183
Views
70
CrossRef citations to date
0
Altmetric
Research Article

Transcription Termination

&
Pages 1-30 | Published online: 26 Sep 2008

References

  • Bremer H., Konrad M. A complex of enzymatically synthesized RNA and template DNA. Proc. Natl. Acad. Sci., U.S.A. 1964; 51: 801
  • Richardson J. P. Enzymic synthesis of RNA from T7 DNA. J. Mol. Biol. 1966; 21: 115
  • Scott M. P. Molecules and puzzles from the antennapedia homeotic gene complex of Drosophila. Trends in Genetics 1985; 1: 74
  • von Hippel P. H., Yager T. D. Transcription elongation and termination are competitive kinetic processes. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 2307
  • Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. F. Factor stimulating transcription by RNA polymerase. Nature 1969; 221: 43
  • Chamberlin M. J. RNA polymerase — an overview. RNA Polymerase, R. Losick, M. Chamberlin. Cold Spring Harbor Laboratory, Cold Spring Harbor 1976; 17
  • Metzger W., Schickor P., Heumann H. A cinematographic view of Escherichia coli RNA polymerase translocation. EMBO J. 1989; 8: 2745
  • Krummel B., Chamberlin M. J. Structural analysis of ternary complexes of Escherichia coli RNA pholymerase. Deoxyribonuclease I footprinting of defined complexes. J. Mol. Biol. 1992; 225: 239
  • Gamper H. B., Hearst J. E. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 1982; 29: 81
  • Rice G. A., Kane C. M., Chamberlin M. J. Footprinting analysis of mammalian RNA polymerase II along its transcript: an alternative view of transcription elongation. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 4245
  • Kainz M., Roberts J. Structure of transcription elongation complexes in vivo. Science 1992; 255: 838
  • Richardson J. P. Attachment of nascent RNA molecules to superhelical DNA. J. Mol. Biol. 1975; 98: 565
  • Surratt C. K., Milan S. C., Chamberlin M. J. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 7983
  • Liu L. F., Wang J. C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 7024
  • Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol. Rev. 1984; 48: 273
  • Davis R. W., Hyman R. Physical locations of the in vitro RNA initiation site and termination sites of T7M DNA. Cold Spring Harbor Symp. Quant. Biol. 1970; 35: 269
  • Yager T. D., von Hippel P. H. Transcript Elongation and Termination in Escherichia Coli. Escherichia Coli and Salmonella Typhimurium, F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, H. E. Umbarger. American Society for Microbiology, Washington, D.C. 1987; 1241
  • Mosteller R. D., Yanofsky C. Transcription of the tryptophan operon in Escherichia coli: rifampicin as an inhibitor of initiation. J. Mol. Biol. 1970; 48: 525
  • Gotta S. L., Miller O. L., Jr., French S. L. rRNA transcription rate in Escherichia coli. J. Bacteriol. 1991; 173: 6647
  • Maizels N. The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of E. coli. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 3585
  • Darlix J. L., Fromageot F. Discontinuous in vitro transcription of DNA. Biochimie 1972; 54: 47
  • Rosenberg M., Court D., Shimatake H., Brady C., Wulff D. L. The relationship between function and DNA sequence in an intercistronic regulatory region in phage γ. Nature 1978; 272: 414
  • Landick R., Yanofsky C. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J. Biol. Chem. 1984; 259: 11550
  • Morgan W. D., Bear D. G., von Hippel P. H. Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage γ PR promoter. J. Biol. Chem. 1983; 258: 9565
  • Lee D. N., Phung L., Stewart J., Landick R. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J. Biol. Chem. 1990; 265: 15145
  • Levin J. R., Chamberlin M. J. Mapping and characterization of transcriptional pause sites in the early genetic region of bacteriophage T7. J. Mol. Biol 1987; 196: 61
