462
Views
365
CrossRef citations to date
0
Altmetric
Research Article

Biochemical Basis of DNA Replication Fidelity

, , , &
Pages 83-126 | Published online: 26 Sep 2008

References

  • Watson J. D., Crick F. H.C. Genetical implications of the structure of deoxyribonucleic acid. Nature 1953; 171: 964
  • Watson J. D., Crick F. H. C. The structure of DNA. Cold Spring Harbor Symp. Quant. Biol. 1953; 18: 123
  • Kornberg A., Baker T. A. DNA Replication. W. H. Freeman, New York 1992, chap. 4.
  • Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXVI. A proofreading function for the 35 exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem. 1972; 247: 241
  • Muzyczka N., Poland R. L., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. I. A. comparison of the deoxyribonucleic acid polymerase of mutator, antimutator, and wild-type strains of bacteriophage T4. J. Biol. Chem. 1972; 247: 7116
  • Scheuermann R., Tarn S., Burgers P. M., Lu C., Echols H. Identification of the epsilonsubunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product: a fidelity subunit for DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 7085
  • DiFrancesco R., Bhatnagar S. K., Brown A., Bessman M. J. The interaction of DNA polymerase III and the product of the Escherichia coli mutator gene, mutD. J. Biol. Chem. 1984; 259: 5567
  • Radman M., Wagner R. Mismatch repair in Escherichia coli. Annu. Rev. Genet. 1986; 20: 523
  • Modrich P. DNA mismatch correction. Annu. Rev. Biochem. 1987; 56: 435
  • Modrich P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 1989; 264: 6597
  • Au K. G., Clark S., Miller J. H., Modrich P. Escherichia coli mutY gene encodes an adenine glycosylase active in GA mispairs. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 8877
  • Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 4690
  • Michaels M. L., Miller J. H. The GO system protects organism from the mutagenic effect of spontaneous lesion 8-hydroxyguanine (7,8-Dihydro-8-Oxoguanine). J. Bacteriol. 1992; 174: 6321
  • Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 1991; 60: 477
  • Bessman M. J., Muzyczka N., Goodman M. F., Schnaar R. L. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator, and antimutator DNA polymerases. J. Mol. Biol. 1974; 88: 409
  • Fersht A. R. Enzyme Structure and Mechanism. W. H. Freeman, New York 1985; 112
  • Segal I. H. Enzyme Kinetics. John Wiley & Sons, New York 1975; 564
  • Randall S. K., Eritja R., Kaplan B. E., Petruska J., Goodman M. F. Nucleotide insertion kinetics opposite abasic lesions in DNA. J. Biol. Chem. 1987; 262: 6864
  • Boosalis M. S., Petruska J., Goodman M. F. DNA polymerase insertion fidelity: gel assay for site-specific kinetics. J. Biol. Chem. 1987; 262: 14689
  • Mendelman L. V., Boosalis M. S., Petruska J., Goodman M. F. Nearest neighbor influences on DNA polymerases insertion fidelity. J. Biol. Chem. 1989; 264: 14415
  • Yu H., Goodman M. F. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates. J. Biol. Chem. 1992; 267: 10888
  • Creighton S., Huang M. M., Cai H., Arnheim N., Goodman M. F. Base mispair extension kinetics: binding of avian myeloblastosis reverse transcriptase to matched and mismatched base pair termini. J. Biol. Chem. 1992; 267: 2633
  • Clarke A. B., Disney R. L. Probability And Random Processes: a First Course With Applications. John Wiley & Sons, New York 1985
  • Reddy M. K., Weitzel S. E., von Hippel P. H. Processive proofreading is intrinsic to T4 DNA polymerase. J. Biol. Chem. 1992; 267: 14157
  • Kuchta R. D., Mizrahi V., Benkovic P. A., Johnson K. A., Benkovic S. J. Kinetic mechanism of DNA polymerase I (Klenow). Biochemistry 1987; 26: 8410
  • Clayton L. K., Goodman M. F., Branscomb E. W., Galas D. J. Error induction and correction by mutant and wild-type T4 DNA polymerases: kinetic error discrimination mechanisms. J. Biol. Chem. 1902; 254: 1979
  • Fersht A. R. Fidelity of replication of phage πX174 DNA by DNA polymerase III holoenzyme; spontaneous mutation by misincorporation. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 4946
  • Kornberg A., Baker T. A. DNA Replication. W. H. Freeman, New York 1992, chap. 5.
