459
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Structure and Function of Suppressor tRNAs in Higher Eukaryote

Pages 71-96 | Published online: 26 Sep 2008

References

  • Murgola E. J. Mutant glycine tRNAs and other wonders of translation suppressio. Transfer RNAs and Other Soluble RNAs, J. D. Cherayil. CRC Press, Boca Raton, FL, in press
  • Eggertsson G., Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in E. coli. Microbiol. Rev. 1988; 52: 354
  • Murgola E. J. tRNA, suppression, and the cod. Ann. Rev. Genet. 1985; 19: 57
  • Sherman F. Suppression in yeast Saccharomyces cerevisiae. Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, J. N. Strathem, E. W. Jones, J. R. Broach. Cold Spring Harbor Laboratories, New York 1982; 463
  • Steege D. A., Söll D. G. Suppressio. Biological Regulation and Development, R. F. Goldberger. Plenum Press, New York 1979; Vol. 1: 433
  • Smith J. D. Suppressor tRNAs inprokaryote. m Nonsense Mutations and rRNA' Suppressors, J. E. Celis, J. D. Smith. Academic Press, New York 1979; 109
  • Körrner A. M., Freinstein S. I., Altman S. Transfer RNA-mediated suppressio. Transfer RNA, S. Altman. MIT Press, Cambridge 1978; 105
  • Hill C. W. Informational suppression of missense mutation. Cell 1975; 6: 419
  • Celis J. E., Piper P. W. Nonsense suppressors in eukaryote. Trends Biochem. Sci. 1981; 6: 177
  • Hatiield D. Suppression of termination codons in higher eukaryote. Trends Biochem. Sci. 1985; 10: 201
  • Valle R. P. C., Morch M.-D. Stop making sense or regulation at the level of termination in eucaryotic protein synthesi. FEBS Lett. 1988; 235: 1
  • Hatiield D., Lee B. J., Smith D. W. E., Oroszfan S. Role of nonsense, frameshift and missense suppressor tRNAs in mammalian cell. Progress in Molecular and Subcellular Biology
  • Yoshinaka Y., Katoh I., Copeland T. D., Oroszfan S. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codo. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 1618
  • Yoshinaka Y., Katoh I., Copeland T. D., Oroszlan S. Translational readthrough of an amber termination codon during synthesis of feline leukemia virus proteas. J. Virol. 1985; 55: 870
  • Kuchino Y., Beier H., Akita N., Nishimura S. Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia viru. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2668
  • Feng Y.-X., Hatfield D., Rein A., Levin J. G. Translational readthrough of the murine leukemia virus gag gene amber codon does not require virus-induced alteration of tRNATyr/. J. Virol. 1989; 63: 2405
  • Bienz M., Kubli E. Wild-type tRNATyr/G reads the TMV RNA stop codon, but Q base-modified tRNATVQ does no. Nature 1981; 294: 188
  • Suter B., Altwegg M., Choffat Y., Kubli E. The nucleotide sequence of two homogeneic Drosophila melanogaster tRNATyr iso-acceptors: application of a rapid tRNA anticodon sequencing method using S-1 nucleas. Arch. Biochem. Biophys. 1986; 247: 233
  • Beier H., Barciszewska M., Krupp G., Mitnacht R., Gross H. J. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAsTyr with suppressor activity from tobacco plant. EMBOJ. 1984; 3: 351
  • Beier H., Barclszewski M., Sickinger H.-D. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extract. EMBO J. 1984; 3: 1091
  • Beier H., Zech U., Zubrod E., Kersten H. Queuine in plants and plant tRNAs: differences between embryonic tissue and mature leave. Plant Mol. Biol. 1987; 8: 345
  • Shindo-Okada N., Akimoto H., Nomura H., Nishmura S. Recognition of UAG termination codon by mammalian tyrosine tRNA containing 6-thioqueuine in the first position of the anticodo. Proc. Jpn. Acad. 1985; 61: 94
  • Barclszewski J., Barciszewski M., Suter B., Kubli E. Plant tRNA suppressors: in vivo readthrough properties and nucleotide sequence of yellow lupin seeds tRNATyr. Plant Sci. 1985; 40: 193
  • Feng Y.-X., Dong L., Zhang Y. Homogenous sequence in the anticodon of natural UAG suppressor tRNA M1. Acta Biochim. Bio-phys. Sinica 1986; 18: 95
  • Valle R. P. C., Morch M.-D, Haenni A.-L. Novel amber suppressor tRNAs of mammalian origi. EMBO J. 1987; 6: 3049
  • Geller A. I., Rich A. UGA termination suppression tRNATrp active in rabbit reticulocyte. Nature 1980; 283: 41
  • Diamond A., Dudock B., Hatfield D. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodo. Cell 1981; 25: 497
  • Hatfield D., Diamond A., Dudock B. Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRN. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 6215
  • Lee B. J., Worland P. J., Davis J., Stadtman T. C., Hatfleld D. Identification of a selenocysteyl-tRNA” in mammalian cells which recognizes the nonsense codon UG. J. Biol. Chem. 1989; 264: 9724
  • Tuite M. F., Bower P. A., McLaughlin C. S. A novel suppressor tRNA from the dimorphic fungus Candiah albicans. Biochim. Biophys. Acta 1986; 866: 26
  • Shinnick T. M., Lerner R. A., Sutelife J. G. Nucleotide sequence of moloney murine leukemia viru. Nature 1981; 293: 543
  • Philipson L., Andersson P., Olshevsky U., Weinberg R., Baltimore D. Translation of MuLv and MSV RNAs in nuclease-treated reticulocyte extracts: enhancement of the gag-pol polypeptide with yeast suppressor tRN. Cell 1978; 13: 189
  • Kuchino Y., Nishimura S., Sehroeder H. C., Rottman M., Miiller W. E. G. Selective inhibition of formation of suppressor glutamine tRNA in Moloney murine leukemia virus-infected NIH-3T3 cells by Avaro. Virology 1988; 165: 518
