43
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Interaction of Drugs with Branched DNA Structures

, &
Pages 157-190 | Published online: 26 Sep 2008

References

  • Holliday R. A mechanism for gene conversion in fungi. Genet. Res. 1964; 5: 282
  • Broker T. R., Lehman I. R. Branched DNA molecules: intermediate in T4 recombination. J. Mol. Biol. 1971; 60: 131
  • Sigal N., Alberts B. Genetic recombination: the nature of crossed strand-exchange between two homologous DNA molecules. J. Mol. Biol. 1972; 71: 789
  • Meselson M. S., Radding C. M. A general model for genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 358
  • Dressier D., Potter H. Molecular mechanisms in genetic recombination. Annu. Rev. Biochem. 1982; 51: 727
  • Szostak J. W., Orr-Weaver T. L., Rothstein R. J. The double-strand-break repair model for recombination. Cell 1983; 33: 25
  • Sobell H. M. Molecular mechanism for genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2483
  • Gough G. W., Lilley D. M. J. DNA bending induced by cruciform formation. Nature 1985; 313: 14
  • Meselson M. S. Formation of hybrid DNA by rotary diffusion during genetic recombination. J. Mol. Biol. 1972; 71: 795
  • Warner R. C., Fishel R. A., Wheeler F. C. Branch migration in recombination. Cold Spring Harbor Symp. Quant. Biol 1978; 43: 957
  • Thompson B. J., Camien M. N., Warner R. C. Kinetics of branch migration in double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2299
  • Robinson B. H., Seeman N. C. Simulation of double-stranded branch point migration. Biophys. J. 1987; 51: 611
  • Potter H., Dressier D. Biochemical assay designed to detect formation of recombination intermediate. in vitro, Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 1084
  • Thompson B. J., Escarmis C., Parker B., Slater W. C., Doniger J., Tessman I., Warner R. C. Figure-8 configuration of dimers of S13 and X174 replicative form DNA. J. Mol. Biol. 1975; 91: 409
  • Potter H., Dressier D. DNA recombinations: in vivo and in vitro studies. Cold Spring Harbor Symp. Quant. Biol. 1978; 43: 969
  • Valenzuela M. S., Inman R. B. Visualization of a novel junction in bacteriophage lambda DNA. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3024
  • Mueller J. E., Kemper B., Cunningham R. P., Kallenbach N. R., Seeman N. C. T4 endonuclease VII cleaves the crossover strands of Hol-liday junction analogs. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 9441
  • Stahl F. W. Special sites in generalized recombination. Annu. Rev. Genet. 1979; 13: 7
  • Mizuuchi K., Mizuuchi M., Gellert M. Cruciform structures in palindromic DNA are favored by DNA supercoiling. J. Mol. Biol. 1982; 156: 229
  • Platt J. R. Possible separation of interwined nucleic acid chains by transfer-twist. Proc. Natl. Acad. Sci. U.S.A. 1955; 41: 181
  • Gierer A. A model for DNA-protein interactions and the function of the operator. Nature 1966; 212: 1480
  • Gellert M., Mizuuchi K., O'Dea M. H., Ohmori H., Tomizawa J. DNA gyrase and DNA supercoiling. Cold Spring Harbor Symp. Quant. Biol. 1979; 43: 35
  • Lilley D. M. J. The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 6468
  • Mizuuchi K., Kemper B., Hays J., Weisberg R. T4 endonuclease VII cleaves Holliday structures. Cell 1982; 29: 357
  • Panayotatos N., Wills R. D. Cruciform structure in supercoiled DNA. Nature 1981; 289: 466
  • de Massy B., Weisberg R. A., Studier F. W. Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA. J. Mol. Biol. 1987; 193: 359
  • Lilley D. M. J., Kemper B. Cruciform-resolvase interactions in supercoiled DNA. Cell 1984; 36: 413
  • Leach D. R. F., Stahl F. W. Viability of X phages carrying a perfect palindrome in the absence of recombination nucleases. Nature 1983; 305: 448
  • Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. Cloning, sequencing, and functional analysis of OriL, a herpes simplex virus type, origin of DNA synthesis. Mol. Cell Biol. 1985; 5: 930