  • Fersht A. R., Knill-Jones J. W., Tsui W. C. Kinetic basis of spontaneous mutation. Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. J. Mol. Biol. 1982; 156: 37
  • Schaaper R. M. Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc. Nad. Acad. Sci. U.S.A. 1988; 85: 8126
  • Sinha N. K., Haimes M. D. Molecular mechanisms of substitution mutagenesis. An experimental test of the Watson-Crick and topal-fresco models of base mispairings. J. Biol. Chem. 1981; 256: 10671
  • Sinha N. K., Goodman M. F. Fidelity of DNA replication. Bacteriophage T4, C. K. Mathews, E. M. Kutter, G. Mosig, P. B. Berget. Am. Soc. Microbiol., Washington, D. C. 1983; 131
  • Kunkel T. A., Loeb L. A., Goodman M. F. On the fidelity of DNA replication. The accuracy of T4 DNA polymerases in copying πX174 DNA in vitro. J. Biol. Chem. 1984; 259: 1539
  • Cox E. C. Bacterial mutator genes and the control of spontaneous mutagenesis. Annu. Rev. Genet. 1976; 10: 135
  • Cox E. C., Horner D. L. Dominant mutators in Escherichia coli. Genetics 1982; 100: 7
  • Degnan G. E., Cox E. C. Conditional mutator gene in Escherichia coli Isolation, mapping, and effector studies. J. Bacteriol. 1974; 117: 477
  • Schaaper R. M., Bond B. I., Fowler R. G. AT CG transversions and their prevention by the Escherichia coli mutT and murHLS pathways. Mol. Gen. Genet. 1989; 219: 1
  • Schaaper R. M., Radman M. The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J. 1989; 8: 3511
  • Reha-Krantz L. J., Stocki S., Nonay R. L., Dimayuga E., Goodrich L. D., Konigsberg W. H., Spicer E. K. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 2417
  • Young M. C., Reddy M. K., von Hippel P. H. Structure and function of the bacteriophage T4 DNA polymerase holoenzyme. Biochemistry 1992; 31: 8675
  • Speyer J. F. Mutagenic DNA polymerase. Biochem. Biophys. Res. Comtn. 1965; 21: 6
  • Freese E. B., Freese E. F. On the specificity of DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1967; 57: 650
  • Drake J. W., Allen E. F. Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 1968; 33: 339
  • Lo K. Y., Bessman M. J. An antimutator deoxyribonucleic acid polymerase. I. Purification and properties of the enzyme. J. Biol. Chem. 1976; 251: 2475
  • Speyer J. F., Karam J. D., Lenny A. B. On the role of DNA polymerase in base selection. Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 693
  • Drake J. W. Comparative rates of spontaneous mutation. Nature 1969; 221: 1132
  • Drake J. W., Allen E. F., Forsberg S. A., Preparata R., Greening E. O. Spontaneous mutation. Genetic control of mutation rates in bacteriophage T4. Nature 1969; 221: 1128
  • Ripley L. S., Shoemaker N. B. A major role for bacteriophage T4 DNA polymerase in frameshift mutagenesis. Genetics 1983; 103: 353
  • Petruska J., Goodman M. F., Boosalis M. S., Sowers L. C., Cheong C., Tinoco I., Jr. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 6252
  • Perrino F. W., Loeb L. A. Differential extension of 3 mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. J. Biol. Chem. 1989; 264: 2898
  • Mendelman L. V., Petruska J., Goodman M. F. Base mispair extension kinetics: comparison of DNA polymerase α and reverse transcriptase. J. Biol. Chem. 1990; 265: 2338
  • Perrino F. W., Preston B. D., Sandell L. L., Loeb L. A. Extension of mismtached 3 termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 8343
  • Kuchta R. D., Benkovic P., Benkovic S. J. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 1988; 27: 6716
  • Petruska J., Sowers L. C., Goodman M. F. Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 1559
  • Cohen S. S. Virus-Induced Enzymes. Columbia University Press, New York 1968
  • Mathews C. K. Bacteriophage biochemistry. ACS Monograph No. 164. Van Nostrand Reinhold, New York 1971
  • Tomich P. K., Chiu C. S., Wovcha M. G., Greenberg G. R. Evidence for a complex regulating the in vivo activities of early enzymes induced by bacteriophage T4. J. Biol. Chem. 1974; 249: 7613
  • Reddy G. P. V., Singh A., Stafford M. E., Mathews C. K. Enzyme associations in T4 phage DNA precursor synthesis. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3152
  • Thylen C., Mathews C. K. Essential role of T4 phage deoxycytidylate hydroxymethylase in a multienzyme complex for deoxyribonucleotide synthesis. J. Biol. Chem. 1989; 264: 15169
  • Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 1985; 313: 762
  • Derbyshire V., Freemont P. S., Sanderson M. R., Beese L., Friedman J. M., Joyce C. M., Steitz T. A. Genetic and crystallographic studies of the 3, 5-exonucleolytic site of DNA polymerase I. Science 1988; 240: 199
  • Reha-Krantz L. J. Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants: relating structure to function. J. Mol. Biol. 1988; 202: 711