  • Müller W. E. G., Schröder H. C., Reuter P., Sarin P. S., Hess G., Meyer Zum Biisehenfelde K.-H., Kuchino Y., Nishimura S. Inhibition of expression of natural UAG suppressor glutamine tRNA in HIV-infected human H9 cells in vitro by Avaro. AIDS Res. Human Retroviruses 1988; 4: 279
  • Pangmiban A. T. Retroviral gag gene amber codon suppression is caused by an intrinsic cis-acting component of the viral mRN. J. Virol. 1988; 62: 3574
  • Pure G. A., Robinson G. W., Naumovski L., Friedberg E. C. Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln” gen. J. Mol. Biol. 1985; 183: 31
  • Weiss W. A., Friedberg E. C. Normal yeast tRNAGln/ CAG can suppress amber codons and is encoded by an essential gen. J. Mol. Biol. 1986; 192: 725
  • Lin J. P., Aker M., Sitney K. C., Mortimer R. L. First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRN. Gene 1986; 49: 383
  • Weiss W. A., Edelman I., Culbertson M. R., Friedberg E. C. Physiological levels of normal tRNAGln/CAG can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 8031
  • Tukalo M. A., Vlasov V., Vasil'chenko I., Matsuka G., Knorre D. Dokl. Akad. Nauk SSSR 1980; 253: 253
  • Vasil'ieva I. G., Tukalo M. A., Krikliviy I. A., Matduka G. C. Mol. Biol. Akad. Nauk SSSR 1984; 18: 1321
  • Crick F. H. C. Codon-anticodon pairing: the wobble hypothesi. J. Mol. Biol. 1966; 19: 548
  • Sprinzl M., Harmann T., Meissner F., Moll J., Vorder-Wiilbecke T. Compilation of tRNA sequences and tRNA gene. Nucleic Acids Res. 1987; 15: r53
  • Wilson R. K., Roe B. A. Presence of hypermodified nucleotide N6-(Δ2-isopentenyl)-2-methylthioadenosine prevents misreading by E. coli phenylalanyl-tRN. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 409
  • Björk G. R., Erickson J. U., Gustafsson C. E. D., Hagervall T. G., Jönsson Y. H., Wilkström P. M. Transfer RNA modificatio. Annu. Rev. Biochem. 1987; 56: 263
  • Farkas W. R. Queuine, the Q-containing tRNAs and the enzyme responsible for their formatio. Nucleosides Nucleotides 1983; 2: 1
  • Feng Y.-X., Dong L., Zhu L., Zhang Y. The influence of natural suppressor tRNA upon infection of tobacco mosaic viru. Acra Biochim. Biophys. Sinica 1986; 18: 381
  • Meshi T., Ishikawa M., Motoyoshi F., Semba K., Okada Y. In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic viru. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 5043
  • Ishikawa M., Ma T., Motoyoshi F., Taknmatsu N., Okada Y. In vitro mutagenesis of the putative replicase genes of tobacco mosaic viru. Nucleic Acids Res. 1986; 14: 8291
  • Topal M. D., Fresco J. R. Complementary base pairing and the origin of substitution mutation. Nature 1976; 263: 285
  • Jank P., Shindo-Okada N., Nishimura S., Gross H. J. Rabbit liver tRNAVal: primary structure and unusual codon recognitio. Nucleic Acids Res. 1977; 4: 1999
  • Johnson P. F., Abelson J. The yeast tRNATyr gene intron is essential for correct modification of its tRNA produc. Nature 1983; 302: 681
  • Ward D. C., Reich E. Conformational properties of polyfor-mycin: a polyribonucleotide with identical residues in the syn conformatio. Proc. Natl. Acad. Sci. U.S.A. 1968; 61: 1494
  • Kubli E. Codon U.S.Age and Q-base modification in Drosophila me-lanogaster. Chromatographic and Other Analytical Methods in Nucleic Acids Modification Research, C. W. Gehrke, K. D. Kuo. Elsevier, New York, in press
  • Doerig R. E., Suter B., Gray M., Kubli E. Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gen. EMBO J. 1988; 7: 2579
  • Kubli E., Suter B., Doerig R., Choffat Y. Suppressors, introns and stage specific expression of tRNATyr genes in Drosophila melanogaster. Genetics of Translation, M. F. Tuite. Springer-Verlag, Berlin 1988; Vol. H14: 235
  • Kubli E. Molecular mechanism of suppression in Drosophila. Trends in Genetics. Elsevier, Amsterdam 1986; 2: 204
  • Suter B., Kubli E. The transfer RNATyr genes of Drosophila melanogaster: expression of single copy genes studied by S-1 mappin. Mol. Cell Biol. 1988; 8: 3322
  • Choffat Y., Suter B., Behra R., Kubli E. Pseudouridine modification in tRNATyr anticodon is dependent upon presence, but independent of size and sequence of the intron in eukaryotic tRNATyr gene. Mol. Cell. Biol. 1988; 8: 3332
  • van Tol H., Beier H. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodo. Nucleic Acids Res. 1988; 16: 1951
  • Stange N., Beier H. A gene for the major cytoplasmic tRNATyr from Nicotiana rustica contains a 13 nucleotides long intro. Nucleic Acids Res. 1986; 14: 8691
  • van Tol H., Stange N., Gross H. J., Beier H. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathway. EMBO J. 1987; 6: 35
  • van Tol H., Gross H. J., Beier H. Non-enzymatic excision of pre-tRNA intron. EMBO J. 1989; 8: 293
  • Feng Y.-X., Levin J., Hatfield D., Schaefer T., Gorelick R., Rein A. Suppression of UAA and UGA termination codons in mutant murine leukemia viru. J. Virol. 1989; 63: 2870
  • Li G., Rice C. M. Mutagenesis of the in-frame opal termination codon preceding nsP4 of Sindbis virus: studies of translational read-through and its effect on virus replicatio. J. Virol. 1989; 63: 1326
  • Hatfield D., Portugal F. H. Seryl-tRNA in mammalian tissues: chromatographic differences in brain and liver and a specific response to the codon, UG. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 1200
  • Mäenpää P. H., Bernfield M. R. A specific hepatic transfer RNA forphosphoserin. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 688
  • Hatfield D. Recognition of nonsense codons in mammalian cell. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 3014
