylated in vitr. J. Biol. Chem. 1987; 262(10)212
  • White M. F., Shoelson S. E., Keutmann H., Kahn C. R. A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin recepto. J. Biol. Chem 1988; 263: 2969
  • Stadtmauer L., Rosen O. M. Phosphorylation of synthetic insulin receptor kinase and evidence that the preferred sequence containing Tyr-1150 is phosphorylated in viv. J. Biol. Chem. 1986; 261(10)000
  • Herrera R., Petruzzelli L., Thomas N., Bramson H. N., Kaiser E. T., Rosen O. M. An antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activit. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 7899
  • Haring H. U., Kasuga M., Kahn C. R. Insulin receptor phosphorylation in intact adipocytes and in a cell-free syste. Biochem. Biophys. Res. Commun 1982; 108: 1538
  • Burant C. F., Treutelaar M. K., Landreth G. E., Buse M. G. Phosphorylation of insulin receptors solubilized from rat skeletal muscl. Diabetes 1984; 33: 704
  • Nemenoff R. A., Kwok Y. C., Shulman G. I., Blackshear P. J., Osathanondh R., Anuch J. Insulin-stimulated tyrosine protein kinase. Characterization and relation to the insulin recepto. J. Biol. Chem 1984; 259: 5058
  • Zick Y., Spiegel A. M., Sagi-Eisenberg R. Insulin-like growth factor-I receptors in retinal rod outer segment. J. Biol. Chem 1987; 262(10)259
  • Staros J. V., Cohen S., Russo M. W. Epidermal growth factor receptor: characterization of its protein kinase activit. Molecular Mechanisms of Transmembrane Signalling, P. Cohen, M. D. Houslay. Elsevier, Amsterdam 1985; 253
  • White M. F., Haring H. U., Kasuga M., Kahn C. R. Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from rat hepatoma cell. J. Biol. Chem 1984; 259: 255
  • Shia M. A., Rubin J. B., Pilch P. F. The insulin receptor protein kinase. Physicochemical requirements for activit. J. Biol.Chem 1983; 258(14)450
  • Weber W., Bertics P. J., Gill G. N. Immunoafiinity purification of the epidermal growth factor receotor. Stoichiometry of binding and kinetics of self-phosphorylatio. J. Biol. Chem 1984; 259(14)631
  • Sasaki N., Rees-Jones R. W., Zick Y., Nissley S. P., Rechler M. M. Characterization of insulin-like growth factor-I-stimulated tyrosine kinase activity associated with the β-subunit of type I insulin-like growth factor receptors of rat liver cell. J. Biol. Chem 1985; 260: 9793
  • Rangel-Aldao R., Rosen O. M. Mechanism of self-phosphorylation of adenosine 3':5'-monophosphate-dependent protein kinase from bovine cardiac muscl. J. Biol. Chem 1976; 251: 7526
  • Hedo J. A., Harrison L. C., Roth J. Binding of insulin receptors to lectins: evidence of common carbohydrate determinants on several membrane receptor. Biochemistry 1981; 20: 3385
  • Rosen O. M., Herrera R., Olowe Y., Petruzzelli L. M., Cobb M. H. Phosphorylation activates the insulin receptor tyrosine protein kinas. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 3237
  • Pike L. J., Kuenzel E. A., Casnellie J. E., Krebs E. G. A comparison of the insulin and epidermal growth factor-stimulated protein kinases from human placent. J. Biol. Chem 1984; 259: 9913
  • Harrison's Principles of Internal Medicine7th ed. McGraw-Hill, Tokyo, 414
  • Pang D. T., Shafer J. A. Inhibition of the activation and catalytic activity of insulin receptor kinase by Zn2+ and other divalent metal ion. J. Biol. Chem 1985; 260: 5126
  • Zick Y. Regulation of insulin receptor kinase activity by transition elements: activation by Mn2+ and inhibition by Zn2+. 67th Annu. Meet. of the Endocrine Society. Baltimore June 19 to 21, 1985; 27
  • Swarup G., Cohen S., Garbers D. L. Inhibition of membrane phosphotyrosyl-protein phosphame activity by vanadat. Biochem. Biophys. Res. Commun 1982; 107: 1104
  • Sibley D. R., Benovic J. L., Caron M. G., Lebkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylatio. Cell 1987; 48: 913
  • Dohlman H. G., Caron M. G., Lefkowitz R. J. A family of receptors coupled to guanine nucleotide regulatory protein. Biochemistry 1987; 26: 2657
  • Schlessinger J. Allosteric regulation of the epidermal growth factor receptor kinas. J. Cell Biol 1986; 103: 2067
  • Kahn C. R., Baird K. L., Jarrett D. B., Flier P. S. Direct demonstration that receptor crosslinking or aggregation is important in insulin actio. Proc. Natl. Acad. Sci. U.S.A 1978; 75: 4209
  • Isersky C., Taurog J. D., Poy G., Metzger H. Triggering of cultured neoplastic mast cells by antibodies to the receptor for Ig. J. Immunol 1978; 121: 549
  • Schechter Y., Hernaez L., Schlessinger J., Cuatrecasas P. Local aggregation of hormone-receptor complexes is required for activation by epidermal growth facto. Nature (London). 1979; 278: 835
  • Flier J. S., Kahn C. R., Roth J., Bar R. S. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistanc. Science (Washington, D.C 1975; 190: 63
  • O'Brien R. M., Soos M. A., Siddle K. Monoclonal antibodies to the insulin receptor stimulate the intrinsic tyrosine kinase activity by cross-linking receptor molecule. EMBO J 1987; 6: 4003
  • Boni-Schnetzler M., Rubin J. B., Pilch P. F. Structural requirements for the transmembrane activation of the insulin receptor kinas. J. Biol. Chem 1986; 261(15)281