  • Spicer E. K., Rush J., Fung C., Reha Krantz L. J. Primary structure of T4 DNA polymerase: evolutionary relatedness to eukaryotic and other prokaryotic DNA polymerases. J. Biol. Chem. 1988; 263: 7478
  • Cowart M. C., Gibson K. J., Allen D. J., Benkovic S. J. DNA substrate structural requirements for the exonuclease and polymerase activities of prokaryotic and phage DNA polymerases. Biochemistry 1989; 28: 1975
  • Joyce C. M. How DNA travels between the separate polymerase and 3 5 exonuclease sites of DNA polymerase I (Klenow fragment). J. Biol. Chem. 1989; 264: 10858
  • Goodman M. F., Gore W. C., Muzyczka N., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. III. Rate model for DNA polymerase-effected nucleotide misincoporation. J. Mol. Biol. 1974; 88: 423
  • Sinha N. K. Specificity and efficiency of editing of mismatches involved in the formation of base substitution mutations by the 35 exonuclease activity of phage T4 DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 915
  • Brenowitz S., Kwack S., Goodman M. F., O'Donnell M., Echols H. Specificity and enzymatic mechanism of the editing exonuclease of Escherichia coli DNA polymerase III. J. Biol. Chem. 1991; 266: 7888
  • Reha-Krantz L. J., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. IV. Effect on amino acid substitution on the enzymatic and biological properties of the T4 DNA polymerase. J. Mol. Biol. 1977; 116: 99
  • Bessman M. J., Reha-Krantz L. J. Studies on the biochemical basis of spontaneous mutation. V. Effects of temperature on mutation frequency. J. Mol. Biol. 1977; 116: 115
  • Hershfield M. S., Nossal N. G. Hydrolysis of template and newly synthesized deoxyribonucleic acid by the 3 to 5 exonuclease activity of the T4 deoxyribonucleic acid polymerase. J. Biol. Chem. 1972; 247: 3393
  • Nossal N. G., Hershfleld M. S. Exonuclease activity of wild-type and mutant T4 DNA polymerases: hydrolysis during DNA synthesis in vitro. DNA Synthesis In Vitro, R. D. Wells, R. B. Inman. University Park Press, Baltimore 1973; 47
  • Hershfleld M. S. On the role of deoxyribonucleic acid polymerase in determining mutation rates: characterization of the defect in the T4 deoxyribonucleic acid polymerase caused by the ts88 mutation. J. Biol. Chem. 1973; 248: 1417
  • Reha-Krantz L. J. Locations of amino acid substitutions in bacteriophage T4tsL56 DNA polymerase predict an N-terminal exonuclease domain. J. Virol. 1989; 63: 4762
  • Gillen F. D., Nossal N. G. Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement. J. Biol. Chem. 1976; 251: 5219
  • Reha-Krantz L. J. Genetic and biochemical studies of the bacteriophage T4 DNA polymerase. UCLA Symp. Mol. Cell. Biol. New Ser, T. J. Kelly, R. McMacken. Alan R. Liss, New York 1987; 47: 501
  • Cai H., Bloom L. B., Reha-Krantz L. J., Goodman M. F. 1992, unpublished
  • Wong I., Patel S. S., Johnson K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 1991; 30: 526
  • Detera S. D., Becerra S. P., Swack J. A., Wilson S. H. Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis. J. Biol. Chem. 1981; 256: 6933
  • Fisher P. A., Korn D. Ordered sequential mechanism of substrate recognition and binding by KB cell DNA polymerase alpha. Biochemistry 1981; 20: 4560
  • Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985; 230: 1350
  • Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487
  • Li H., Cui X., Arnheim N. Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 4580
  • Ehlen T., Dubeau L. Detection of ras point mutations by polymerase chain reaction using mutation-specific., inosine-containing oligonucleotide primers. Biochem. Biophys. Res. Comm. 1989; 160: 441
  • Gibbs R. A., Nguyen P. N., Caskey C. T. Detection of single DNA base differences by competitive oligonucleotide priming. Nucl. Acids Res. 1989; 17: 2437
  • Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl. Acids Res. 1989; 17: 2503
  • Wu D. Y., Ugozzoli L., Pal B. K., Wallace R. B. Allele-specific enzymatic amplification of betaglobin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2757
  • Ugozzoli L., Wallace R. B. Allele-specific polymerase chain reaction, METHODS. A Companion to Methods in Enzyomology 1991; 2: 42
  • Cha R. S., Zarbl H., Keohavong P., Thilly W. G. Mismatch amplification mutation assay (MAMA): application to the c-H-ras-gene, PCR. Methods and Applications 1992; 2: 14
  • Huang M. M., Arnheim N., Goodman M. F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucl. Acids Res. 1992; 20: 4567
  • Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucl. Acids Res. 1990; 18: 999