  • Sharp S. J., Stewart T. S. The characterization of phosphoseryl tRNA from lactating bovine mammary glan. Nucleic Acids Res. 1977; 4: 2123
  • Kato N., Hoshino H., Harada F. Minor serine tRNA containing anticodon NCA(C4 RNA) from human and mouse cell. Biochem. Int. 1983; 7: 635
  • Mizutani T., Hashimoto A. Purification and properties of suppressor seryl-tRNA: ATP phosphotransferase from bovine live. FEBS Len. 1984; 169: 319
  • Hatfield D. L., Dudock B. S., Eden F. C. Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segment. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 4940
  • O'Neill V. A., Eden F. C., Pratt K., Hatfield D. A human opal suppressor tRNA gene and pseudogen. J. Biol. Chem. 1985; 260: 2501
  • Pratt K., Eden F. C., You K. H., O'NeiU V. A., Hatfield D. Conserved sequences in both coding and 5′ flanking regions of mammalian opal suppressor tRNA gene. Nucleic Acids Res. 1985; 13: 4765
  • Lee B. J., Rajagopalan M., Kim Y., You K., Jacobson B., Hatfield D. Selenocysteine tRNA(Ser)Sec gene is ubiquitous within the animal kingdom, submitted
  • McBride O. W., Rajagopalan M., Hatfield D. Opal suppressor phosphoserine tRNA gene and pseudogene are located on human chromosomes 19 and 22, respectivel. J. Biol. Chem. 1987; 262: 11163
  • Lee B. J., de la Peña P., Tobian J. A., Zasloff M., Hatfield D. Unique pathway of expression of an opal suppressor phosphoserine tRN. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 6384
  • Lee B. J., Kang S. G., Hatfield D. Transcription of Xenopus selenocysteine tRNASer (formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5′ extragenic regulatory element. J. Biol. Chem. 1989; 264: 9696
  • Stewart T., Sharp S. Characterizing the function of Oβphosphoseryl-tRN. Methods Enzymol. 1984; 106: 157
  • Mizutani T., Kanbe K., Kimura Y., Tachibana Y., Hitaka T. Non-partition of opal suppressor phosphoseryl-transfer ribonucleic acid (tRNA) in phosphosehe aminohansferase catalysi. Chem. Phann. Bull. 1987; 36: 824
  • Mizutani T., Tachibana Y. Possible incorporation of phosphoserine into globin readthrough protein via bovine opal suppressor phosphoseryl-tRN. FEBS Lett. 1986; 207: 162
  • Chambers I., Frampton J., Goldfarb P., Mara N., McBain W., Harrison P. R. The structure of the mouse gluthione per-oxidase gene: the selenocysteine in the active site is encoded by the “termination” codon, TG. EMBO J. 1986; 5: 1221
  • Mullenbach G. T., Tabrizi A., Irvine B. D., Bell G. I., Tainer J. A., Hallewell R. A. Selenocysteine's mechanism of incorporation and evolution revealed in cDNAs of three glutathione per-oxidase. Protein Eng. 1988; 2: 239
  • Mullenbach G. T., Tabrizi A., Irvine B. D., Bell G. I., Halle well R. A. Sequence of a cDNA coding for human glutathione peroxidase confms TAG encodes active site selenocystein. Nucleic Acids Res. 1987; 15: 5484
  • Sukenaka Y., Ishida K., Takeda T., Takagi K. cDNA sequence coding for human glutathione peroxidas. Nucleic Acids Res. 1987; 15: 7178
  • Reddy A. P., Hsu B. L., Reddy P. S., Li N.-Q., Thyagaraju K., Reddy C. C., Tam M. F., Tu C.-P. Expression of glutathione peroxidase I gene in selenium-deficient rat. Nucleic Acids Res. 1988; 16: 5557
  • Sundee R. A., Evenson J. K. Serine incorporation into the selenocysteine moiety of glutathione peroxidas. J. Biol. Chem. 1987; 262: 933
  • Zhoni F., Birkmann A., Stadtman T. C., Böek A. Nucleotide sequence and expression of the selenocysteine-containing poly-peptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1986; 84: 3156
  • Zinoni F., Birkmann A., Leiielder E., Böck A. Co-trans-lational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codo. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 3156
  • Leinfelder W., Zehelein E., Mandrand-Berthelot M.-A., Böck A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocystein. Nature 1988; 331: 723
  • Leinfelder W., Stadtman T. C., Böck A. Occurrence in vivo of selenocysteyl-tRNAS”ucA in E. coli: effect of sel mutation. J. Biol. Chem. 1989; 264: 9720
  • Böck A., Stadtman T. C. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanis. Biofactors 1988; 1: 245
  • McBride O. W., Mitchell A., Lee B. J., Mullenback G., Haffield D. Gene for selenium-dependent glutathione peroxidase maps to human chromosome 3,21 and . Biofactors 1988; 1: 285
  • Mizutani T., Narihara T., Hashmoto A. Purification and properties of bovine liver seryl-tRNA synthetas. Eur. J. Biochem. 1984; 143: 9
  • Fucharoen S., Fucharoen G., Fucharoen P., Fukumaki Y. A novel ochre mutation in the β-thalassemia gene of a Thai. Identification by direct cloning of the entire β-globin gene amplified using polymerase chain reactio. J. Biol. Chem. 1989; 264: 7780
  • Chambers I., Harrison P. R. A new puzzle in selenoprotein biosynthesis: selenocysteine seems to be encoded by the “stop” codon, UG. Trends Biochem. Sci. 1987; 12: 255
  • Engelberg-Kula H., Schoulaker-Schwarz R. Stop is not the end: physiological implications of translational readthroug. J. Theor. Biol. 1988; 131: 477
  • Engelberg-Kulka H., Schoulaker-Schwarz R. A flexible genetic code, or why does selenocysteine have no unique codo. Trends Biochem. Sci. 1988; 13: 419
  • Mizutani T., Hitab T. Stronger affinity of reticulocyte release factor than natural suppressor tRNASer for the opal termination codo. FEBS Lett. 1988; 226: 227
  • Hatfield D., Matthews C. R., Rice M. Aminoacyl-transfer RNA populations in mammalian cells: chromatographic profiles and patterns of codon recognitio. Biochim. Biophys. Acta 1979; 564: 414