  • Riedel H., Dull T. J., Schlessinger J., Ullrich A. A chimeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature (london) 1986; 324: 68
  • Ellis L., Morgan D. O., Jong S.-M, Wang L. H., Roth R. A., Rutter W. J. Heterologous transmembrane signaling by a human insulin receptor-V-ros hybrid in Chinese hamster ovary cell. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 5101
  • Ponzio G., Dolais-Kitabgi J., Louvard D., Gautier N., Rossi B. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activit. EMBO J 1987; 6: 333
  • Forsayeth J. R., Caro J. F., Sinha M. K., Maddux B. A., Goldfine I. D. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activit. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 3448
  • Forsayeth J. R., Montemurro A., Maddux B. A., De Pierro R., Goldfine I. D. Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulatio. J. Biol. Chem 1987; 262: 4134
  • Kathuria S., Hartman S., Grunfeld C., Ramachandran J., Fujita-Yamaguchi Y. Differential sensitivity of two functions of the insulin receptor to the associated proteolysis: kinase action and hormone bindin. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 8570
  • Simpson I. A., Hedo J. A. Insulin receptor phosphorylation may not be a prerequisite for acute insulin actio. Science 1984; 223: 1301
  • Rees-Jones R. W., Hendricks S. A., Quarum M., Roth J. The insulin receptor of rat brain is coupled to tyrosine kinase activit. J. Biol. Chem 1984; 259: 3470
  • Gherzi R., Russel D. S., Taylor S. I., Rosen O. M. Reevaluation of the evidence that an antibody to the insulin receptor is insulinmimetic without activating the protein tyrosine kinase activity of the recepto. J. Biol. Chem 1987; 262(16)900
  • Yu K.-T., Czech M. P. Tyrosine phosphorylation of the insulin receptor β subunit activates the receptor associated tyrosine kinase activit. J. Biol. Chem 1984; 259: 5277
  • Kohanski R. A., Lane D. Kinetic evidence for activating and nonactivating components of autophosphorylation of the insulin receptor protein kinas. Biochem. Biophys. Res. Commun 1986; 134: 1312
  • Klein H. H., Freidenberg G. R., Kladde F. M., Olefsky J. M. Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. An in vitro system to measure histone kinase activity of insulin recepotrs activated in viv. J. Biol. Chem 1986; 261: 4691
  • Kwok Y. C., Nemenoff R. A., Powers A. C., Avruch J. Kinetic propenies of the insulin receptor tyrosine protein kinase: activation through an insulin stimulated tyrosine-specific, intramolecular autophosphorylatio. Arch. Biochem. Biophys 1986; 244: 102
  • Morrison B. D., Pain J. E. Insulin stimulation of the insulin receptor kinase can occur in the complete absence of p subunit autophosphorylatio. J. Biol. Chem 1987; 262: 2861
  • White M. Transmission of the insulin signal by tyrosine phosphorylatio. J. Endocrinol 1987; 115, (Suppl., Abstr. 18).
  • Yu K. T., Werth D. K., Pastan I. H., Czech M. P. Src kinase catalyzes the phosphorylation and activation of the insulin recpetor kinas. J. Biol. Chem 1985; 260: 5838
  • Hanafusa H. Compr. Virol 1977; 10: 401
  • Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin dependence of Ca2+/calmodulin-dependent protein kinase I. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 4253
  • Bertics P. J., Gill G. N. Self phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor recepto. J. Biol. Chem 1985; 260(14)642
  • Downward J., Watefield M. D., Parker P. J. Autophosphorylation and protein kinase C phosphorylation of the epidermal growth factor receptor. Effect on tyrosine base activity and ligand binding affinit. J. Biol. Chem 1985; 260(14)538
  • Cartwright C. A., Eckart W., Simon S., Kaplan P. L. Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domai. Cell 1987; 49: 83
  • Piwanca-Worms H., Saunders K. B., Roberts T. M., Smith A. E., Cheng S. H. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-src. Cell 1987; 49: 75
  • Kmiecik T. E., Shalloway D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylatio. Cell 1987; 49: 65
  • Yu K.-T., Czech M. P. Tyrosine phosphorylation of insulin receptor β subunit activates the receptor tyrosine kinase in intact H-35 hepatoma cell. J. Biol. Chem 1986; 261: 4715
  • Arsenis G., Livingston J. N. Alterations in the tyrosine kinase activity of the insulin receptor produced by in vitro hyperinsulinemi. J. Biol. Chem 1986; 261: 147
  • Gazzano H., Kowalsky A., Fehimann M., Van Obberghen E. Two different protein kinase activities are associated with the insulin recepto. Biochem. J 1983; 216: 575
  • Braum S., Raymond W. E., Racker E. Synthetic tyrosine polymers as substrates and inhibitors of tyrosine-specific protein kinase. J. Biol. Chem 1984; 259: 2051
  • Zick Y., Grunberger G., Rees-Jones R. W., Comi R. Use of tyrosine-containing polymers to characterize the substrate specificity of insulin and other hormone-stimulated tyrosine kinase. Eur. J. Biochem 1985; 148: 177
  • Hunter T., Sefton B. Transforming gene product of Rous sarcoma virus phosphorylates tyrosin. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 1311