  • Preston B. D., Poiesz B. J., Loeb L. A. Fidelity of HIV-1 reverse transcriptase. Science 1988; 243: 1168
  • Ricchetti M., BuC H. Reverse tanscriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J. 1990; 9: 1583
  • Majumdar C., Abbotts J., Broder S., Wilson S. H. Studies on the mechanism of human immunodeficiency virus reverse transcriptase: steady state kinetics, processivity, and polynucleotide inhibition. J. Biol. Chem. 1988; 263: 15657
  • Majumdar C., Stein C. A., Cohen J. S., Broder S., Wilson S. H. Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxynucleotide. Biochemistry 1989; 28: 1340
  • Huber H. E., McCoy J. M., Seehra J. S., Richardson C. C. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J. Biol. Chem. 1989; 264: 4669
  • Dudding L. R., Nkabinde N. C., Mizrahi V. Analysis of the RNA- and DNA-dependent DNA polymerase activities of point mutants of HIV-1 reverse transcriptase lacking ribonuclease H activity. Biochemistry 1991; 30: 10498
  • Bakhanashvili M., Hizi A. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of Human Immunodeficiency Virus Types 1, and 2 and of Murine Leukemia Virus: Mispair extension frequencies. Biochemistry 1992; 31: 9393
  • Reardon J. E., Miller W. H. Human immunodeficiency virus reverse transcriptase. Substrate and inhibitor kinetics with thymidine 5 triphosphate and 3-azido-3-deoxythymidine-5-triphosphate. J. Biol. Chem. 1990; 265: 20302
  • Krug M. S., Berger S. L. Reverse transcriptase from human immunodeficiency virus: a single templateprimer binding site serves two physically separable catalytic functions. Biochemistry 1991; 30: 10614
  • Roberts J. D., Bebenek K., Kunkel T. A. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242: 1171
  • Weber J., Grosse F. Fidelity of human immunodeficiency virus type I reverse transcriptase in copying natural DNA. Nucl. Acids Res. 1989; 17: 1379
  • Bebenek K., Abbotts J., Roberts J. D., Wilson S. H., Kunkel T. A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J. Biol. Chem. 1989; 264: 16948
  • Huebner A., Kruhoffer M., Grosse F., Krauss G. Fidelity of human immunodeficiency virus type I reverse transcriptase in copying natural RNA. J. Mol. Biol. 1992; 223: 595
  • Roberts J. D., Preston B. D., Johnston L. A., Soni A., Loeb L. A., Kunkel T. A. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis. in vitro, Mol. Cell. Biol. 1989; 9: 469
  • Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 77
  • Kunkel T. A. Frameshift mutagenesis by eukaryotic DNA polymerases. in vitro, J. Biol. Chem. 1986; 261: 13581
  • Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J. Biol. Chem. 1988; 263: 14784
  • Boosalis M. S., Mosbaugh D. W., Hamatake R., Sugino A., Kunkel T. A., Goodman M. F. Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J. Biol. Chem. 1989; 264: 11360
  • Fowler R. G., Degnan G. E., Cox E. C. Mutational specificity of conditional E. coli mutator, mutD5. Mol. Gen. Genet. 1974; 133: 179
  • de Boer J. G., Ripley L. S. Demonstration of the production of frameshift and base-substitution mutations by quasipalindromic DNA sequences. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 5528
  • Papanicolaou C., Ripley L. S. Polymerasespecific differences in the DNA intermediates of frameshift mutagenesis. In vitro synthesis errors of Escherichia coli DNA polymerase I and its large fragment derivative. J. Mol. Biol. 1989; 207: 335
  • Ripley L. S. Frameshift mutation: determinants of specificity. Annu. Rev. Genet. 1990; 24: 189
  • Allen D. J., Darke P. L., Benkovic S. J. Fluorescent oligonucleotides and deoxynucleotide triphosphates: preparation and their interaction with the large (Klenow) fragment of Escherichia coli DNA polymerase I. Biochemistry 1989; 28: 4601
  • Carroll S. S., Benkovic S. J. Mechanistic aspects of DNA polymerases: Escherichia coli DNA polymerase I (Klenow fragment) as a paradigm. Chem. Rev. 1990; 90: 1291
  • Singer B., Chavez F., Goodman M. F., Essigmann J. M., Dosanjh M. K. Effect of 3 flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 8271
  • Dosanjh M. K., Galeros G., Goodman M. F., Singer B. Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences. Biochemistry 1991; 30: 11595
  • Voigt J. M., Topal M. D. O6-methylguanine and AC and GT mismatches cause asymmetric structural defects in DNA that are affected by DNA sequence. Biochemistry 1990; 29: 5012
  • Reha-Krantz L. J., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. VI. Selection and characterization of a new bacteriophage T4 mutator DNA polymerase. J. Mol. Biol. 1981; 145: 677
  • Pless R. C., Levitt L. M., Bessman M. J. Nonrandom substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Biochemistry 1981; 20: 6235