  • Hatfield D., Varricchio F., Rice M., Forget B. G. The aminoacyl-tRNA population of human reticulocyte. J. Biol. Chem. 1982; 257: 3183
  • Hatfield D., Rice M. Aminoacyl-tRNA(anticodon): codon adaptation in human and rabbit reticulocyte. Biochem. Inf. 1986; 13: 835
  • Hatfield D., Thorgeirsson S. S., Copeland T. D., Oroszlan S., Bustin M. Immunopurification of the suppressor tRNA dependent rabbit β-globin readthrough protei. Biochemisfry 1988; 27: 1179
  • Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codon. J. Mol. Biol. 1983; 164: 59
  • Bossi L. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the messag. J. Mol. Biol. 1983; 164: 73
  • Kohli J., Grosjean H. U.S.Age of the three termination codons: compilation and analysis of the known eukaryotic and prokaryotic translation termination sequence. Mol. Gen. Genef. 1981; 182: 430
  • Kubli E., Schmidt T., Martin P. F., Sofer W. In vitro suppression of a nonsense mutant of Drosophila melanogasfer. Nucleic Acids Res. 1982; 10: 7145
  • Strauss E. G., Rice C. M., Strauss J. H. Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codo. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 5271
  • Strauss E. G., Rice C. M., Strauss J. H. Complete nucleotide sequence of the genomic RNA of Sindbis viru. Virology 1984; 133: 92
  • Bienz M., Kubli E., Kohli J., de Henau S., Huez G., Marbaix G., Grosjean H. U.S.Age of three termination codons in a single eukaryotic cell, the xenopus laevis oocyte. Nucleic Acids Res. 1981; 9: 3835
  • Pelham H. R. B. Leaky UAG termination codon in tobacco mosaic virus RN. Nature 1978; 272: 469
  • Ziegler V., Richards K., Guilley H., Jonard T., Putz C. Cell-free translation of beet necrotic yellow vein virus: readthrough of the coat protein cistro. J. Gen. Virol. 1985; 66: 2079
  • Laprevotte I., Hampe A., Sherr C. J., Galibert F. Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia viru. J. Virol. 1984; 50: 884
  • Goelet P., Lomonossoft G. P., Butler P. J. G., Akam M. E., Gait M. J., Karn J. Nucleotide sequence of tobacco mosaic virus RN. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 5818
  • Bouzouhaa S., Ziegler V., Beck D., Guilley H., Richards K., Jonard G. Nucleotide sequence of beet necrotic yellow vein virus RNA-. J. Gen. Virol. 1986; 67: 1689
  • Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RN. Methods Enzymol. 1983; 96: 50
  • Roberts B. E., Paterson B. M. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9s RNA in a cell-free system from commercial wheat ger. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2330
  • Gesteland R., Wills N. Use of Yeast suppressors for identification of adenovirus nonsense mutant. Nonsense Mufafions and fRNA Suppressors, J. E. Celis, J. D. Smith. Academic Press, London 1979; 279
  • Marotta C., Wilson J., Forget B. G., Weissman S. Human globin messenger RNA nucleotide sequences derived from complementary DN. J. Biol. Chem. 1977; 252: 5040
  • Efstratiadis A., Kafatos F., Maniatis T. The primary structure of rabbit p-globin mRNA as determined from cloned DN. Cell 1977; 10: 571
  • Kohli J., Kwong T., Altruda F., Söü D. Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNA. J. Biol. Chem. 1979; 254: 1546
  • Gesteland R. F., Wills N., Lewis J. B., Grodzicker T. Identification of amhr and ochre mutants of the human virus Ad2+ND. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4567
  • Cremer K. J., Bodemer M., Summers W. P., Summers W. C., Gesteland R. F. In vifro suppression of UAG and UGA mutants in the thymidine kmase gene of herpes simplex viru. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 430
  • Murphy E. C., Jr., Wills N., Arlinghaus R. B. Suppression of murine retrovirus polypeptide termination: effect of amber suppressor tRNA on the cell-free translation of Rauscher murine leukemia virus, Moloney murine leukemia virus, and Moloney murine sarcoma virus 124 RN. J. Virol. 1980; 34: 464
  • Nirenberg M., Leder P. RNA codewords and protein synthesis: the effect of trinucleotides upon the binding of sRNA to ribosome. Science 1964; 145: 1399
  • Hatfield D., Nirenberg M. Binding of radioactive oligonu-cleotides to ribosome. Biochemistry 1971; 10: 4318
  • Capecchi M. R., Vonder Haar R. A., Capecchi N. E., Sveda M. M. The isolation of a suppressible nonsense mutant in mammalian cell. Cell 1977; 12: 371
  • Bienz M., Kubli E., Kohli J., de Henau S., Grosjean H. Nonsense suppression in eukaryotes: the use of the Xenopus oocyte as an in vivo assay syste. Nucleic Acids Res. 1980; 8: 5169
  • Grosjean H., Kubli E. Functional aspects of tRNAs microin-jected into Xenopus laevis oocytes: results and perspective. Mi-croinjection and Organelle Transphnration Techniques. Academic Press, London 1986; 301
  • Young J. F., Capecchi M., Laski F. A., RajBhandary U. L., Sharp P. A., Palese P. Measurement of suppressor transfer RNA activit. Science 1983; 221: 873
  • Laski F. A., Belagaje R., RajBhandary U. L., Sharp P. A. An amber suppressor tRNA gene derived by site-specific mu-tagenesis: cloning and function in mammalian cell. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 5813
  • Hodgkin J. Novel nematode amber suppressor. Generics 1985; 111: 287
  • Hodgkin J., Kondo K., Waterston R. H. Suppression in the nematode Caenorhubditis elegans. Trends in Generics. Elsevier, Cambridge 1987; 325
  • Ho Y.-S., Kan Y. W. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site-specific mutagenesi. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2185