  • Chinkers N., Cohen J. Purified EGF receptor-kinase interacts specifically with antibodies to Rous sarcoma virus transforming protei. Nature (london) 1981; 290: 516
  • Pike L. J., Gallis B., Camellie J. E., Bornstein P., Krebs E. G. Epidermal growth factor stimulates the phosphorylation of synthetic tyrosine-containing peptides by A431 cell membrane. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 1443
  • Smart J. E., Oppermann H., Czernilofsky A. P., Purchio A. F., Erikson R. L., Bishop J. M. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60c-src) and its normal cellular homologue (pp60c-src. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 6013
  • Casnellie J. E., Harrison M. L., Pike L. S., Hellstrom K. E., Krebs E. G. Phosphorylation of synthetic peptides by a tyrosine protein kinase from the particulate fraction of a lymphoma cell lin. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 282
  • Gloss D. B., Masaracchia R. A., Feramisco J. R., Kemp B. E. Isolation of phosphorylated peptides and proteins on ion exchange paper. Anal. Biochem 1978; 87: 566
  • Ito S., Richert N. D., Pastan I. Phospholipids stimulate phosphorylation of vinculin by the tyrosine-specific protein kinase of Rous sarcoma viru. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 4628
  • Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic M-dependent protein kinas. J. Biol. Chem 1977; 252: 4888
  • Hunter T. Synthetic peptide substrates for a tyrosine protein kinas. J. Biol. Chem 1982; 257: 4843
  • House C., Baldwin G. S., Kemp B. E. Synthetic peptide substrates for the membrane tyrosine protein kinase stimulated by epidermal growth facto. Eur. J. Biochem 1984; 140: 363
  • Sela M., Katchalski A. Spectrophotometric titration of alpha amino acid copolymers containing tyrosin. J. Am. Chem. Soc 1956; 78: 3986
  • Sela M., Fuchs S., Arnon R. Studies on the chemical basis of the antigenicity of protein. Biochem. J 1962; 85: 223
  • Fasrnan G. D. Polyomino Acids, G. D. Fasman. Marcel Dekker, New York 1967; 499
  • Zick Y. Natural and synthetic substrates for the insulin receptor kinas. Receptor Biochemistry and Methodology Insulin Receptors, C. R. Kahn, L. C. Hanison. Alan R. Liss, New York 1988; 147
  • Grunberger G., Zick Y., Taylor S. I., Gorden P. Tumor-promoting phorbol ester stimulates tyrosine phosphorylation in U-937 monocyte. Proc. Nail. Acad. Sci. U.S.A 1984; 81: 2762
  • Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid dependent protein kinase by tumor-promoting phorbol ester. J. Biol. Chem 1982; 257: 7847
  • Klein H. H., Freidenberg G. R., Cordera R., Olefsky J. M. Substrate specificities of insulin and epidermal growth factor receptor kinase. Biochem. Biophys. Res. Commun 1985; 127: 254
  • Schneider J. A., Diamond I., Rozengurt E. Glycolysis in quiescent cultures of 3T3 cells. Addition of serum, epidermal growth factor, and insulin increases the activity of phosphofructokinase in a protein synthesis-independent manne. J. Biol. Chem 1978; 253: 872
  • Diamond I., Legg A., Schneider J. A., Rozengurt E. Glycolysis in quiescent cultures of 3T3 cells. Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after all homogenizatio. J. Biol. Chem 1978; 253: 866
  • Allen W. R., Nilsen-Hamilton M., Hamilton T. T. Insulin and growth factors stimulate rapid post-translational changes in glucose transport in ovarian granulosa cell. J. Cell. Physiol 1981; 108: 15
  • Cooper J. A., Hunter T. Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular protein. Mol. Cell. Biol 1981; 1: 394
  • Cooper J. A., Bowen-Pope P. F., Raines E., Ross R., Hunter T. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular protein. Cell 1982; 31: 263
  • Cooper J. A., Hunter T. Regulation of cell growth and transformation by tyrosine-specific protein kinases: the search for important cellular substrate protein. Curr. Top. Microbiol. Immunol 1983; 107: 125
  • Cooper J. A., Sefton B. N., Hunter T. Detection and quantification of phosphotyrosine in protein. Methods Enzymol 1983; 99: 387
  • Ross A. H., Baltimore D., Eisen H. N. Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic peptid. Nature (london) 1981; 294: 654
  • Ek B., Heldm C. H. Use of antiserum against phosphotyrosine for the identification of phosphorylated components in human fibroblasts stimulated by platelet-derived growth facto. J. Biol. Chem 1984; 259(11)145
  • Comoglio P. M., Dipenzo M. F., Tarone G., Giancotti F. G., Naldini L., Marchisio P. C. Detection of phosphotyrosine-containing proteins in the detergent-insoluble fraction of RSV-transformed fibroblasts by azobenzene phosphonate antibodie. EMBO J 1984; 3: 483
  • Wang J. Y. J. Isolation of antibodies for phosphotyrosine by immunization with a V-abl oncogene-encoded protei. Mol. Cell. Biol 1985; 5: 3640
  • Morla A. O., Wang J. Y. J. Protein tyrosine phosphorylation in the cell cycle of Balb/c 3T3 fibroblast. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 8191