  • Chan C. L., Landick R. The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. J. Biol. Chem. 1989; 264: 20796
  • Kerppola T. K., Kane C. M. Analysis of the signals for transcription termination by purified RNA polymerase II. Biochemistry 1990; 29: 269
  • Ishii S., Ihara M., Maekawa T., Nakamura Y., Uchida H., Imamoto F. The nucleotide sequence of the cloned nusA gene and its flanking region of Escherichia coli. Nucleic Acids Res. 1984; 12: 3333
  • Kassavetis G. A., Chamberlin M. J. Pausing and termination of transcription within the early region of bacteriophage T7 DNA in vitro. J. Biol. Chem. 1981; 256: 2777
  • Kingston R. E., Chamberlin M. J. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli. Cell 1981; 27: 523
  • Fisher R., Yanofsky C. A complementary DNA oligomer releases a transcription pause complex. J. Biol. Chem. 1983; 258: 9208
  • Lau L. F., Roberts J. W., Wu R. RNA polymerase pausing and transcript release at the λtR1 terminator in vitro. J. Biol. Chem. 1983; 258: 9391
  • Schmidt M. C., Chamberlin M. J. Amplification and isolation of Escherichia colinus A protein and studies of its effects on in vitro RNA chain elongation. Biochemistry 1984; 23: 197
  • Greenblatt J., Li J. Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell 1981; 24: 421
  • Gill S. C., Weitzel S. E., von Hippel P. H. Escherichia coli s70 and nusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J. Mol. Biol. 1991; 220: 307
  • Landick R., Yanofsky C. Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex. J. Mol. Biol. 1987; 196: 363
  • Dissinger S., Hanna M. M. RNA-protein interactions in a NusA-containing Escherichia coli transcription complex paused at an RNA hairpin. J. Mol. Biol. 1991; 219: 11
  • Faus I., Chen C.-Y. A., Richardson J. P. Sequences in the 5′ proximal segment of the paused transcript affect NusA-mediated enhancement of transcriptional pausing. J. Biol. Chem. 1988; 263: 10830
  • Craven M. G., Friedman D. I. Analysis of the Escherichia coli nusA 10(Cs) allele: relating nucleotide changes to phenotypes. J. Bacteriol. 1991; 173: 1485
  • Greenblatt J., Li J., Adhya S., Friedman D. I., Baron L. S., Redfield B., Kung H-F., Weissbach H. L factor that is required for β-galactosidase synthesis is the nusA gene product involved in transcription. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1991
  • Kung H.-F., Spears C., Weissbach H. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of β-galactosidase. J. Biol. Chem. 1975; 250: 1556
  • Ruteshouser E. C., Richardson J. P. Identification and characterization of transcription termination sites in the Escherichia coli lacZ gene. J. Mol. Biol. 1989; 208: 23
  • Landick R., Carey J., Yanofsky C. Translation activates the paused transcription complex and restores transcription of the trp operon leader region. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4663
  • Freidman D. J., Gottesman M. Lytic Mode of Lambda Development, I I Lambda, R. W. Hendrix, J. W. Roberts, F. W. Stahl, R. A. Weisberg. Cold Spring Harbor Laboratory, Cold Spring Harbor 1983
  • Natori S. Stimulatory proteins of RNA polymerase II from Ehrlich ascites tumor cells. Mol. Cell. Biochem. 1982; 46: 173
  • Reinberg D., Roeder R. G. Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. J. Biol. Chem. 1987; 262: 3331
  • Reines D., Chamberlin M. J., Kane C. M. Transcription elongation factor SH (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 1989; 264: 10799
  • Siva Raman L., Reines D., Kane C. M. Purified elongation factor SII is sufficient to promote read-through by purified RNA polymerase II at specific termination sites in the human histone H3.3 gene. J. Biol. Chem. 1990; 265: 14554
  • Sluder A. E., Greenleaf A. L., Price D. H. Properties of a Drosophila RNA polymerase II elongation factor. J. Biol. Chem. 1989; 264: 8963