  • Lilley D. M. J., Hallam L. R. Thermodynamics of the ColE1 cruciform: comparisons between probing and topological experiments using single topoisomers. J. Mol. Biol. 1984; 180: 179
  • Haniford D. B., Pulleyblank D. E. Transition of a cloned d(AT)n-d(AT)n tract to a crucifor. in vivo, Nucl. Acids Res. 1985; 13: 4343
  • Iacono-Connors L., Kowalski D. Altered DNA conformations in the gene regulatory region of torsionally stressed SV 40 DNA. Nucl. Acids Res. 1986; 14: 8949
  • Lilley D. M. J. Structural perturbation in supercoiled DNA: hypersensitivity to modification by a single-strand-selective chemical reagent conferred by inverted repeat sequences. Nucl. Acids Res. 1983; 11: 3097
  • Lilley D. M. J., Palecek E. The supercoil-stabilized cruciform of ColE1 is hyperreactive to osmium tetroxide. EMBO J. 1984; 3: 1187
  • Furlong J. C., Lilley D. M. J. Highly selective chemical modification of cruciform loops by diethyl pyrocarbonate. Nucl. Acids Res. 1986; 14: 3995
  • Scholten P. M., Nordheim A. Diethyl pyrocarbonate: a chemical probe for DNA cruciform. Nucl. Acids Res. 1986; 14: 3981
  • Gough G. W., Sullivan K. M., Lilley D. M. J. The structure of cruciform in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite. EMBO J. 1986; 5: 191
  • Courey A. J., Wang J. C. Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Cell 1983; 33: 817
  • Gellert M., O'Dea M. H., Mizuuchi K. Slow cruciform transitions in palindromic DNA. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 5545
  • Greaves D. R., Patient R. K., Lilley D. M. J. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J. Mol. Biol. 1985; 185: 461
  • Lu M., Guo Q., Marky L. A., Seeman N. C., Kallenbach N. R. The thermodynamics of DNA branching. J. Mol. Biol. 1992, in press
  • Seeman N. C. Nucleic acid junctions: building blocks for genetic engineering in three dimensions. Biomolecular Stereodynamics, R. H. Sarma. Adenine Press, New York 1981; 269
  • Seeman N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982; 99: 237
  • Seeman N. C., Kallenbach N. R. Design of immobile nucleic acid junctions. Biophys. J. 1983; 44: 201
  • Kallenbach N. R., Seeman N. C. Stable branched DNA structures: DNA junctions. Comments Cell. Mol. Biophys. 1986; 4: 1
  • Kallenbach N. R., Ma R.-I., Seeman N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 1983; 305: 829
  • Wemmer D. E., Wand A. J., Seeman N. C., Kallenbach N. R. NMR analysis of DNA junctions: imino proton NMR studies of individual arms and intact junction. Biochemistry 1985; 24: 5745
  • Ma R.-I., Kallenbach N. R., Sheardy R. D., Petrillo M. L., Seeman N. C. Three-arm nucleic acid junctions are flexible. Nucl. Acids Res. 1986; 14: 9745
  • Chen J.-H., Churchill M. E. A., Tullius T. D., Kallenbach N. R., Seeman N. C. Construction and analysis of monomobile DNA junctions. Biochemistry 1988; 27: 6032
  • Seeman N. C., Chen J. H., Kallenbach N. R. Gel electrophoresis analysis of DNA branched junctions. Electrophoresis 1989; 10: 345
  • Cooper J. P., Hagerman P. J. Gel electrophoretic analysis of the geometry of a DNA four-way junction. J. Mol. Biol. 1987; 198: 711
  • Cooper J. P., Hagerman P. J. Geometry of a branched DNA structure in solution. Proc. Natl. Acad. Act U.S.A. 1989; 86: 7336
  • Duckett D. R., Murchie A. I. H., Diekmann S., Von Kitzing E., Kemper B., Lilley D. M. J. The structure of the Holliday junction and its resolution. Cell 1988; 55: 79
  • Murchie A. I. H., Clegg R. M., von Kitzing E., Duckett D. R., Diekmann S., Lilley D. M. J. Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature 1989; 341: 763
  • Guo Q., Lu M., Churchill M. E. A., Tullius T. D., Seeman N. C., Kallenbach N. R. Asymmetric structure of a three-arm DNA junction. Biochemistry 1990; 29: 10927
  • Guo Q., Lu M., Kallenbach N. R. Conformational preference and ligand binding properties of DNA junctions are determined by sequence at the branch. Biopolymers 1991; 31: 359
  • Lu M., Guo Q., Kallenbach N. R. Effect of sequence on the structure of three-arm DNA junctions. Biochemistry 1991; 30: 5815