  • Naldini L., Stachini A., Cirillio D. M., Aglietta M., Gavasto F., Comoglio P. M. Phosphotyrosine antibodies identify the p210C-abl tyrosine kinase and proteins phosphorylated on tyrosine in human chronic myelogenous leukemia cell. Mol. Cell. Biol 1986; 6: 1803
  • Gibbs E. M., Allard W. J., Lienhard G. E. The glucose transporter in 3T3-L1 adipocytes is phosphorylated in response to phorbol ester but not in response to insuli. J. Biol. Chem 1986; 261(16)597
  • Perrotti N., Accili D., Marcus-Samuels B., Rees-Jones R. W., Taylor S. I. Insulin stimulates phosphorylation of a 120-kDa glycoprotein substrate (pp 120) for the receptor-associated protein kinase in intact H-35 hepatoma cell. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 3137
  • Rees-Jones R. W., Taylor S. I. An endogenous substrate for the insulin receptor-associated tyrosine kinas. J. Biol. Chem 1985; 260: 4461
  • Sadoul J. L., Peyron J. F., Ballotti R., Debant A., Feblmann M., Van-Obberghen E. Identification of a cellular 110,000 kDa protein substrate for the insulin-receptor kinas. Biochem. J 1985; 227: 887
  • Phillips S. A., Perrotti N., Taylor S. I. Rat liver membranes contain a 120-kDa glycoprotein which serves as a substrate for the tyrosine kinases of the receptors for insulin and epidermal growth facto. FEBS Lett 1987; 212: 141
  • Haring H. U., White M. F., Machicao F., Ermel B., Schleicher E., Obermaier B. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cell. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 113
  • Bernier M., Laird D. M., Lane M. D. Insulin-activated tyrosine phosphorylation of a 15-kibdalton protein in intact 3T3-LI adipyte. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 1844
  • Frost S. C., Kohanski R. A., Lane M. D. Effect of phenylarsine oxide on insulin-dependent protein phosphorylation and glucose transport in 3T3-LI adipocyte. J. Biol. Chem 1987; 262: 9872
  • Frost S. C., Lane M. D. Evidence for the involvement of vicinal sulfiydryl groups in insulin-activated hexose transport by 3T3-LI adipocyte. J. Biol. Chem 1985; 260: 2642
  • Colca J. R., De Wald D. B., Pearson J. D., Palazuk B. J., Laurino J. P., McDonald J. M. Insulin stimulates the phosphorylation of calmodulin in intact adipocyte. J. Biol. Chem 1987; 262(11)399
  • Haring H. U., White M. F., Kahn C. R., Ahmad Z., De Paoli-Roach A., Roach P. J. Interaction of the insulin receptor kinase with serine/threonine kinases in vitr. J. Cell. Biochem 1985; 28: 171
  • Graves C. B., Gale R. D., Laurino J. P., McDonald J. M. The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmoduli. J. Biol. Chem 1986; 261(10)429
  • Dedman J. R., Jackson R. L., Schriber W. E., Means A. R. Sequence homology of the Ca2+-dependent regulator of cyclic nucleotide phosphcdiesterase from rat testis with other Ca2+-binding protein. J. Biol. Chem 1978; 253: 343
  • McDonald J. M., Bruns D. E., Jarett L. Ability of insulin to increase calcium binding by adipocyte plasma membrane. Proc. Natl. Acad. Sci. U.S.A 1976; 73: 1542
  • Goewert R. R., Klaven N. B., McDonald J. M. Direct effect of insulin on the binding of calmodulin to rat adipocyte plasma membrane. J. Biol. Chem 1983; 258: 9995
  • McDonald J. M., Pershadslngh H. A. The role of calcium in the transduction of insulin actio. Molecular Basis of Insulin Action, M. P. Czech. Plenum Press, New York 1985; 103
  • Williams F. F., Turtle J. M. Terbium, a fluorescent probe for insulin receptor binding. Evidence for a conformational change in the receptor protein due to insulin bindin. Diabetes 1984; 33: 1106
  • Graves C. B., Goewert R. R., McDonald J. M. The insulin receptor contains a calmodulin binding protei. Science 1985; 230: 827
  • Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinase. Annu. Rev. Biochem 1987; 56: 567
  • Chock P. B., Rhee S. G., Stadtman G. R. Interconvertible enzyme cascades in cellular regulatio. Annu. Rev. Biochem 1980; 49: 813
  • Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reaction. Eur. J. Biochem 1973; 34: 1
  • Ahmad Z., De Paoli-Roach A. A., Roach P. J. Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthas. J. Biol. Chem 1982; 257: 8348
  • Itarte E., Huang K.-P. Purification and properties of cyclic-AMP-independent glycogen synthase kinase 1 from rabbit skeletal muscl. J. Biol. Chem 1979; 254: 4052
  • Payne E. M., Soderling T. R. Calmodulin-dependent glycogen synthase kinas. J. Biol. Chem 1980; 255: 8054
  • Ray L. B., Sturgill T. W. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-LI adipocytes that phosphorylate microtubule-associated protein 2 in vitr. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 1502
  • Yu K. T., Khalaf N., Czech M. P. Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosin. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 3972
  • Sefton B. M., Hunter T., Ball E. H., Singer S. J. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma viru. Cell 1981; 24: 165
  • Gallis B., Edelman A. M., Casnellie J. E., Krebs E. G. Epidermal growth factor stimulates tyrosine phosphorylation of the myosin regulatory light chain from smooth muscl. J. Biol. Chem 1983; 258(13)089