  • Sawadago M., Huet J., Fromageot P. Similar binding sites for P37 factor on yeast RNA polymerases A and B. Biochem. Biophys. Res. Commun. 1980; 96: 258
  • Reines D. Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J. Biol. Chem. 1992; 267: 3795
  • Reines D., Ghanouni P., Li Q., Mote J., Jr. The RNA polymerase II elongation factor-dependent involves nascent RNA cleavage. J. Bio. Chem. 1992; 267: 15516
  • Izban M. G., Luse D. S. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′ 5′ direction in the presence of elongation factor SII. Genes Dev. 1992; 6: 1342
  • Hirashima S., Hirai H., Nakanishi Y., Natori S. Molecular cloning and characterization of cDNA for eukaryotic transcription factor S-II. J. Biol. Chem. 1988; 263: 3858
  • Marshall T. K., Guo H., Price D. H. Drosophila RNA polymerase II elongation factor Dm-SII has homology to mouse S-II and sequence similarity to yeast PPR2. Nucleic Acids Res. 1990; 18: 6293
  • Yoo O.-J., Yoon H-S., Baek K. H., Jeon C-J., Miyamoto K., Ueno A., Agarwal K. Cloning, expression and characterization of the human transcription elongation factor, TFIIS. Nucleic Acids Res. 1991; 19: 1073
  • Chen H. C., England L., Kane C. M. Characterization of a HeLa cDNA clone for the human SII protein, an elongation factor for RNA polymerase II. Gene 1992; 116: 253
  • Kipling D., Kearsey S. E. TFIIS and strandtransfer proteins. Nature 1991; 353: 509
  • Bengal E., Flores O., Krauskopf A., Reinberg D., Aloni Y. Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 1991; 11: 1195
  • Izban M. G., Luse D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 1992; 267: 13647
  • Flores O., Maldonado E., Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase. II. Factors HE and IIF independently interact with RNA polymerase II. J. Biol. Chem. 1989; 264: 8913
  • Sopta M., Carthew R. W., Greenblatt J. Isolation of three proteins that bind to mammalian RNA polymerase II. J. Biol. Chem. 1985; 260: 10353
  • Cozzarelli N. R., Gerrard S. P., Schlissel M., Brown D. D., Bogenhagen D. F. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 1983; 34: 829
  • Jeng S.-T., Gardner J. F., Gumport R. I. Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators. J. Biol. Chem. 1990; 265: 3823
  • Dedrick R. L., Kane C. M., Chamberlin M. J. Purified RNA polymerase II recognizes specific termination sites during transcription in vitro. J. Biol. Chem. 1987; 262: 9098
  • Kerppola T. K., Kane C. M. Intrinsic sites of transcription termination and pausing of the c-myc gene. Mol. Cell. Biol. 1988; 8: 4389
  • Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 1979; 13: 319
  • Brendel V., Hamm G. H., Trifonov E. N. Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them. J. Biolmol. Struct. Dyn. 1986; 3: 705
  • Carafa Y. D., Brody E., Thermes C. Prediction of rho-independent Escherichia coli transcription terminators: a statistical analysis of their RNA stem-loop structures. J. Mol. Biol 1990; 216: 835
  • Telesnitsky A., Chamberlin M. J. Terminator-distal sequences determine the in vitro efficiency of the early terminators of bacteriophages T3 and T7. Biochemistry 1989; 28: 5210
  • Lynn S. P., Kasper L. M., Gardner J. F. Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J. Biol. Chem. 1988; 263: 472
  • Cheng S.-W. C., Lynch E. C., Leason K. R., Court D. L., Shapiro B. A., Friedman D. I. Functional importance of sequence in the stem-loop of a transcription terminator. Science 1991; 254: 1205
  • Ryan T., Chamberlin M. J. Transcription analyses with heteroduplex trp attenuator templates indicate that the transcript stem and loop structure serves as the termination signal. J. Biol. Chem. 1983; 258: 4690
  • Yang M. T., Gardner J. F. Transcription termination directed by heteroduplex thr attenuator templates. Evidence that the transcript stem and loop structure is the termination signal. J. Biol. Chem. 1989; 264: 2634