  • Ho Y.-S., Norton G. P., Palese P., Dozy A. M., Kan Y. W. Expression and function of suppressor tRNA genes in mammalian cell. Cold Spring Harbor Symposium on Quantirafive Biology. Cold Spring Harbor, New York 1986; Vol. 51: 1033
  • Hudziak R. M., Laski F. A., RajBhandary U. L., Sharp P. A., Capecchi M. R. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA gene. Cell 1982; 31: 137
  • Temple G. F., Dozy A. M., Roy K. L., Kan Y. W. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for β-thalassaemi. Nature 1982; 296: 537
  • Summers W. P., Summers W. C., Laski F. A., RajBhandary U. L., Sharp P. A. Functional suppression in mammalian cells of nonsense mutations in the herpes simplex virus thymidine kinase gene by suppressor tRNA gene. J. Virol. 1983; 47: 376
  • Laski F. A., Belagaje R., Hudziak R. M., Capecchi M. R., Norton G. P., Palese P., RajBhandary U. L., Sharp P. A. Synthesis of an ochre suppressor tRNA gene and expression in mammalian cell. EMBO J. 1984; 3: 2445
  • Capone J. P., Sharp P. A., RajBhandary U. L. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gen. EMBO J. 1985; 4: 213
  • Capone J. P., Sedivy J. M., Sharp P. A., RajBahndary U. L. Introduction of UAG, UAA, and UGA ncnsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cell. Mol. Cell. Biol. 1986; 6: 3059
  • Sedivy J. M., Capone J. P., RajBhandary U. L., Sharp P. A. An inducible mammalian amber suppressor: propagation of a poliovirus mutan. Cell 1987; 50: 379
  • Entwistle J. Primary structure of a C-hordein gene from barle. Carlsberg Res. Commun. 1988; 53: 247
  • Wandelt C., Feix G. Sequence of a 21 kDa zein gene from maize containing an in-frame stop codo. Nucleic Acids Res. 1989; 17: 2354
  • Bunn H. F., Forget B. G. Hemoglobin: Molecular Genetics and Clinical Aspects. W. B. Saunders, Philadelphia 1986
  • Molnar C. M., Reece T., Williams J. A., Bell J. B. Transformation of Drosophila melanogasrer with a suppressor tRNA gene (Sup3e tRNASer UgGA) from Schizosaccharomyces pombe. Genome 1988; 30: 211
  • Martin P. F., Place A. R., Pentz E., Sofer W. UGA nonsense mutation in the alcohol dehydrogenase gene of Drosophila melanogaster. J. Mol. Biol. 1985; 184: 221
  • Chia W., Savakis C., Karp R., Ashburner M. Adhn4 of Drosophila melanogaster is a nonsense mutatio. Nucleic Acids Res. 1987; 15: 3931
  • Karlik C. C., Coutu M. D., Fyrberg E. A. A nonsense mutation within the Act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscle. Cell 1984; 38: 711
  • Baserga S. J., Benz E. J., Jr. Nonsense mutations in the human p-globin gene affect mRNA metabolis. Proc. Nal. Acad. Sci. U.S.A. 1988; 85: 2056
  • Jogessar V. B., Westemeyer K., Webber B. B., Wilson J. B., Hu H., Gonzalez-Redondo J. M., Kutlar A., Huisman T. H. J. Hb natal or a2,(minus Tyr-Arg)P,: a high oxygen affmity α chain variant with a deleted carboxy-terminus resulting from a TAC → TAA (Tyr+ → terminating codon) mutation in codon a14. Biochim. Biophys. Acta 1988; 951: 36
  • Fei Y. J., Stomlng T. A., Kutlar A., Huisman T. H. J., Stamatoyannopoulos G. One form of inclusion body β-thalassemia is due to a GAA → TAA mutation at codon 121 of the β chai. Blood 1989; 73: 1075
  • Lehrman M. A., Goldstein J. L., Brown M. S., Russell D. W., Schneider W. J. Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domai. Cell 1985; 41: 735
  • Romeo G., Hassen H. J., StaempN S., Roncuzzi L., Cianetti L., Leonardi A., Vicente V., Mannucci P. M., Bertina R., Peschle C., Cortese R. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gen. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2829
  • Satoh K., Nukiwa T., Brantly M., Carver R. I., Jr., Hofkeer M., Courtney M., Crystal R. G. Emphysema associated with complete absence of a I-antitrypsin of a stop codon in an a l -antitrypsin-coding exo. Am. J. Human Genet. 1988; 42: 77
  • McAdam R. A., Goundis D., Reid K. B. M. A homozygous point mutation results in a stop codon in the Clq B-chain of a Clq-deficient individua. Immunogenetics 1988; 27: 259
  • Yanase T., Kagimoto M., Matsui N., Simpson E. R., Waterman M. R. Combined 17a-hydroxylase/17,20-lyase deficiency due to a stop codon in the N-terminal region of 17a-hydroxylase cytochrome P-450. Mol. Cell. Endocrinol. 1988; 59: 249
  • Hryniewicz M. M., Vonder Haar R. A. Polyamines enhance readthrough of the UGA termination codon in a mammalian messenger RN. Mol. Gen. Genet. 1983; 190: 336
  • Morch M.-D., Benicourt C. Polyamines stimulate suppression of amber termination codons in vitro by nod tRNA. Eur. J. Biochem. 1980; 105: 445
  • Burke J. F., Mogg A. E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics (3–418 and paromomyci. Nucleic Acids Res. 1985; 13: 6265
  • Powell L. M., Wallis S. C., Pease R. J., Edwards Y. H., Knott T. J., Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestin. Cell 1987; 50: 831
  • Chen S.-H., Habib G., Yang C.-Y., Gu Z.-W., Lee B. R., Weng S PA., Silberman S. S., Cai S.-J., Deslypere J. P., Ros-Seneu M., Gotto A. M., Jr., Li W.-H., Chan L. Apoli-poprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codo. Science 1987; 238: 363
  • Hardman D. A., Hotter A. A., Schilling J. W., Kane J. P. Carboxyl terminal analysis of human B-48 protein confirms the novel mechanism proposed for chain terminatio. Biochem. Biophys. Res. Commun. 1987; 149: 1214