  • Kadowaki T., Fujita-Yamaguchi Y., Nishida E., Takaku F., Akiyama T., Kathuria S., Akanuma Y., Kasuga M. Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinas. J. Biol. Chem 1985; 260: 4016
  • Hiller G., Weber K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissue. Cell 1978; 14: 795
  • Geiger B. A 130 K protein from chicken gizzard its localization at the termini of microfilament bundles in cultured chicken cell. Cell 1979; 18: 193
  • Burridge K., Connell L. A new protein of adhesion plaques and ruffling membrane. J. Cell Biol 1983; 97: 359
  • Marshall S. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptor. J. Biol. Chem 1985; 260(13)524
  • King G. L., Rechler M. M., Kahn C. R. Interaction between the receptors for insulin and the insulin-like growth factor on adipocyte. J. Biol. Chem 1982; 257(10)001
  • Bockus B. J., Stiles C. D. Regulation of cytoskeletal architecture by platelet-derived growth factor, insulin and epidermal growth facto. Exp. Cell Res 1984; 153: 186
  • Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protei. Proc. Natl. Acad. Sci. U.S.A 1975; 72: 177
  • Goldenring J. R., Gonzalez B., McGuire J. S., Jr., De Lorenzo R. J. Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated protein. J. Biol. Chem 1983; 258(12)632
  • Barra H. S., Arce C. A., Rodriguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit into microtubule protein. Biochem. Biophys. Res. Commun 1974; 60: 1384
  • Gundersen G. G., Kalnoski M. H., Bulinski J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently, in viv. Cell 1984; 38: 779
  • Ponstingl H., Krauhs E., Little M., Kempf T. Complete amino acid sequence of α-tubulin from porcine brai. Proc. Nurl. Acad. Sci. U.S.A 1981; 78: 2757
  • Woo D. L., Fay S. P., Griest R., Coty W., Goldfine I., Fox C. F. Differential phosphorylation of the progesterone receptor by insulin, epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinase. J. Biol. Chem 1986; 261: 460
  • Ghosh-Dastidar P., Coty W. A., Griest R. E., Woo D. D. L., Fox C. F. Progesterone receptor subunits are high affinity substrates for phosphorylation by epidermal growth factor recepto. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 1654
  • Weigel N. L., Tash J. S., Means A. R., Schrader W. T., O'Malley B. W. Phosphorylation of hen progesterone receptor by cAMP-dependent protein kinas. Biochem. Biophys. Res. Commun 1981; 102: 513
  • Compton J. G., Schrader W. T., O'Malley B. W. DNA sequence preference of the progesterone recepto. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 16
  • Spelsherg T. C., Pikler G. M., Webster R. A. Progesterone binding to hen oviduct genome: specific versus men-specific bindin. Science 1976; 294: 197
  • Goodridge A. G. Hormonal regulation of the expression of the genes for malic enzyme and fatty acid synthas. Molecular Busis of Insulin Acrion, M. P. Czech. Plenum Press, New York 1985; 369
  • Northup J. K. Overview of the guanine nucleotide regulatory protein systems, Ns and Ni, which regulate adenylate cyclase activity in plasma membrane. Molecular Mechanism of Transmembrance Signalling, P. Cohen, M. Houslay. Elsevier, Amsterdam 1985; 91
  • Spiegel A. M. Signal transduction by guanine nucleotide binding protein. Mol. Cell. Endocrinol 1987; 49: 1
  • Gilman A. G. G-proteins: transducers of receptor-generated signal. Annu. Rev. Biochem 1987; 56: 615
  • Michel T., Winslow J. W., Smith J. A., Seidman J. G., Neer E. J. Characterization of cDNA encoding the GTP-binding protein αi and identification of a related protein, a. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 7663
  • Robishaw J. D., Russel D. W., Harris B. A., Smigel M. D., Gilmar A. G. Deduced primary structure of the α subunit of the GTP-binding stimulatory protein of adenylate cyclas. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 1251
  • Itoh H., Kozasa T., Negata S., Nakamura S., Katada T., Ui M., Iwai S., Ohtsuka E., Kawasai H., Suzuki K., Kaziro Y. Molecular cloning and sequence determination of cDNAs for a subunits of the guanine nucleotide-binding proteins Gs, Gi and Go from rat brai. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 3776
  • Goldsmith P., Rossiter K., Carter A., Simonds W., Unson C. G., Vinitsky R., Spiegel A. M. Identification of the GTP-binding protein encoded by Gi, complementary DN. J. Biol. Chem 1988; 263: 6476
  • Northup J. K., Sternweiss P. C., Gilman A. G. The subunits of the stirnulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (α) subuni. J. Biol. Chem 1983; 258(11)369
  • Hildebrandt J. D., Sekura R. D., Codina J., Igengar R., Manclark C. R., Birnbaumer L. Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory protein. Nurure (london) 1983; 302: 706
  • Sternweiss P. C., Robishaw J. D. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclas. J. Biol. Chem 1984; 259(14)222
  • Yamazaki A., Stein P. J., Chernoff N., Bitensky M. W. Activation mechanism of rod outer segment cyclic GMP phosphodiesterase. Release of inhibitors by the GTP/GTP-binding protei. J. Biol. Chem 1983; 258: 8188
  • Heyworth C. M., Houslay M. D. Insulin exerts actions through a distinct species of guanine nucleotide regulatory protein: inhibition of adenylate cyclas. Biochem. J 1983; 214: 547