  • Pless R. C., Bessman M. J. Influence of local nucleotide sequence on substituion of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Biochemistry 1983; 22: 4905
  • Freese E. The specific mutagenic effect of base analogues on phage T4. J. Mol. Biol. 1959; 1: 87
  • Rudner R. Mutation as an error in base pairing. II. Kinetics of 5-bromodeoxyuridine and 2-amino-purine-induced mutagenesis. Zeitschrift für Vererbungslehre 1961; 92: 361
  • Ronen A. 2-aminopuririne. Mutat. Res. 1979; 75: 1
  • Hopkins R., Goodman M. F. Asymmetry in forming 2-aminopurine hydroxymethylcytosine heteroduplexes; a model giving misincorporation frequencies and rounds of DNA replication from base-pair populations in vivo. J. Mol. Biol. 1979; 135: 1
  • Hopkins R. L., Goodman M. F. Deoxyribonucleotide pools, base pairing and sequence configuration affecting bromodeoxyuradine- and 2-aminopurine-induced mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1801
  • Persing D. H., McGinty L., Adams C. W., Fowler R. G. Mutational specificity of the base analogue, 2-aminopurine, in Escherichia coli. Mutat. Res. 1981; 83: 25
  • Goodman M. F., Branscomb E. W. DNA replication fidelity and base mispairing mutagenesis. Accuracy in Molecular Processes: its Control and Relevance to Living Systems, T. B. L. Kirkwood, R. F. Rosenberger, D. J. Galas. Chapman and Hall, New York 1986; 191
  • Goodman M. F., Hopkins R., Gore W. C. 2-aminopurine-induced mutagenesis in T4 bacteriophage: a model relating mutation frequency to 2-aminopurine incorporation in DNA. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4806
  • Mhaskar D. N., Goodman M. F. On the molecular basis of transition mutations. Frequency of forming 2-aminopurine cytosine and adenine cytosine base mispairs in the G AT mutational pathway by T4 DNA polymerase in vitro. J. Biol. Chem. 1984; 259: 11713
  • Ripley L. S. Influence of diverse gene 43 DNA polymerases on the incorporation and replication in vivo 2-aminopurine at AT base pairs in bacteriophage T4. J. Mol. Biol. 1981; 150: 197
  • Watanabe S. M., Goodman M. F. On the molecular basis of transition mutations: frequencies of forming 2-aminopurine cytosine and adenine cytosine base mispairs in vitro. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 2864
  • Watanabe S. M., Goodman M. F. Kinetic measurement of 2-aminopurine cytosine and 2-aminopurine thymidine base pairs as a test of DNA polymerase fidelity mechanisms. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 6429
  • Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu. Rev. Biochem. 1982; 52: 429
  • Fersht A. R., Knill-Jones J. W. Fidelity of replication of bacteriophage X174DNA in vitro and in vivo. J. Mol. Biol. 1983; 165: 633
  • Sloane D. L., Goodman M. F., Echols H. The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. Nucl. Acids Res. 1988; 16: 6465
  • Sowers L. C., Fazakerley G. V., Eritja R., Kaplan B. E., Goodman M. F. Base pairing and mutagenesis: observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 5434
  • Eritja R. E., Kaplan B. E., Mhaskar D., Sowers L. C., Petruska J., Goodman M. F. Synthesis and properties of defined DNA oligomers containing base mispairs involving 2-aminopurine. Nucl. Acids Res. 1986; 14: 5869
  • Petruska J., Goodman M. F. Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity. J. Biol. Chem. 1985; 260: 7533
  • Galas D. J., Branscomb E. W. Enzymatic determinants of DNA polymerase accuracy. Theory of coliphage T4 polymerase mechanisms. J. Mol. Biol. 1978; 88: 653
  • Goodman M. F. DNA replication fidelity: kinetics and thermodynamics. Mutat. Res. 1988; 200: 11
  • Guest C. R., Hochstrasser R. A., Dupuy C. G., Allen D. J., Benkovic S. J., Miller D. P. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy. Biochemistry 1991; 30: 8759
  • Jung G. H., Leavitt M. C., Hsieh J. C., Ito J. Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 8287
  • Leavitt M. C., Ito J. T5 DNA polymerase: structural functional relationships to other DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 4465
  • Bemad A., Zaballos A., Salas M., Blanco L. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 1987; 6: 4219
  • Bernad A., Blanco L., Lazaro J. M., Martin G., Salas M. A conserved 3-5 exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 1989; 59: 219
  • Blanco L., Bernad A., Blasco M. A., Salas M. A general structure for DNA-dependent DNA polymerases. Gene 1991; 100
  • Blanco L., Bernad A., Salas M. Evidence favoring the hypothesis of a conserved 3-5 exonuclease active site in DNA-dependent DNA polymerases. Gene 1992; 112: 139