  • Hipchi K., Hospattankar A. V., Law S. W., Megh N., Cort-Right J., Brewer H. B., Jr. Human apolipoprotein B (apoB) mRNA: identification of two distinct apoB mRNAs, an mRNA with the apo-B-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestin. Proc. Natl. Acad. Sci. V.S.A. 1988; 85: 1772
  • Davidson N. O., Powell L. M., Wallis S. C., Scott J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RN. J. Biol. Chem. 1988; 263: 13482
  • Herr W. Nucleotide sequence of AKV murine leukemia viru. J. Virol. 1984; 49: 471
  • Dayhuff T. J., Atkins J. F., Gesteland R. F. Characterization of ribosomal frameshift events by protein sequence analysi. J. Biol. Chem. 1986; 261: 7491
  • Weiss R. B., Dunn D. M., Atkins J. F., Gesteland R. F. Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshiftin. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor, NY 1987; Vol. 52: 687
  • Craigan W. J., Caskey C. T. Translational frameshifting: where will it sto. Cell 1987; 50: 1
  • Web R., Lindsley D., Falahee B., Gallant J. On the mechanism of ribosomal frameshifting at hungry codon. J. Mol. Biol. 1988; 203: 403
  • Hughes D., Thompson S., O'Connor M., Tuohy T., Nichols B., Atkins J. Genetic characterization of frameshift suppressors with new decoding propertie. J. Bacteriol. 1989; 171: 1028
  • Jacks T., Varmus H. E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshiftin. Science 1985; 230: 1237
  • Hizi A., Henderson L. E., Copeland T. D., Sowder R. C., Hixson C. V., Oroszlan S. Characterization of mouse mammary tumor virus gag-pol gene products and the ribosomal frameshift site by protein sequencin. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 7041
  • Jacks T., Townsley K., Varmus H. E., Majors J. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyprotein. Proc. Natl. Acud. Sci. V.S.A. 1981; 84: 4298
  • Jacks T., Power M. D., Masian F. R., Ludw P. A., Barr P. J., Varmus H. Characterization of ribosomal frameshifting in HIV-1 gag-pol expressio. Nature 1988; 331: 280
  • Jacks T., Madhani H. D., Masian F. R., Varmus H. E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol regio. Cell 1988; 55: 447
  • Wilson W., Braddock M., Adams S., Rathjen P., Kingsman S., Kingsman A. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast system. Cell 1988; 55: 1159
  • Mietz J. A., Grossman Z., Lueders K. K., Kuff E. L. Nucleotide sequence of a complete mouse intracistemal A-particle genome: relationship to known aspects of particle assembly and functio. J. Virol. 1987; 61: 3020
  • Brierley I., BoursneU M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. An efficient ribosomal frame-shifting signal in the, polymerase-encoding region of the coron-avirus IB. EMBO J. 1987; 6: 3779
  • Marlor R. L., Parkhurst S. M., Corces V. G. The Dro-sophih melanogarter gypsy transposable element encodes putative gene products homologous to retroviral protein. Mol. Cell. Biol. 1986; 6: 1129
  • Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Dro-sophila mehogaster. Nature 1984; 312: 659
  • Nam S. H., Kidokoro M., Shida H., Hatanaka M. Processing of gag precursor polyprotein of human T-cell leukemia virus type I by virus-encoded proteas. J. Virol. 1988; 62: 3718
  • Hatfield D., Feng Y.-X., Lee B. J., Rein A., Levin J. G., Omszlan S. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV-I, HTLV-1 and BL. Virology
  • Hatfield D., Lee B. J., Feng Y.-X., Levin J. G., Rein A., Oroszlan S. Mechanisms of ribosomal frameshifting for synthesis of the protease in HIV and other retroviruses and the possible use of hypomodified tRNAs in' the frameshift even. Proteases of Retro-viruses, Colloquium of the 14th Internutionul Congress of Biochemisrry, V. Kostka. Walter de Gruyter, Berlin 1989; 25
  • Meir F., Suter B., Grosjean H., Keith G., Kubli E. Queu-osine modification of the wobble base in tRNAHis influences “in vivo” decoding propertie. EMBO J. 1985; 4: 823
  • Smith D. W. E., Hatfield D. Effects of post-translational base modifications on the site-specific function of transfer RNA in eukaryote translatio. J. Mol. Biol. 1986; 189: 663
  • Moore R., Mxon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J. Virol. 1987; 61: 480
  • Seii M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the pro-virus genome integrated in leukemia cell DN. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3618
  • Hiramatsu K., Nishida J., Naito A., Yoshikura H. Molecular cloning of the closed circular provirus of human T cell leukemia virus type I: a new open reading frame in the gag-pol regio. J. Gen. Virol. 1987; 68: 213
  • Inoue J.-I., Watanabe T., Sato M., Oda A., Toyoshma K., Yoshida M., Seiki M. Nucleotide sequence of the protease-coding region in an infectious DNA of simian retrovirus (STLV) of the HTLV-1 famil. Virology 1986; 150: 187
  • Shiotohno K., Takahashi Y., Shimizu N., Gojobori T., Golde D. W., Chen I. S., Miwa M., Sugimura T. Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gen. Proc. Natl. Acud. Sci. U.S.A. 1985; 82: 3101
  • Stephens R. M., Casey J. W., Rice N. R. Equine infectious anemia virus gag and pol genes: relatedness to visna and AIDS viru. Science 1986; 231: 589
  • Kawakami T., Sherman L., Dahlberg J., Gazit A., Yaniv A., Tronick S. R., Aaronson S. A. Nucleotide sequence analysis of equine infectious anemia virus proviral DN. Virology 1987; 158: 300
  • Rice N. R., Stephens R., Burny A., Gilden R. The gag and pol genes of bovine leukemia virus: nucleotide sequence and analysi. Virology 1985; 142: 357
  • Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruse. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 677