  • Heyworth C. M., Rawal S., Houslay M. D. Guanine nucleotides can activate the insulin stimulated phosphodiesterase in liver plasma membrane. FEBS Lett 1983; 154: 87
  • Nishizuka Y. Studies and perspectives of protein kinase . Science 1986; 233: 305
  • Hokin L. E. Receptors and phosphoinositide-generated second messenger. Annu. Rev. Biochem 1985; 54: 205
  • Majerus P. W., Neufeld E. J., Wilson D. B. Production of phosphoinositide-derived messenger. Cell 1984; 37: 701
  • Berridge M. J. Inositol triphosphate and diacylglycerol: two interacting second messenger. Annu. Rev. Biochem 1987; 56: 159
  • Houslay M. D., Wakelman M. J. O., Pyne N. J. The mediator is the message: is it part of the answer of insulin's actio. TIBS 1986; 11: 393
  • Saltiel A. R., Cuatrecasas P. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipi. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 5793
  • Saltiel A. R., Sherline P., Fox J. A. Insulin-stimulated diacylglycerol production results from the hydrolysis of a novel phosphatidylinositol glyca. J. Biol. Chem 1987; 262: 1116
  • Saltiel A. R., Fox J. A., Sherline P., Cuatrecasas P. Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesteras. Science 1986; 233: 967
  • Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membrane. Science 1988; 239: 268
  • Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol tumove. J. Biol. Chem 1980; 255: 2273
  • Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen action. J. Biol. Chem 1983; 258: 2010
  • Begin-Heick N. Absence of the inhibitory effect of guanine nucleotides on adenylate cyclase activity in white adipocyte membranes of the ob/ob mous. J. Biol. Chem 1985; 260: 6187
  • Grawler D., Milligan G., Spiegel A. M., Unson C. G., Houslay M. D. Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabete. Nature (london) 1987; 327: 229
  • Korn L. J., Siebel C. W., McCornick F., Roth R. A. Ras p21 as a potential mediator of insulin action in Xenopus oocyte. Science 1987; 234: 840
  • Gilman A. G. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclas. J. Clin. Invest 1984; 73: 1
  • Cassel D., Sellinger Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GT. Proc. Natl. Acad. Sci. U.S.A 1978; 75: 4155
  • Gilman A. G. G proteins and dual control of adenylate cyclas. Cell 1984; 36: 577
  • Downs R. W., Reen S. A., Levine M. A., Aurbach G. D., Spiegel A. M. Cholera-toxin-dependent ADP-ribosylation of the adenylate cyclase regulatory protein in turkey erythrocyte membrane. Arch. Biochem. Biophys 1981; 209: 284
  • Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribowlation of a membrane protei. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 3129
  • Zick Y., Sagi-Elsenberg R., Pines M., Gierschik P., Spiegel A. M. Multisite phosphorylation of the α-subunit of transducin by the insulin receptor kinase and protein kinast . Proc. Natl. Acad. Sci. U.S.A 1986; 83: 9294
  • O'Brien R. M., Houslay M. D., Magan G., Siddle K. The insulin receptor tyrosyl kinase phosphorylates holomeric forms of the guanine nucleotide regulatory proteins Gi and G. FEBS Lett 1987; 212: 281
  • Katada T., Gilman A. G., Watanabe Y., Bauer J., Jacobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclas. Eur. J. Biochem 1985; 151: 431
  • Yanagita Y., Abdel-Ghany M., Raden D., Nelson N., Racker E. Polypeptide-dependent protein kinase from baker's yeas. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 925
  • Fung B. K.-K., Nash C. R. Characterization of transducin from bovine retinal Rod outer segmen. J. Biol. Chem 1983; 258(10)503
  • Rodbell M. Programmable messengers: a new theory of hormone actio. Trends Biochem. Sci 1985; 10: 461
  • Zick Y., Grunberger G., Podskalny J. M., Moncada V., Taylor S. I., Gorden P., Roth J. Insulin stimulates phosphorylation of serine residues in soluble insulin receptor. Biochem. Biophys. Res. Commun 1983; 116: 1129
  • Kirsch D., Kemmler W., Haring H. U. Cyclic AMP modulates insulin binding and induces post receptor insulin resistance of glucose transport in isolated rat adipocyte. Biochem. Biophys. Res. Commun 1983; 115: 398
  • Pessin J. E., Gotomer W., Oka Y., Oppenheimer C. L., Czech M. P. β-Adrenergic regulation of insulin and epidermal growth factor receptors in rat adipocyte. J. Biol. Chem 1983; 258: 7386
  • Deibert C., De Fronzo R. A. Epinephrine-induced insulin resistance in ma. J. Clin. Invest 1980; 65: 717
  • Bramson H. N., Kaiser E. T., Mildvan A. S. Mechanistic studies of cAMP-dependent protein kinase actio. CRC Crit. Rev. Biochem 1984; 15: 93
  • Cohen P. The role of protein phosphorylation in the hormonal control of enzyme activit. Eur. J. Biochem 1985; 151: 439
  • Krebs E. G. The phosphorylation of proteins: a major mechanism for biological regulatio. Biochem. Soc. Trans 1985; 13: 813
  • Stadtmauer L., Rosen O. M. Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin recepto. J. Biol.Chem 1986; 261: 3402
  • Roth R. A., Beaudin J. Phosphorylation of purified insulin receptor by cAMP kinas. Diabetes 1987; 36: 124