  • Wang Y., Mueller J., Seeman N. C. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry 1991; 30: 5667
  • Duckett D. R., Lilley D. M. J. The three-way DNA junction is a Y-shaped molecule in which there is not helix-helix stacking. EMBO J. 1990; 9: 1659
  • Seeman N. C., Maestre M. F., Ma R.-I., Kallenbach N. R. Physical characterization of a nucleic acid junction. The Molecular Basis of Cancer, R. Rein. Alan Liss, New York 1985; 99
  • Marky L. A., Kallenbach N. R., McDonough K. A., Seeman N. C., Breslauer K. J. The melting behavior of a DNA junction structure: a calorimetric and spectroscopic study. Biopolymers 1987; 26: 1621
  • Koo H.-S., Wu H.-M., Crothers D. M. DNA bending at adenine-thymine tracts. Nature 1986; 320: 500
  • Churchill M. E. A., Tullius T. D., Kallenbach N. R., Seeman N. C. A Holliday recombination intermediate is twofold symmetric. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 4653
  • Tullius T. D. Chemical “snapshots” of DNA using the hydroxyl radical to study the structure of DNA and DNA-protein complexes. Trends Biochem. 1987; 12: 297
  • von Kitzing E., Lilley D. M. J., Diekmann S. The stereochemistry of a four-way DNA junction: a theoretical study. Nucl. Acids Res. 1990; 18: 2671
  • Cooper J. P., Hagerman P. J. Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochemistry 1990; 29: 9261
  • Kimball A., Guo Q., Lu M., Cunninghum R. P., Kallenbach N. R., Seeman N. C., Tullius T. D. Construction and analysis of parallel and antiparallel Holliday junctions. J. Biol. Chem. 1990; 265: 6544
  • Lu M., Guo Q., Seeman N. C., Kallenbach N. R. Parallel and antiparallel Holliday junctions differ in structure and stability. J. Mol. Biol. 1991; 221: 1419
  • Duckett D. R., Murchie A. I. H., Lilley D. M. J. The role of metal ions in the conformation of the four-way junction. EMBO J. 1990; 9: 583
  • McClellan J. A., Lilley D. M. J. A two-state conformational equilibrium for alternating (A-T)n sequences in negatively supercoiled DNA. J. Mol. Biol. 1987; 197: 707
  • Galas D. J., Schmitz A. DNase footprinting: a simple method for detection of protein-DNA binding specificity. Nucl. Acids Res. 1978; 3: 3157
  • Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 1986; 130: 132
  • Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. “Footprint” titrations yield valid thermodynamic isotherms. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 8462
  • Becker M. M., Wang J. C. Use of light for footprinting DN. in vivo, Nature 1984; 309: 682
  • Ward B., Skorobogaty A., Dabrowiak J. C. DNA cleavage specificity of a group of cationic metalloporphyrins. Biochemistry 1986; 25: 6875
  • Ogata R., Gilbert W. Contacts between the lac repressor and thymines in the lac operator. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4973
  • Siebenlist U., Simpson R. B., Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell 1980; 20: 269
  • Tullius T. D. DNA footprinting with hydroxyl radical. Nature 1988; 332: 663
  • Dervan P. B. Design of sequence-specific DNA-binding molecules. Science 1986; 232: 464
  • Sigman D. S. Nuclease activity of 1, 10-phenanthroline-copper ion. Acc. Chem. Res. 1986; 19: 180
  • Hertzberg R. P., Dervan P. B. Cleavage of double helical DNA by (Methidiumpropyl-EDTA)iron(II). J. Am. Chem. Soc. 1982; 104: 313
  • Hertzberg R. P., Dervan P. B. Cleavage of DNA with (Methidiumpropyl-EDTA)iron(II). Reaction conditions and product analysis. Biochemistry 1984; 23: 3934
  • Tullius T. D., Dombroski B. A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 1985; 230: 679
  • Tullius T. D., Dombroski B. A. Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to Δ repressor and cro protein. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 5469
  • Kuwabara M., Yoon C., Thederahn T., Sigman D. S. Nuclease activity of 1, 10-phenanthroline-copper iron: reaction CGCGAATTCGCG and its complexes with netropsin and EcoRI. Biochemistry 1986; 25: 7401
  • Goyne T., Sigman D. S. Nuclease activity of 1, 10-phenanthroline-copper ion. Chemistry of deoxyribose oxidation. J. Am. Chem. Soc. 1987; 109: 2846