  • Wong S. W., Wahl A. F., Yuan P. M., Arai N., Pearson B. E., Arai K., Korn D. Human DNA polymerase alpha gene expression is cell proliferation dependent, and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988; 7: 37
  • Wang T. S., Wong S. W., Korn D. Human DNA polymerase alpha: predicted functional domains and relationships with viral DNA polymerases. FASEB J. 1989; 3: 14
  • Wang T. S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 1991; 60: 513
  • Ward D. C., Reich E. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 1969; 244: 1228
  • Scheit K. H., Rackwitz H. R. Synthesis and physicochemical properties of two analogs of poly(dA):poly(2-aminopurine-9-β-D-deoxyribonucleotide) and poly 2-amino-deoxyadenylic acid. Nucl. Acids Res. 1982; 10: 4059
  • Goodman M. F., Ratliff R. L. Evidence of 2-aminopurine-cytosine base mispairs involving two hydrogen bonds. J. Biol. Chem. 1983; 258: 12842
  • Topal M. D., Fresco J. R. Molecular basis for substitution mutations. Nature 1976; 263: 285
  • Patel D. J., Kozlowski S. A., Ikuta S., Itakura K. Deoxyadenosine-deoxycytidine pairing in the d(C-G-C-G-A-A-T-T-C-A-C-G) duplex: conformation and dynamics at and adjacent to the dA X dC mismatch site. Biochemistry 1984; 23: 3218
  • Hunter W. N., Brown T., Anand N. N., Kennard O. Structure of an adenine-cytosine base pair in DNA and its implications for mismatch repair. Nature 1986; 320: 552
  • Sowers L. C., Fazakerley G. V., Kim H., Dalton L., Goodman M. F. Variation of nonexchangeable proton resonance chemical shifts as a probe of aberrant base pair formation in DNA. Biochemistry 1986; 25: 3983
  • Wang C., Gao H., Gaffney B. L., Jones R. A. Nitrogen-15-labeled oligodeoxynucleotides. III. Protonation of the adenine N1 in the AC and AG mispairs on the duplexes d[CG(15NI) AGAATTCCCG]2, and d[CGGGAATTC(15NI)ACG]2. J. Am. Chem. Soc. 1991; 113: 5486
  • Boulard Y., Cognet J. A., Gabarro A. J., Le B. M., Sowers L. C., Fazakerley G. V. The pH-dependent configurations of the CA mispair in DNA. Nucl. Acids Res. 1933; 20: 1992
  • Patel D. J., Kozlowski S. A., Ikuta S., Itakura K. Dynamics of DNA duplexes containing internal GT, GA, AC., and TC pairs: hydrogen exchange at and adjacent to mismatch sites. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1984; 43: 2663
  • Hunter W. N., Kneale G., Brown T., Rabinovich D., Kennard O. Refined crystal structure of an octanucleotide duplex with GT mismatched base pairs. J. Mol. Biol. 1986; 190: 605
  • Kan L. S., Chandrasegaran S., Pulford S. M., Miller P. S. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 4263
  • Brown T., Hunter W. N., Kneale G., Kennard O. Molecular structure of the GA base pair in DNA and its implications for the mechanism of trans version mutations. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 2402
  • Brown T., Leonard G. A., Booth E. D., Chambers J. Crystal structure and stability of a DNA duplex containing A(anti)G(syn) base pairs. J. Mol. Biol. 1989; 207: 455
  • Sowers L. C., Eritja R., Chen F. M., Khwaja T., Kaplan B. E., Goodman M. F., Fazakerley G. V. Characterization of the high pH wobble structure of the 2-aminopurine.cytosine mismatch by N-15 NMR spectroscopy. Biochem. Biophys. Res. Comm. 1989; 165: 89
  • Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Fazakerly G. V. Equilibrium between a wobble and ionized base pair formed between fluorouracil and guanine in DNA as studied by proton and fluorine NMR. J. Biol. Chem. 1988; 263: 14794
  • Sowers L. C., Goodman M. F., Eritja R., Kaplan B., Fazakerley G. V. Ionized and wobble base-pairing for bromouracil-guanine in equilibrium under physiological conditions. A nuclear magnetic resonance study on an oligonucleotide containing a bromouracil-guanine base pair as a function of pH. J. Mol. Biol. 1989; 205: 437
  • Sowers L. C., Ramsay Shaw B., Veigl M. L., Sedwick W. D. DNA base modification: ionized base pairs and mutagenesis. Mutat. Res. 1987; 177: 201
  • Lawley P. D., Brooks P. Ionization of DNA bases or base analogues as a possible explanation of mutagenesis. J. Mol. Biol. 1962; 4: 216
  • Trautner T. A., Swartz M. N., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. X. Influence of bromouracil substitutions on replication. Proc. Natl. Acad. Sci. U.S.A. 1962; 48: 449
  • Lasken R. S., Goodman M. F. The biochemical basis of 5-bromouracil-induced mutagenesis. Heteroduplex base mispairs involving bromouracil in GCAT and ATGC mutational pathways. J. Biol. Chem. 1984; 259: 11491
  • Lasken R. S., Goodman M. F. A fidelity assay using “dideoxy” DNA sequencing: a measurement of sequence dependence and frequency of forming 5-bromouracil guanine base mispairs. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 1301