  • Joost H. G., Steinfelder H. J., Schmitz-Salue C. Tyrosine kinase activity of insulin receptor from human placent. Biochem. J 1986; 233: 677
  • Gilman A. G. G proteins and dual control of adenylate cyclas. Cell 1984; 36: 577
  • Dicker P., Rozengurt E. Stimulation of DNA synthesis by tumor promoter and pure mitogenic factor. Nature (london) 1978; 276: 723
  • Brown K. D., Dicker P., Rozengurt E. Inhibition of epidermal growth factor binding to surface receptors by tumor promoter. Biochem. Biophys. Res. Commun 1979; 86: 1037
  • Farese R. V., Standert M. L., Barnes D. E., Davis J. S., Pollet R. J. Phorbol ester provokes insulin-like effects on glucose transport, amino acid uptake, and pyruvate dehydrogenase activity in BC3H-1 cultured myocyte. Endocrinology 1985; 116: 2650
  • Van de Werve G., Proietto J., Jeanrenaud B. Tumor-promoting phorbol esters increase basal and inhibit insulin-stimulated lipogenesis in rat adipocytes without decreasing insulin bindin. Biochem. J 1985; 225: 523
  • Moolenaar W. H., Tertoolem G. G. J., de Laat S. W. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic p. Nature (london) 1984; 312: 371
  • Tabarine D., Heinreich J., Rosen O. M. Activation of S6 kinase activity in 3T3-LI cells by insulin phorbol este. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 4369
  • Spach D. H., Nemenoff R. A., Blackshear P. J. Protein phosphorylation and protein kinase activities in BC3H-1 myocytes. Differences between the effects of insulin and phorbol ester. J. Biol. Chem 1986; 261(12)750
  • Grunberger G., Gorden P. Affinity alteration of insulin receptor induced by phorbol este. Am. J. Physiol 1982; 243: E319
  • Robert A., Grunberger G., Carpentier J. L., Dayer J. M., Orci L., Gorden P. The insulin receptor of human monocyte-like cell line: characterization and functio. Endocrinology 1984; 114: 247
  • Shoyab M., De Larco J. E., Todaro C. J. Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptor. Nature (London). 1979; 279: 387
  • Thomopoulos P., Testa U., Gourdin M. F., Hervy C., Titeux M., Vainchenker W. Inhibition of insulin receptor binding by phorbol ester. Eur. J. Biochem 1982; 129: 389
  • Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase . Proc. Natl. Acad. Sci. U.S.A 1983; 80: 36
  • Hachiya H., Takayama S., White M. F., King G. L. Regulation of insulin receptor internalization in vascular endothelial cells by insulin and phorbol este. J. Biol. Chem 1987; 262: 6417
  • Jacobs S., Cuatrecasas P. Phosphorylation of receptor for insulin and insulin-like growth factor-I. Effects of hormones and phorbol ester. J. Biol. Chem 1986; 261: 934
  • Jacobs S., Sahyoun N., Saltiel A. R., Cuatrecasas P. Phorbol esters stimulate the phosphorylation of receptors for insulin and Somatomedin . Proc. Natl. Acad. Sci. U.S.A 1983; 80: 6211
  • Bollag G. E., Roth R. A., Beaudoin J., Mochly-Rosen D., Koshland D. E. J. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activit. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 5822
  • Iwashita S., Fox F. Epidermal growth factor and potent phorbol tumor promoters induce epidermal growth factor receptor phosphorylation in a similar but distinctively different manner in human epidermoid carcinoma A-431 cell. J. Biol. Chem 1984; 259: 2559
  • Cochet C, Gill G. N., Meisenhelder J., Cooper J. A., Hunter T. C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activit. J. Biol. Chem 1984; 259: 2553
  • Seals J. R. Intracellular mediators of insulin actio. Molecular Basis of Insulin Action, M. P. Czech. Plenum Press, New York 1985; 199
  • Downes P., Michell R. Inositol phospholipid breakdown as a receptor controlled generator of second messenger. Molecular Mechanisms of Transmembrane Signalling, P. Cohen, M. D. Houslay. Elsevier, Amsterdam 1985; 3
  • Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesteras. Nature (london) 1985; 314: 534
  • Jackowski S., Rettenmier C. W., Sherr C. J., Rock C. O. A guanine nucleotide-dependent phosphatidylinositol 4,5-diphosphate phospholipase C in cells transformed by the V-fms and V-fes onco-gene. J. Biol. Chem 1986; 261: 4978
  • Litosh I., Wallis C., Fain J. W. 5-Hydroxy tryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdow. J. Biol. Chem 1985; 260: 5464
  • Walaas S. I., Horn R. S., Adler A., Albert V. A., Wdaas O. Insulin increases membrane protein kinase C activity in rat diaphrag. FEBS Lett 1987; 220: 311
  • Farese R. V., Kuo J. Y., Babischkin J. J., Davis J. S. Insulin provokes a transient activation of phospholipase C in the rat epididymal fat pa. J. Biol. Chem 1986; 261: 8589
  • Besteman J. M., Watson S. P., Cuatrecasas P. Lack of association of epidermal growth factor-, insulin-, and serum-induced mitogenesis with stimulation of phosphoinositide degradation in BALB/c 3T3 fibroblast. J. Biol. Chem 1986; 261: 723
  • L'Allemain G., Pouyssegur J. EGF and insulin action in fibroblasts: evidence that phosphoinositide hydrolysis is not an essential mitogenic signalling pathwa. FEBS Lett 1986; 197: 344