  • Marshall L., Graham D. R., Reich K. A., Sigman D. S. Cleavage of deoxyribonucleic acid by the 1, 10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Biochemistry 1981; 20: 244
  • Pope L., Sigman D. S. Secondary structure specificity of the nuclease activity of the 1, 10-phenanthroline-copper complex. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 3
  • Guo Q., Seeman N. C., Kallenbach N. R. Site-specific interaction of intercalating drugs with a branched DNA molecule. Biochemistry 1989; 28: 2355
  • Guo Q., Lu M., Seeman N. C., Kallenbach N. R. Drug binding by branched DNA molecules: analysis by chemical footprinting of intercalation into an immobile junction. Biochemistry 1990; 29: 570
  • Schultz P. G., Dervan P. B. Sequence-specific double-strand cleavage of DNA by penta-N-methylpyrrolecarboxamide-EDTAFe(II). Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 6834
  • Mandal C., Englander S. W., Kallenbach N. R. Hydrogen-deuterium exchange analysis of ligand-macromolecule interactions: the ethidium DNA system. Biochemistry 1980; 19: 5819
  • Williams L. D., Goldberg I. H. Specific binding of o-phenthroline at a DNA structural lesion. Nucl. Acids Res. 1988; 16: 11607
  • Drew H. R., Travers A. A. DNA structural variations in the E. coli tyr promoter. Cell 1984; 37: 491
  • Graham D. R., Sigman D. S. Zinc ion in Escherichia coli DNA polymerase: reinvestigation. Inorg. Chem. 1984; 23: 4188
  • Veal J. M., Rill R. L. Sequence specificity of DNA cleavage by bis(1, 10-phenanthroline)copper(I): effects of single base pair transitions on the cleavage of preferred pyrimidine-purine-pyrimidine triplets. Biochemistry 1989; 28: 3243
  • Veal J. M., Rill R. L. Sequence specificity of DNA cleavage by bis-(1, 10-phenanthroline)copper(I). Biochemistry 1988; 27: 1822
  • White S. A., Draper D. E. Single base bulges in small RNA hairpins enhance ethidium binding and promote an allosteric transition. Nucl. Acids Res. 1987; 15: 4049
  • Williams L. D., Goldberg I. H. Selective strand scission by intercalating drugs at DNA bulges. Biochemistry 1988; 27: 3004
  • Goldberg I. H., Rabinowitz M., Reich E. Basis actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. Natl. Acad. Sci. U.S.A. 1962; 48: 2094
  • van Dyke M. W., Dervan P. B. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II). Biochemistry 1983; 22: 2373
  • van Dyke M. W., Dervan P. B. Methidiumpropyl-EDTAFe(II) and DNase I footprinting report different small molecule binding site sizes on DNA. Nucl. Acids Res. 1983; 11: 5555
  • Muller W., Crothers D. M. Studies of the binding of actinomycin and related compounds to DNA. J. Mol. Biol. 1968; 35: 251
  • Stryer L. Biochemistry, 3rd ed., W. H. Freeman, San Francisco 1988; 594
  • Fiel R. J., Howard J. C., Mark E. H., Datta Gupta N. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucl. Acids Res. 1979; 6: 3093
  • Kelly J. M., Murphy M. J., McConnell D. J., Oh Guigin C. A comparative study of the interaction of 5, 10, 15, 20-tetrakis(N -methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation. Nucl. Acids Res. 1985; 13: 167
  • Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry 1983; 22: 2406
  • Marzilli L. G., Banville D. L., Zon G., Wilson W. D. Pronounced 1H and 31P NMR spectral changes on meso-tetrakis(N-methylpyridinium-4-yl)porphyrin binding to poly[d(G-C)poly[d(G-C)] and to three tetradecaoligodeoxyribonucleotides: evidence for symmetric, selective binding to 5 ' CG3′ sequences. J. Am. Chem. Soc. 1986; 108: 4188
  • Ford K. G., Pearl L. H., Neidle S. Molecular modeling of the interactions of tetra-(4-N-methylpyridy Oporphin with TA and CG sites on DNA. Nucl. Acids Res. 1987; 15: 6553
  • Gibbs E. J., Maurer M. C., Zhang J. H., Reiff W. M., Hill D. T., Malicka-B Iaszkiewicz M., McKinnie R. E., Liu H.-Q., Pasternack R. F. Interactions of porphyrins with purified DNA and more highly organized structures. J. Inorg. Biochem. 1988; 32: 39
  • Carvlin M. J., Fiel R. J. Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA. Nucl. Acids Res. 1983; 11: 6121