  • Driggers P. H., Beattie K. L. Effect of pH on base-mispairing properties of 5-bromouracil during DNA synthesis. Biochemistry 1988; 27: 1729
  • Yu H., Eritja R., Bloom L. B., Goodman M. F. Ionization of bromuracil and fluorourcial stimulates base mispairing frequencies with guanine. 1992, submitted for publication
  • Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between E. coli and Salomonella typhimurium is disrupted in mismatch repair mutants. Nature (London) 1989; 342: 396
  • Tsai-Wu J. J., Liu H. F., Lu A. L. Escherichia coli mutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on AC and AG mispairs. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 8779
  • Michaels M. L., Cruz C., Grollman A. P., Miller J. H. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 7022
  • Michaels M. L., Pham L., Cruz C., Miller J. H. MutM, a protein that prevents GC TA trans versions, is formamidopyrimidine-DNA glycosylase. Nucl. Acids Res. 1991; 19: 3629
  • Treffers H. P., Spinelli C., Belser N. O. A factor (or mutator gene) influencing mutation rates in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1954; 40: 1064
  • Cox E. C. Mutator gene studies in Escherichia coli: the mutT gene. Genetics 1973; 73: 67, Suppl
  • Bhatnagar S. K., Bessman M. J. Studies on the mutator gene, mutT of Escherichia coli Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. J. Biol. Chem. 1988; 263: 8953
  • Bhatnagar S. K., Bullions L. C., Bessman M. J. Characterization of the mutT nucleoside triphosphatase of Escherichia coli. J. Biol. Chem. 1991; 266: 9050
  • Schaaper R. M., Dunn R. L. Escherichia coli mutT mutator effect during in vitro DNA synthesis. Enhanced AG replicational errors. J. Biol. Chem. 1987; 262: 16267
  • Akiyama M., Maki H., Sekiguchi M., Horiuchi T. A specific role of MutT protein: to prevent dGdA mispairing in DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 3949
  • Maki H., Sekiguchi M. MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nature 1992; 355: 273
  • Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excised imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 1990; 265: 3916
  • Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the hydroxyl-radical damaged base 8-oxodG. Nature 1991; 349: 431
  • Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G T and A C substitutions. J. Biol. Chem. 1992; 267: 166
  • Walker G. C. Inducible DNA repair systems. Annu. Rev. Biochem. 1985; 54: 425
  • Friedberg E. C. DNA Repair. W. H. Freeman, New York 1985
  • Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu. Rev. Biochem. 1988; 57: 133
  • Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Molecular Mechanisms for the Repair of DNA, Part A, P. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 355
  • Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 1976; 40: 869
  • Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell 1982; 29: 11
  • Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 1984; 48: 60
  • Echols H., Goodman M. F. Mutation induced by DNA damage: a many protein affair. Mutat. Res. 1990; 236: 301
  • Sancar A., Sancar G. B. DNA repair enzymes. Annu. Rev. Biochem. 1988; 57: 29
  • Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4193
  • Banerjee S. K., Borden A., Christensen R. B., LeClerc J. E., Lawrence C. W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells. J. Bacteriol. 1990; 172: 2105
  • Lawrence C. W., Borden A., Banerjee S. K., LeClerc J. E. Mutation frequency and spectrum resulting from a single abasic site in a singlestranded vector. Nucl. Acids Res. 1990; 18: 2153
  • Rajagopalan M., Lu C., Woodgate R., O'Donnell M., Goodman M. F., Echols H. Activity of the purified mutagenesis proteins UmuC., UmuD', and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 10777
  • Moore P. D., Bose K. K., Rabkin S. D., Strauss B. S. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated X174 templates by prokaryotic and eukaryotic DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 110
  • Banerjee S. K., Christensen R. B., Lawrence C. W., LeClerc J. E. Frequency and spectrum of mutations produced by a single cis-syn thyminethymine cyclobutane dimer in a single-stranded vector. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 8141
  • Taylor J. S., O'Day C. L. cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro. Biochemistry 1990; 29: 1624
  • Wang C. I., Taylor J. S. In vitro evidence that UV-induced frameshift and substitution mutations at T tracts are the result of misalignment-mediated replication past a specific thymine dimer. Biochemistry 1992; 31: 3671
  • Hayes R. C., Petrullo L. A., Huang H. M., Wallace S. S., LeClerc J. E. Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. J. Mol. Biol. 1988; 201: 239