  • Power M. D., Marx P. A., Bryant M. L., Gardner M. B., Barr P. J., Luciw P. A. Nucleotide sequence of SRV-I, a type D simian acquired immune deficiency syndrome retroviru. Science 1986; 231: 1567
  • Thayer R. M., Poter M. D., Bryant M. L., Gardner M. B., Barr P. J., Luciw P. A. Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrom. Virology 1987; 157: 317
  • Sonigo P., Barker C., Hunter E., Wain-Hobson S. Nucleotide sequence of Mason-Wizer monkey virus: an immunosuppres-sive D-type retroviru. Cell 1986; 45: 375
  • Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., TioUais O., Haase A., Wain-Hobson S. Nucleotide sequence of the visna lentivirus: relationship to the AIDS viru. Cell 1985; 42: 369
  • Schwartz D. E., Tizard R., Gilbert W. Nucleotide sequence of Rous sarcoma viru. Cell 1983; 32: 853
  • Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Inanoff J., Petteway S. R., Jr., Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. Complete nucleotide sequence of the AIDS virus, HTLV-II. Nature 1985; 313: 277
  • Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Nucleotide sequence of the AIDS virus, LA. Cell 1985; 40: 9
  • Sanchez-Pescador R., Power M. D., Barr P. J., Steimer K. S., Stempien M. M., Brown-Shimer S. L., Gee W. W., Renard A., Randolph A., Levy J. A., Dina D., Luciw P. A. Nucleotide sequence and expression of AIDS-associated retrovirus (ARV-2. Science 1985; 227: 484
  • Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Ahn M. Genome organization and transactivation of the human immunodeficiency virus type . Nature 1987; 326: 662
  • Franchini G., Gurgo C., Guo H A., Gallo R. C., CoUalti E., Fragnoli K. A., Hall L. F., Wong-Stahl F., Reitz M. S., Jr. Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruse. Nature 1987; 328: 539
  • Chakrabarti L., Guyader M., Alizon M., Daniel M. D., Des-Rosiers R. C., Tiollais P., Sonigo P. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruse. Nature 1987; 328: 543
  • Kuchino Y., Borek E., Grunberger D., Mushinski J., Nish-Imura S. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res. 1982; 10: 6421
  • Barbacid M. ras gene. Ann. Rev. Biochem. 1987; 56: 779
  • Parker J., Pollard J. W., Friesen J. D., Stanners C. P. Shuttering: high-level mistranslation in animal and bacterial cell. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1091
  • Harley C. B., Pollard J. W., Stanners C. P., Goldstein S. Model for messenger RNA translation during amino acid starvation applied to the calculation of protein synthetic error rate. J. Biol. Chem. 1981; 156: 10786
  • Pollard J. W., Harley C. B., Chamberlin J. W., Goldstein S., Stanners C. P. Is transformation associated with an increased error frequency in mammalian cell. J. Biol. Chem. 1982; 257: 5977
  • Smith D. W. E., McNamara A. L., Rice M., Hatfield D. The effects of a post-transcriptional modification on the function of tRNALys isoaccepting species in translatio. J. Biol. Chem. 1981; 256: 10033
  • Loftfieid R., Vanderjagt D. The frequency of errors in protein synthesi. Biochem. J. 1972; 128: 1356
  • Yarus M. The relationship of the accuracy of aminoacyl-tRNA synthesis to that of translatio. Transfer RNAs Structure, Properties and Recognition, P. R. Schimmel, D. Söll, J. H. Abelson. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1979; 463
  • Kurland C. G., Ehrenberg M. Optimization of translation accurac. Prog. Nucl. Res. Mol. Biol. 1984; 31: 191
  • Johnston T. C., Borgia P. T., Parker J. Codon specificity of starvation induced misreadin. Mol. Gen. Genet. 1984; 195: 459
  • Yarus M. Translational efficiency of transfer RNAs: uses of an extended anticodo. Science 1982; 218: 646
  • Yarus M., Cline S. W., Wier P., Reedon L., Thompson R. C. Action of the anticodon arm in translation on the phenotypes of RNA mutant. J. Mol. Biol. 1986; 192: 235
  • Nishimura S. Modified nucleosides and isoaccepting tRN. Transfer RNA, J. Altman. MIT Press, Cambridge 1978; 168
  • Dirheimer G. Chemical nature, properties, location and physiological and pathological variations of modified nucleosides in tRNA. Modified Nucleosides and Cancer, G. Nass. Springer-Verlag, Berlin 1983; 15
  • Nishmura S., Shido-Okada N., Kasai H., Kuchig Y., No-Guchi S., Tigo M., Hoshi A. Characterization and analysis of oncofetal tRNA and its possible application for cancer diagnosis and therap. Modified Nucleosides and Cancer, G. Nass. Springer-Verlag, Berlin 1983; 401
  • Hatfield D., Richer L., Lyon J., Rice M. Relative utilization of mammalian Lys-tRNA isoacceptors in protein synthesi. FEBS Lett. 1980; 113: 249
  • Hatfield D., Rice M., Mushinski J. F. Comparison of the codon recognition properties and of the utilization of normal and tumor specific Phe-tRNAs in protein synthesi. Cancer Lett. 1981; 12: 251
  • Smith D. W. E., McNamara A. L., Mushinski J. F., Hatfield D. L. Tumor-specific, hypomodified phenylalanyl-tRNA is utilized in translation in preference to the fully modified isoacceptor of normal cell. J. Biol. Chem. 1985; 260: 147
  • McNamara A. L., Smith D. W. E. The function of the histidine tRNA isoaccepting species in hemoglobin synthesi. J. Biol. Chem. 1978; 253: 5964
  • Lagerkvist U. Unorthodox codon reading and the evolution of the genetic cod. Cell 1981; 23: 305
  • Sprinzl M., Vonderwiilbecke T., Hartman T. Compilation of sequences of tRNA gene. Nucleic Acids Res. 1985; 13: r51