  • Banville D. C., Marzilli L. G., Strickland J. A., Wilson W. D. Comparison of the effects of cationic porphyrins on DNA properties: influence of GC content of native and synthetic polymers. Bio-polymers 1986; 25: 1837
  • Geacintov N. E., Ibanez V., Rougee M., Bensasson R. Orientation and linear dichroism characteristics of porphyrin-DNA complexes. Biochemistry 1987; 26: 3087
  • Fiel R. J. Porphyrin-nucleic acid interactions: a review. J. Biomol. Struct. Dyn. 1989; 6: 1259
  • Bromley S. D., Ward B., Dabrowiak J. C. Cationic porphyrins as probes of DNA structure. Nucl. Acids Res. 1986; 14: 9133
  • Lu M., Guo Q., Pasternack R. F., Wink D. J., Seeman N. C., Kallenbach N. R. Drug binding by branched DNA: selective interaction of tetrapyridyl porphyrins with an immobile junction. Biochemistry 1990; 29: 1614
  • Thederahn T. B., Kuwabara M. D., Larsen T. A., Sigman D. S. Nuclease activity of 1, 10-phenanthroline-copper: kinetic mechanism. J. Am. Chem. Soc. 1989; 111: 4941
  • Hamer F. M. The Cyanine Dyes and Related Compounds. Interscience, New York 1964, chap. 3
  • Green M. R. Simultaneous differential staining of nucleic acids, proteins, conjugated proteins and polar lipids by a cationic carbocyanine dye. J. Histochem. Cytochem. 1975; 23: 411
  • Lu M., Guo Q., Seeman N. C., Kallenbach N. R. Drug binding by branched DNA: selective interaction of the dye Stains-All with an immobile junction. Biochemistry 1990; 29: 3407
  • Kay R. E., Walwick E. R., Gifford C. K. Spectral changes in a cationic dye due to interaction with macromolecules. I. Behavior of dye alone in solution and the effect of added macromolecules. J. Phys. Chem. 1964; 68: 1896
  • Kay R. E., Walwick E. R., Gifford C. K. Spectral changes in a cationic dye due to interaction with macromolecules. II. Effect of environmental and macromolecular structure. J. Phys. Chem. 1907; 68: 1997
  • Long B. H., Golik J., Forenza S., Ward B., Rehfuss R., Dabrowiak J. C., Catino J. J., Musial S. T., Brookshire K. W., Doyle T. W. Esperamicins, a class of potent antitumor antibiotics: mechanism of action. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2
  • Golik J., Clardy J., Dubay G., Groenewold G., Kawaguchi H., Konishi M., Krishnan B., Ohkuma H., Saitoh K., Doyle T. W. Esperamicins, a novel class of potent antitumor antibiotics. II. structure of esperamicin X. J. Am. Chem. Soc. 1987; 109: 3461
  • Zein N., Sinha A. M., McGahren W. J., Ellestad G. Calicheamicin γl1: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988; 240: 1198
  • Sugiura Y., Shiraki T., Konishi M., Oki T. DNA intercalation and cleavage of an antitumor antibiotic dynemicin that contains anthracycline and enediyne cores. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 3831
  • Shiraki T., Sugiura Y. Visible light induced DNA cleavage by the hybrid antitumor antibiotics dynemicin A. Biochemistry 1990; 29: 9795
  • Sugiura Y., Uesawa Y., Takahashi Y., Kuwahara J., Golik J., Doyle T. Nucleotide-specific cleavage and minor-groove interaction of DNA with esperamicin antitumor antibiotics. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 7672
  • Lu M., Guo Q., Krishnan B., Golik J., Rosenberg I. R., Doyle T. W., Kallenbach N. R. Determination of DNA cleavage specificity by esperamicins. J. Biomol. Struct. Dyn. 1991; 9: 285
  • Lu M., Guo Q., Kallenbach N. R. Site-specific interaction of the antitumor antibiotics dynemicin with branched DNA molecules. J. Biomol. Struct. Dyn. 1991; 9: 271
  • Frederick C. A., Williams L. D., Ughetto G., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. J. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 1990; 29: 2538
  • Bishop K. D., Borer P. N., Huang Y.-Q., Lane M. J. Actinomycin D induced DNase I hypersensitivity and asymmetric structure transmission in a DNA hexadecamer. Nucl. Acids Res. 1991; 19: 871
  • Center M. S., Richardson C. C. An endo-nuclease induced after infection of Escherichia coli with bacteriophage T7. J. Biol. Chem. 1970; 245: 6285