  • Blackshear P. J., Nemenoff R. A., Hovis J. G., Halsey D. L., Stumpo D. J., Huang S. K. Insulin action in normal and protein kinase C-deficient rat hepatoma cells. Effects on protein phosphorylation, protein kinase activities, and ornithine decarboxylase activities and messenger ribonucleic acid level. Mol. Endocrinol 1987; 1: 44
  • Ellis L., Morgan D. O., Clauser E., Roth R. A., Rutter W. J. A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2-deoxyglucos. Mol. Endocrinol 1987; 1: 15
  • Snyder M. A., Bishop J. M., McGrath J. P., Levinson A. D. A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicit. Mol. Cell. Biol 1985; 5: 1772
  • Hanniak M., Donoghue D. Lysine residue 121 in the proposed ATP-binding site of the V-mos protein is required for transformatio. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 7894
  • Weinmaster G., Zaller M. J., Pawson T. A lysine in the ATP-binding site of PI3Ogag-fps is essential for protein-tyrosine kinase activit. EMBO J 1985; 5: 69
  • Hari J., Roth R. A. Defective internalization of insulin and its receptor in cells expressing mutated insulin receptors lacking kinase activit. J. Biol. Chem 1987; 262(15)341
  • Harrison L. C., King-Roach A. P. Insulin sensitivity of adipose tissue in vitro and the response to exogenous insulin in obese human subject. Metabolism 1976; 25: 1095
  • Kolterman O. G., Insel J., Saekow M., Olefsky J. M. Mechanisms of insulin resistance in human obesit. J. Clin. Invest 1980; 65: 1272
  • Olefsky J. M. Insulin resistance and insulin action. An in vitro and in vivo perspectiv. Diuberes 1981; 30: 148
  • Grunberger G., Taylor S. I., Dons R. F., Gorden P. Insulin receptors in normal and disease state. Clinics in Endocrinology and Metabolism12th ed., R. N. Claylan. Saunders W. B., London 1983; 191
  • Rizza R. A., Mandarino L. J., Gerich J. E. Mechanism and significance of insulin resistance in non-insulin dependent diabetes mellitu. Diabetes 1981; 30: 990
  • Bar R. S., Muggeo M., Kahn C. R., Gordern P., Roth J. Characterization of insulin receptors in patients with the syndrome of insulin resistance and acanthosis nigrican. Diubetologia 1980; 18: 209
  • Podskalny J. M., Kahn C. R. Cell culture studies on patients with extreme insulin resistance. I. Receptor defects on cultured fibroblast. J. Clin. Endocrinol. Merab 1982; 54: 267
  • Taylor S. I., Hedo J. A., Underhlll L. H., Kasuga M., Elders M. J., Rotb J. Extreme insulin resistance in association with abnormally high binding affinity of insulin receptors from a patient with leprechaunism: evidence for a defect intrinsic to the recepto. J. Clin. Endocrinol. Metab 1982; 55: 1108
  • Rechler M. M. Leprechaunism and related syndromes with primary insulin resistance: heterogeneity of molecular defect. Membranes and Generic Disease. Alan R. Liss, New York 1982; 245
  • Taylor S. I., Underhill L. H., Hedo J. A., Roth J., Rim M. S., Blizzard R. M. Decreased insulin binding to cultured cells from a patient with the Rabson-Mendenhall syndrome: dichotomy between studies with cultured lymphocytes and cultured fibroblast. J. Clin. Endocrinol. Merab 1983; 56: 856
  • Wachslicht-Rodhad H., Muggeo M., Kahn C. R., Saviolakis G. A., Harisson L. C., Flier J. A. Heterogeneity of the insulin-receptor interaction in lipostrophic diabete. J. Clin. Endocrinol. Metab 1981; 52: 416
  • Grunberger G., Comi R. J., Taylor S. I., Gorden P. Tyrosine kinase activity of the insulin receptor of patients with type A extreme insulin resistance: studies with circulating mononuclear cells, and cultured lymphocyte. J. Clin. Endocrinal. Merab 1984; 59: 1152
  • Wittaker J., Zick Y., Roth J., Taylor S. I. Insulin-stimulated receptor phosphorylation appears normal in cultured Epstein-Ban virus-transformed lymphocyte cell lies derived from patients with extreme insulin resistanc. J. Clin. Endocrinol. Merab 1985; 60: 381
  • Cama A., Taylor S. I. Tyrosine kinase activity of insulin receptors from an insulin resistant patient with leprechaunis. Diaberologia 1987; 30: 631
  • Shargill N. S., Tatoyan A., El-Refai M. F., Pleta M., Chan T. M. Impaired insulin receptor phosphorylation in skeletal muscle membranes of DB/DB mice: the use of a novel skeletal muscle plasma membrane preparation to compare insulin binding and stimulation of receptor phosphorylatio. Biochem. Biophys. Res. Commun 1986; 137: 286
  • Tanti J. F., Gremeaux T., Braundenburg D., Van Obberghen E., Le Marchand-Brustel Y. Brown adipose tissue in lean and obese mice. Insulin-receptor binding and tyrosine kinase activit. Diabetes, 35: 1243
  • Friedenberg G. R., Klein H. H., Gordera R., Olefsky J. M. Insulin receptor kinase activity in rat liver. Regulation by fasting and high carbohydrate feedin. J. Biol. Chem 1985; 260(12)444
  • Simon J., Rosebrough R. W., McMurtry J. P., Stele N. C., Roth J., Adamo M., Leroith J. Fasting and refeeding alter the insulin receptor tyrosine kinase in chicken liver but fail to affect brain insulin receptor. J. Biol. Chem 1986; 261(17)081
  • De Franco R. A., Gunnarson R., Bjorkman O., Olsson M., Warren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulm dependent (type II) diabetes mellutu. J. Clin. Invest 1985; 76: 149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.