  • Tuerk C., Gauss P., Thermes C., Groebe D. R., Gayle M., Guild N., Stormo G., d'Aubenton-Carafa Y., Uhlenbeck O. C., Tinoco I., Jr., Brody E. N., Gold L. CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 1364
  • Arndt K. M., Chamberlin M. J. RNA chain elongation by Escherichia coli RNA polymerase: factors affecting the stability of elongating ternary complexes. J. Mol. Biol. 1990; 213: 79
  • Martin F. H., Tinoco I. J. DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 1980; 8: 2295
  • Reynolds R., Chamberlin M. J. Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J. Mol. Biol. 1992; 224: 53
  • Farnham P. J., Platt T. A model for transcription termination suggested by studies on the trp attenuator in vitro using base analogs. Cell 1980; 20: 739
  • Reynolds R., Bermudez-Cruz R. M., Chamberlin M. J. Parameters affecting transcription termination by Escherichia coli RNA polymerase. I. Analysis of 13 rho-independent terminators. J. Mol. Biol 1992; 224: 31
  • Andrews C. A., Richardson J. P. Transcription termination factor rho mediates simultaneous release of RNA transcripts and DNA template from complexes with Escherichia coli RNA polymerase. J. Biol. Chem. 1985; 260: 5826
  • Arndt K. M., Chamberlin M. J. Transcription termination in Escherichia coli: measurement of the rate of enzyme release from rho-dependent terminators. J. Mol. Biol. 1988; 202: 271
  • Hinkle D. C., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA I. The role of sigma subunit in site selection. J. Mol. Biol. 1972; 70: 157
  • Roberts J. W. Termination factor for RNA synthesis. Nature (London) 1969; 224: 1168
  • Bartsch I., Schoneberg C., Grummt I. Purification and characterization of TTFI, a factor that mediates termination of mouse ribosomal DNA transcription. Mol. Cell. Biol. 1988; 8: 3891
  • Shuman S., Broyles S., Moss B. Purification and characterization of a transcription termination factor from vaccinia virions. J. Biol. Chem. 1987; 262: 12372
  • Richardson J. P. Rho-dependent transcription termination. Biochim. Biophys. Acta 1990; 1048: 127
  • Galluppi G. R., Richardson J. P. ATP-induced changes in the binding of RNA synthesis termination protein rho to RNA. J. Mol. Biol. 1980; 138: 513
  • Richardson J. P., Conaway R. RNA release activity of transcription termination protein is dependent on the hydrolysis of nucleoside triphosphates. Biochemistry 1980; 19: 4293
  • Richardson L. V., Richardson J. P., unpublished experiments
  • Alifano P., Rivellini F., Limauro D., Bruni C. B., Carlomagno M. S. A consensus motif common to all rho-dependent prokaryotic transcription terminators. Cell 1991; 64: 553
  • Lowery C., Richardson J. P. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor: II. Influence of synthetic RNA homopolymers and random copolymers on the reaction. J. Biol. Chem. 1977; 252: 1381
  • Finger L. R., Richardson J. P. Stabilization of the hexameric form of Escherichia coli protein rho under ATP hydrolysis conditions. J. Mol. Biol. 1982; 156: 203
  • Pinkham J. L., Platt T. Nucleotide sequence of the E. coli rho gene and its regulatory regions. Nucleic Acids Res. 1983; 11: 3531
  • Bear D. G., Hicks P. S., Escudero K. W., Andrews C. L., McSwiggen J. A., von Hippel P. H. Interactions of Escherichia coli transcription termination factor rho with RNA. J. Mol. Biol. 1988; 199: 623
  • Geiselmann J., Seifried S. E., Yager T. D., Liang C., von Hippel P. H. Physical properties of the E. coli transcription termination factor rho. II. Quaternary structure of the rho hexamer. Biochemistry 1992; 31: 121
  • Dombroski A. J., Platt T. Structure of rho factor: An RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 2538