  • Ide H., Kow Y. W., Wallace S. S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucl. Acids Res. 1985; 13: 8035
  • Loechler E. L., Green C. L., Essigmann J. M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 6271
  • Eadie J. S., Conrad M., Toorchen D., Topal M. D. Mechanism of mutagenesis by O6-methyl-guanine. Nature 1984; 308: 8
  • Topal M. D. Mutagenesis by incorporation of alkylated nucleotides. Basic Life Sci. 1985; 31: 339
  • Chambers R. W., Sledziewska G. E., Hirani H. S., Borowy B. H. uvrA and recA mutations inhibit a site-specific transition produced by a single O6-methylguanine in gene G of bacteriophage X174. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 7173
  • Bhanot O. P., Ray A. The in vivo mutagenic frequency and specificity of O6-methylguanine in X174 replicative form DNA. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 7348
  • Preston B. D., Singer B., Loeb L. A. Mutagenic potential of O4-methyl thymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 8501
  • Rossi S. C., Topal M. D. Mutagenic frequencies of site-specifically located O6-methylguanine in wild-type Escherichia coli and in a strain deficient in ada-methylguanine. J. Bacteriol. 1991; 173: 1201
  • Dosanjh M. K., Essigmann J. M., Goodman M. F., Singer B. Comparative efficiency of forming m4TG vs. m4TA base pairs at a unique site by use of Escherichia coli DNA polymerase I (Klenow fragment) and Drosophila melanogaster polymerase alpha-primase complex. Biochemistry 1990; 29: 4698
  • Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 1986; 20: 201
  • Boiteux S., Laval J. Coding properties of poly(deoxycycytidylic acid) templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by DNA repair enzymes. Biochemistry 1982; 21: 6746
  • Sagher D., Strauss B. S. Insertion of nucleotides opposite apurinic/payrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry 1983; 22: 4518
  • Schaaper R. M., Kunkel T. A., Loeb L. A. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 487
  • Strauss B. S. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of noninstructional lesions. Bioessays 1991; 13: 79
  • Millican T. A., Mock G. A., Chauncey M. A., Patel T. P., Eaton M. A., Gunning J., Cutbush S. D., Neidle S., Mann J. Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: a possible approach to the problem of mixed base oligodeoxynucleotide synthesis. Nucl. Acids Res. 1984; 12: 7435
  • Takeshita M., Chang C. N., Johnson F., Will S., Groilman A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurnic/apyrimidinic endonucleases. J. Biol. Chem. 1987; 262: 10171
  • Ng L., Weiss S. J., Fisher P. A. Recognition and binding of template primers containing defined abasic sites by Drosophila DNA polymerase alpha holoenzyme. J. Biol. Chem. 1989; 264: 13018
  • Cai H., Bloom L. B., Goodman M. F. 1992, unpublished
  • Cuniasse P., Fazakerley G. V., Guschlbauer W., Kaplan B. E., Sowers L. C. The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G. C and T opposite a model abasic site. J. Mol. Biol. 1990; 213: 303
  • Kalnik M. W., Chang C. N., Grollman A. P., Patel D. J. NMR studies of basic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analogue of 2-deoxyribose. Biochemistry 1988; 27: 924
  • Fersht A. R., Knill J. J. W. Contribution of 35 exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J. Mol. Biol. 1983; 165: 669
  • Lu C., Scheuermann R. H., Echols H. RecA protein and SOS: correlation of mutagenesis phenotype with binding of mutant RecAs to duplex DNA and LexA cleavage. J. Mol. Biol. 1987; 196: 497
  • Aboul-ela F., Koh D., Tinoco I. J., Martin F. H. Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A, C, G, T). Nucl. Acids Res. 1985; 13: 4811
  • Gaffney B. L., Jones R. A. Thermodynamic comparison of the base pairs formed by the carcinogenic lesion O6-methylguanine with reference both to Watson-Crick pairs and to mismatched pairs. Biochemistry 1989; 28: 5881
  • Petruska J., Goodman M. F. 1992, unpublished
  • Patel S. S., Wong I., Johnson K. A. Presteady state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 1991; 30: 511
  • Eger B. T., Benkovic S. J. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Biochemistry 1992; 31: 9227
  • Capson T. L., Peliska J. A., Kaboord B. F., Frey M. W., Lively C., Dahlberg M., Benkovic S. J. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry 1992; 31: 10984
  • Ornstein R. L., Rein R., Breen D. L., MacElroy R. D. An optimized potential function for the calculation of nucleic acid interaction energies. I. Base stacking. Biopolymers 1978; 17: 2341

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.