  • Sadowski P. D. Bacteriophage T7 endonuclease. I. Properties of the enzyme purified from T7 phage-infected Escherichia coli B. J. Biol. Chem. 1971; 246: 209
  • Jensen F., Kemper B. Endonuclease VII resolves Y-junctions in branched DN. in vitro, EMBO J. 1986; 5: 181
  • Dickie P., McFadden G., Morgan A. R. The site-specific cleavage of synthetic Holliday junction analogs and related branched DNA structures by bacteriophage T7 endonuclease I. J. Biol. Chem. 1987; 262: 14826
  • Dickie P., Morgan A. R., McFadden G. Conformational isomerization of the Holliday junction associated with a cruciform during branch migration in supercoiled plasmid DNA. J. Mol. Biol. 1988; 201: 19
  • Kemper B., Jensch F., Depka-Prondzynski M. V., Fritz H. J., Borgmeyer U., Mizuuchi K. Resolution of Holliday structures by endonuclease VII as observed in interactions with cruciform DNA. Cold Spring Harbor Symp. Quant. Biol. 1984; 49: 815
  • Kemper B., Garabett M. Studies in T4-head maturation. I. purification and characterization of gene 49 controlled endonuclease. Eur. J. Biochem. 1981; 115: 123
  • de Massy B., Studier F. W., Dorgai L., Appelbaum E., Weisberg R. A. Enzymes and sites of genetic recombination: studies with gene 3 endonuclease of phage T7 and with site affinity mutants of phage lambda. Cold Spring Harbor Symp. Quant. Biol. 1984; 49: 715
  • Tayor A. F., Smith G. R. Action of Rec BCD on cruciform DNA. J. Mol. Biol. 1990; 211: 117
  • Symington L. S., Kolodner R. Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 7247
  • West S. C., Korner A. Cleavage of cruciform DNA structures by an activity fro. Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 6445
  • Lu M., Guo Q., Studier F. W., Kallenbach N. R. Resolution of branched substrates by T7 endonuclease I and its inhibition. J. Biol. Chem. 1990; 266: 2531
  • Powling A., Knippers R. Some functions involved in bacteriophage T7 genetic recombination. Mol. Gen. Genet. 1974; 134: 173
  • Kerr C., Sadowski P. D. The involvement of genes 3, 4, 5 and 6 in genetic recombination in bacteriophage T7. Virology 1975; 65: 281
  • Tsujimoto Y., Ogawa H. Intermediates in genetic recombination of bacteriophage T7 DNA. Biological activity and the roles of gene 3 and gene 5. J. Mol. Biol. 1978; 125: 255
  • Lu M., Guo Q., Mueller J. E., Kemper B., Studier F. W., Seeman N. C., Kallenbach N. R. Characterization of a bimobile DNA junction. J. Biol. Chem. 1990; 265: 16778
  • Broker T. R., Doermann A. H. Molecular and genetic recombination of bacteriophage T4. Annu. Rev. Genetics 1975; 9: 213
  • Minagawa T., Murakami A., Ryo Y., Yamagishi H. Structural features of very fast sedimenting DNA formed by gene 49 defective T4. Virology 1983; 126: 183
  • Suck D., Lahm A., Oefner C. Structure refined to 2 Å of a nicked DNA octanucleotide complex with DNase I. Nature 1988; 332: 464
  • Lu M., Guo Q., Seeman N. C., Kallenbach N. R. DNase I cleavage of Branched DNA molecules. J. Biol. Chem. 1989; 264: 20851
  • Herr W. Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 8009
  • Johnston B. H., Rich A. Chemical probes of DNA conformation: detection of Z-DNA at nucleotide resolution. Cell 1985; 42: 713
  • Chen S., Heffron F., Leupin W., Chazin W. J. Two-dimensional 1H NMR studies of synthetic immobile Holliday junctions. Biochemistry 1991; 30: 766
  • Seeman N. C., Mueller J. E., Chen J-H., Churchill M. E. A., Kimball A., Tullius T. D., Kemper B., Cunningham R. P., Kallenbach N. R. Immobile junctions suggest new features of the structural chemistry of recombination. Structure & Methods, R. Sarma, M. H. Sarma. Adenine Press, New York 1990; 137
  • Kitts P. A., Nash H. A. Bacteriophage lambda site-specific recombination proceeds with a defined order of strand exchanges. J. Mol. Biol. 1988; 204: 95
  • Mizuuchi M., Mizuuchi K. The extent of DNA sequence required for a functional bacterial attachment site of phage lambda. Nucl. Acids Res. 1985; 13: 1193
  • Lin L., unpublished results

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.