  • Dolan J. W., Marshall N. F., Richardson J. P. Transcription termination factor rho has three distinct structural domains. J. Biol. Chem. 1990; 265: 5747
  • Geiselmann J., Yager T. D., von Hippel P. H. Functional interactions of ligand cofactors with E. coli transcription termination factor rho: II. Binding of RNA. Protein Science 1992; 1: 861
  • Stitt B. L. Escherichia coli transcription termination protein rho has three hydrolytic sites for ATP. J. Biol. Chem. 1988; 263: 111
  • Geiselmann J., von Hippel P. H. Functional interactions of ligand cofactors with E. coli transcription termination factor rho: I. Binding of ATP. Protein Science 1992; 1: 850
  • Brennan C. A., Dombroski A. J., Platt T. Transcription termination factor rho is an RNA-DNA helicase. Cell 1987; 48: 945
  • Platt T., Richardson J. P. E. coli rho factor: protein and enzyme of transcription termination. Transcriptional Regulation, S. L. McKnight, K. R. Yamarnoto. Cold Spring Harbor Press, Cold Spring Harbor 1992
  • Jin D. J., Burgess R. R., Richardson J. P., Gross C. A. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 1453
  • Richardson J. P. Preventing the synthesis of unused transcripts by rho factor. Cell 1991; 64: 1047
  • Li S. C., Squires C. L., Squires C. Anti-termination of E. coli rRNA transcription is caused by a control region segment containing lambda nut-like sequences. Cell 1984; 38: 851
  • Aksoy S., Squires C. L., Squires C. Evidence for Antitermination in Escherichia coli rRNA transcription. J. Bacteriol 1984; 159: 260
  • Grummt I., Maier U., Öhrlein A., Hassouna N., Bachellerie J.-P. Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves the interaction of factors with repeated sequences in the 3′ spacer. Cell 1985; 43: 801
  • Kuhn A., Bartsch I., Grummt I. Specific interaction of the murine transcription termination factor TTF I with class-I RNA polymerases. Nature 1990; 344: 559
  • Christianson T. W., Clayton D. A tridecamer DNA sequence supports human mitochondrial RNA 3′ end formation in vitro. Mol. Cell Biol. 1988; 8: 4502
  • Hess J. F., Parisi M. A., Bennett J. L., Clayton D. A. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1991; 351: 236
  • Kruse G., Narasimhan N., Attardi G. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 1989; 58: 391
  • Pavco P. A., Steege D. A. Elongation by E. coli RNA polymerase is blocked in vitro by a site-specific DNA binding protein. J. Biol. Chem. 1990; 265: 9960
  • Connelly S., Manley J. L. RNA polymerase II transcription termination is mediated specifically by protein binding to a CCAAT box sequence. Mol. Cell. Biol 1989; 9: 5254
  • Rohrmann G., Yuen L., Moss B. Transcription of vaccinia virus early genes by enzymes isolated from vaccinia virions terminates downstream of a regulatory sequence. Cell 1986; 46: 1029
  • Luo Y., Hagler J., Shuman S. Discrete functional stages of vaccinia virus early transcription during a single round of RNA synthesis in vitro. J. Biol. Chem. 1991; 266: 13303
  • Shuman S., Moss B. Factor-dependent transcription termination by vaccinia virus RNA polymerase. J. Biol. Chem. 1988; 263: 6220
  • Hagler J., Shuman S. A freeze-frame view of eukaryotic transcription during elongation and capping of nascent mRNA. Science 1992; 255: 983
  • Schmidt M. C., Chamberlin M. J. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J. Mol. Biol. 1987; 195: 809
  • Gottlieb E., Steitz J. A. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J. 1989; 8: 851
  • Briat J.-F., Chamberlin M. J. Identification and characterization of a new transcriptional termination factor from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 7373
  • Sullivan S. L., Gottesman M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 1992; 68: 989
  • Zengel J. M., Lindahl L. Ribosomal protein L4 stimulates in vitro termination of transcription at a nusA-dependent terminator in the S10 operon leader. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 2675