  • Sprague K. U., Hagenbuschle O., Zuniga M. C. The nucleotide sequence of two silk gland alanine tRNAs: implications for fibroin synthesis and for initiator tRNA structur. Cell 1977; 11: 561
  • Mitra S. K., LusHg F., Akesson B., Axberg T., Elias P., Lagerkvist U. Relative efficiency of anticodons in reading valine codons during protein synthesis in vitro. J. Biol. Chem. 1979; 254: 6397
  • Carpousis A., Christner P., Rosenbloom J. Preferential U.S. Age of tRNA isoaccepting species in collagen synthesi. J. Biol. Chem. 1977; 252: 8023
  • Smith D. W. E., McNamara A. L. The transfer RNA content of rabbit reticulocytes: enumeration of the content of the individual species per cel. Biochim. Biophys. Acta 1972; 269: 67
  • Smith D. W. E. Reticulocyte transfer RNA and hernoglobin synthesi. Science 1975; 190: 529
  • Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the Occurrence of the respective codons in its protein gene. J. Mol. Biol. 1981; 151: 389
  • Chavancy G., Garel J. P. Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translation efficienc. Biochimie 1981; 63: 187
  • Goldman E. Effect of rate limiting elongation of bacteriophage MS2 RNA-directed protein synthesis in extracts of Eschen'chia coli. J. Mol. Biol. 1982; 158: 619
  • Varenne S., Buc J., Lloubles R., Lazdunski C. Translation is a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chai. J. Mol. Biol. 1984; 180: 549
  • Liljenstrtim H., von Heijne G. Translation rate modification by preferential codon U.S. Ag. J. Theor. Biol. 1987; 124: 43
  • Glick B. R., Chladek S., Ganoza M. C. Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the accepto. Eur. J. Biochem. 1979; 97: 23
  • Knowlton R. C., Yarus M. Discrimination between aminoacyl groups on su+7 tRNA by elongation factor T. J. Mol. Biol. 1980; 139: 721
  • Ulbrich N., Wool I. G., Acherman E., Sigler P. B. The identification by affinity chromatography of the rat liver ribosomal proteins that bind to elongation and initiator transfer ribonucleic acid. J. Biol. Chem. 1980; 255: 7010
  • Feinsteii S. I., Altman S. Context effects in nonsense codon suppressio. Genetics 1978; 88: 201
  • Engelberg-Kulka H. UGA suppression by normal tRNATrp in Escherichia coli: codon context effect. Nucleic Acids Res. 1981; 9: 983
  • Bossi L., Smith D. M. A frame shifting mutan. Proc. Natl. Acud. Sci. U.S.A. 1984; 81: 6105
  • Lipman D. J., Wilbur W. J. Contextual constraints on synonymous codon choic. J. Mol. Biol. 1983; 163: 363
  • Murgola E. J., Pagel F. T., Hijazi K. A. Codon context effects in missense suppressio. J. Mol. Biol. 1984; 175: 19
  • Ayer D., Yarus M. The context effect does not require a fourth base pai. Science 1986; 231: 393
  • Fairclough R. M., Cantor C. R. The distance between the anticodon loops of two tRNAs bound to the 70s Escherichia coli ribosom. J. Mol. Biol. 1979; 132: 575
  • Cantor C. R. tRNA-ribosome interactio. Transfer RNA: Structure, Properties, and Recognition, P. R. Schimmel, D. Soll, J. H. Abelson. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1979; 363
  • Jergensen T., Siboska G. E., Wikman F. P., Clark B. F. C. Different conformation of tRNA in the ribosomal P site and A sit. Eur. J. Biochem. 1985; 153: 203
  • Yanofsky C. Attenuation in the control of expression of bacterial gene. Nature 1981; 289: 751
  • Frunzio R., Brune C. B., Blasi F. In vivo and in virro detection of the leader tRNA of the histidine operon of Escherichia coli K-1. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 2767
  • Palmer D. T., Blum P. H., Artz S. W. Effects of the His T mutation of Salmonella typhimurium on elongation rat. J. Bacteriol. 1983; 153: 357
  • Gallo R. C., Pestka S. Transfer RNA species in normal and leukemic human lymphoblast. J. Mol. Biol. 1970; 52: 195
  • Chevallier A., Garel J.-P. Studies on tRNA adaptation, tRNA turnover, precursor tRNA and tRNA gene distribution in Bombyx mori using two-dimensional polyacrylamide gel electrophoresi. Biochimie 1979; 61: 245
  • Moldave K. Eukaryotic protein synthesi. Annu. Rev. Biochem. 1985; 54: 1109
  • Yarus M. The accuracy of translatio. Prog. Nucleic Acid Res. Mol. Biol. 1979; 23: 195
  • Thompson R. C., Dix D. B., Guerson R. B., Karmin A. M. A GTPase reaction accompanying the rejection of Leu-tRNA by UUU-programed ribosome. J. Biol. Chem. 1981; 256: 81
  • Hornig H., Woolley P., Luhrmann R. Decoding at the ri-bosomal A site: the effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RN. J. Biol. Chem. 1984; 259: 5632
  • Naughton M. A., Dintzis H. M. Sequential biosynthesis of the peptide chains of hemoglobi. Proc. Natl. Acad. Sci. U.S.A. 1962; 48: 1822
  • Protzel A., Morris A. J. Gel chromatographic analysis of nascent globin chains: evidence of nonuniform size distributio. J. Biol. Chem. 1974; 249: 4594
  • Smith D. W. E., McNamara A. L. The distribution of transfer ribonucleic in rabbit reticulocyte. J. Biol. Chem. 1974; 249: 1330
  • Lizardi P. M., Mahdari V., Shields G., Candelas G. Discontinuous translation of silk fibroid in a reticulocyte cell-free system and in intact silk gland. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 6211
  • Wharton K. A., Johansen K. M., Xu T., Artavanas-Tsa-Konas S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeat. Cell 1985; 43: 567
  • Curran J. F., Yarus M. Base substitutions in the tRNA anti-codon arm do not degrade the accuracy of reading frame maintenanc. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 6538
  • Lee B. J., Hatfleld D., unpublished data

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.