  • Lau L., Roberts J. W., Wu R. Transcription terminates at λtR, in three clusters. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 6171
  • Sigmund C. D., Morgan E. A. NusA protein affects transcriptional pausing and termination in vitro by binding to different sites on the transcription complex. Biochemistry 1988; 27: 5622
  • Farnham P. J., Greenblatt J., Platt T. Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Cell 1982; 29: 945
  • Schmidt M. C., Chamberlin M. J. Binding of rho factor to Escherichia coli RNA polymerase mediated by nusA protein. J. Biol. Chem. 1984; 259: 15000
  • Li J., Horwitz R., McCracken S., Greenblatt J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage λ. J. Biol. Chem. 1992; 267: 6012
  • Linn T., Greenblatt J. The NusA and NusG proteins of Escherichia coli increase the in vitro read-through frequency of a transcriptional attenuator preceding the gene for the β subunit of RNA polymerase. J. Biol. Chem. 1992; 267: 1449
  • Rinke J., Steitz J. A. Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell 1982; 29: 149
  • Bachmann M., Pfeifer K., Schröder H.-C., Müller W. E. G. Characterization of the autoantigen La as a nucleic acid-dependent ATPase/dATPase with melting properties. Cell 1990; 60: 85
  • Landick R., Yanofsky C. Transcription Attenuation. Escherichia coli and Salmonella Typhimurium, F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, H. E. Umbarger. American Society for Microbiology, Washington, DC 1987; 1276
  • Roberts J. W. Phage lambda and the regulation of transcription termination. Cell 1988; 52: 5
  • Turnbough C. L., Hicks K. L., Donahue J. P. Attenuation control of pyrB1 expression in Escherichia coli K-12. Proc. Natl. Acad. U.S.A. 1983; 80: 368
  • Stewart V., Yanofsky C. Evidence for transcription antitermination control of tryptophanase gene expression in Escherichia coli K-12. J. Bacteriol. 1985; 164: 731
  • Stewart V., Landick R., Yanofsky C. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J. Bacteriol. 1986; 166: 217
  • Gollnick P., Yanofsky C. tRNATrp translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J. Bacteriol. 1990; 172: 3100
  • Barik S., Bhattacharya P., Das A. Autogenous regulation of transcription termination factor rho. J. Mol. Biol. 1985; 182: 495
  • Matsumoto Y., Shigesada K., Hirano M., Imai M. Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: localization and function of its attenuators. J. Bacteriol. 1986; 166: 945
  • Grayhack E. J., Roberts J. W. Purification of the bacteriophage λ late gene regulator encoded by gene Q. J. Biol. Chem. 1983; 258: 9192
  • Grayhack E. J., Yang W., Lau L. F., Roberts J. W. Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site. Cell 1985; 42: 259
  • Yarnell W. S., Roberts J. W. The phage λ gene Q transcription antiterminator binds DNA in the late gene promoter as it modifies RNA polymerase. Cell 1992; 69: 1181
  • Yang X., Hart C. M., Grayhack E. J., Roberts J. W. Transcription antitermination by phage λ gene Q protein requires a DNA segment spanning the RNA start site. Genes Dev. 1987; 1: 217
  • Mason S. W., Greenblatt J. Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 1991; 5: 1504
  • Barik S., Ghosh B., Whalen W., Lazinski D., Das A. An antitermination protein engages the enlongating transcription apparatus at a promoter-proximal recognition site. Cell 1987; 50: 885
  • Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 1989; 59: 207
  • Nodwell J. R., Greenblatt J. The nut site of bacteriophage λ is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. Genes Dev. 1991; 5: 2141
  • Yang X., Roberts J. W. Gene Q antiterminator proteins of Escherichia coli phages 82 and λ suppress pausing by RNA polymerase at a dependent terminator and at other sites. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 5301
  • Faus I., Richardson J. P. Structural and functional properties of the segments of λ cro mRN A that interact with transcription termination factor rho. J. Mol. Biol. 1990; 212: 53
  • Chen C.-Y. A., Galluppi G. R., Richardson J. P. Transcription termination at rR1 is mediated by interaction of rho with specific single-stranded domains near the 3′ end of cro mRNA. Cell 1986; 46: 1023
  • Telesnitsky A. P. W., Chamberlin M. J. Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J. Mol. Biol. 1989; 205: 315
  • Goliger J. A., Roberts J. W. Sequences required for antitermination by phage 82 Q protein. J. Mol. Biol. 1989; 210: 461
  • Morgan E. A. Insertions of Tn10 into an E. coli ribosomal RNA operon are incompletely polar. Cell 1980; 21: 257
  • Berg K. L., Squires C., Squires C. L. Ribosomal RNA operon antitermination: function of leader and spacer region box B-box A sequences and their conservation in diverse microorganisms. J. Mol. Biol. 1989; 209: 345
  • Nodwell J., Greenblatt J. A heterodimer of NusB and S10 binds to the boxA sequence RNA of the rrnG ribosomal RNA operon of E. coli. J. Cell Biochem. 1992; 16E: 185
  • Sharrock R. A., Course R. L., Nomura M. Defective antitermination of rRNA transcription and derepression of rRNA and tRNA synthesis in the nusB5 mutant of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 5275
  • Mahadevan S., Wright A. A bacterial gene involved in transcription antitermination: regulation at a rho-independent terminator in the bgl operon of E. coli. Cell 1987; 50: 485
  • Houman F., Diaz-Torres M. R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 1990; 62: 1153
  • Amster-Choder O., Houman F., Wright A. Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 1989; 58: 847
  • Amster-Choder O., Diaz-Torres M., Wright A. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 1992; 257: 1395
  • Linderoth N. A., Calendar R. L. The Psu protein of bacteriophage P4 is an antitermination factor for rho-dependent transcription termination. J. Bacteriol. 1991; 173: 6722
  • Kerppola T. K., Kane C. M. RNA polymerase: regulation of transcript elongation and termination. FASEB J. 1991; 5: 2833
  • Rougvie A. E., Lis J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 1988; 54: 795
  • Lee H., Kraus K. W., Wolfner M. F., Lis J. T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 1992; 6: 284
  • Kao S.-Y., Caiman A. F., Luciw P. A., Peterlin B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 1987; 330: 489
  • Weeks K. M., Ampe C., Schultz S. C., Steitz T. A., Crothers D. M. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 1990; 249: 1281
  • Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991; 5: 201
  • Weeks K. M., Crothers D. M. RNA recognition by Tat-derived peptides: interaction in the major groove. Cell 1991; 66: 577
  • Maderious A., Chen-Kiang S. Pausing and premature termination of human RNA polymerase II during transcription of adenovirus in vivo and in vitro. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 5931
  • Kessler M., Ben-Asher E., Aloni Y. Elements modulating the block of transcription elongation at the adenovirus 2 attenuation site. J. Biol. Chem. 1989; 264: 9785
  • Seiberg M., Aloni Y., Levine A. J. The adenovirus type 2 DNA binding protein interacts with the major late promoter attenuated RNA. J. Virol. 1989; 63: 1134
  • Proudfoot N. J. How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem. Sci. 1989; 14: 105
  • Connelly S., Manley J. L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988; 2: 440
  • Neuman de Vegvar H. E., Lund E., Dahlberg J. E. 3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 1986; 47: 259

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.