312
Views
99
CrossRef citations to date
0
Altmetric
Research Article

Dissociation of Enzyme Oligomers: A Mechanism for Allosteric Regulation

Pages 125-163 | Published online: 26 Sep 2008

References

  • Klotz I. M., Darnall D. W., Langerman N. R. Quaternary structure of proteins. The Proteins, H. Neurath, R. L. Hill. Academic Press, New York 1975; 293–411
  • Darnall D. W., Klotz I. M. Subunit constitution of proteins: a table. Arch. Biochem. Biophys. 1975; 166: 651
  • Hopkinson D. A., Edwards Y. H., Harris H. The distribution of subunit numbers and subunit sizes of enzymes: a study of the products of 100 human gene loci, Ann. Hum. Genet. (London) 1976; 39: 383
  • Traut T. W. Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties. CRC Crit. Rev. Biochem. 1988; 23: 121
  • Monod J., Wyman J., Changeux J. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 1965; 12: 88
  • Koshland D. E., Jr. The molecular basis for enzyme regulation. The Enzymes, P. D. Boyer. Academic Press, New York 1970; Vol. 1: 342–396
  • Hill C. M., Waight R. D., Bardsley W. G. Does any enzyme follow the Michaelis-Menten equation. Mol. Cell Biochem. 1977; 15: 173
  • Frieden C. Protein-protein interaction and enzymatic activity. Annu. Rev. Biochem. 1971; 40: 653
  • Phillips A. T. Ligand-induced oligomerization and regulatory mechanism. CRC Crit. Rev. Biochem. 1974; 2: 343
  • Dunne C. P., Wood W. A. L-Threonine dehydrase as a model of allosteric control involving ligand-induced oligomerization. Curr. Topics Cell. Regul. 1975; 9: 65
  • Nichol L. W. Protein interaction patterns. Protein-Protein Interactions, C. F. Frieden, L. W. Nichol. John Wiley & Sons, New York 1981; 1–29
  • Frieden C. Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism. J. Biol. Chem. 1967; 242: 4045
  • Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J. Biol. Chem. 1970; 245: 5788
  • Frieden C. Slow transitions and hysteretic behavior in enzymes. Annu. Rev. Biochem. 1979; 48: 471
  • Frieden C. Approaches that can be used with enzymes. Protein-Protein Interactions, C. F. Frieden, L. W. Nichol. John Wiley & Sons, New York 1981; 290–314
  • Nichol L. W., Jackson W. J. H., Winzor D. J. A theoretical study of the binding of small molecules to a polymerizing protein system. Biochemistry 1967; 6: 2449
  • Nichol L. W., Winzor D. J. Ligand-induced polymerization. Biochemistry 1976; 15: 3015
  • Nichol L. W., Winzor D. J. Binding equations and control effects. Protein-Protein Interactions, C. F. Frieden, L. W. Nichol. John Wiley & Sons, New York 1981; 337–380
  • Kurganov B. I. Allosteric Enzymes. John Wiley & Sons, New York 1982
  • Matthews B. W., Bernhard S. A. Structure and symmetry of oligomeric enzymes. Annu. Rev. Biophys. Bioeng. 1973; 2: 257
  • Steitz T. A., Anderson C., Bennett W., McDonald R., Stenkamp R. Protomer structure of oligomeric enzymes: symmetry and allosteric interactions in yeast hexokinase. Biochem. Soc. Trans. 1977; 5: 620
  • Becker M. A., Meyer L. J., Huisman W. H., Lazar W., Adams W. B. Human erythrocyte phosphoribosylpyrophosphate synthetase. Subunit analysis and states of subunit association. J. Biol. Chem. 1977; 252: 3911
  • Payne R. C., Traut T. W. Regulation of uridine kinase quaternary structure. Dissociation by the inhibitor CTP. J. Biol. Chem. 1982; 257: 12485
  • Payne R. C., Cheng N., Traut T. W. Uridine kinase from Ehrlich ascites carcinoma. Purification and properties of homogeneous enzyme. J. Biol. Chem. 1985; 260: 10242
  • Cheng N., Payne R. C., Traut T. W. Regulation of uridine kinase. Evidence for a regulatory site. J. Biol. Chem. 1986; 261: 13006
  • Traut T. W. Physiological concentrations of purines and pyrrolidines, (submitted)
  • Albe K. R., Butler M. H., Wright B. E. Cellular concentrations of enzymes and their substrates. J. Theor. Biol. 1990; 143: 163
  • Traut T. W., Jones M. E. Interconversion of different molecular weight forms of the orotate phosphoribosyltransferase-orotidine-5-phosphate decarboxylase enzyme complex from mouse Ehrlich ascites cells. J. Biol. Chem. 1979; 254: 1143
  • Traut T. W., Payne R. C., Jones M. E. Dependence of the aggregation and conformation states of uridine 5-phosphate synthase on pyrrolidine nucleotides. Evidence for a regulatory site. Biochemistry 1980; 19: 6062
  • Reyes P., Guganig M. Studies on a pyrimidine phosphoribosyltransferase from murine leukemia P1534J. Partial purification, substrate specificity, and evidence for its existence as a Afunctional complex with orotidine 5-phosphate decarboxylase. J. Biol. Chem. 1975; 250: 5097
  • Matthews M. M., Liao W., Kvalnes-Krick K. L., Traut T. W. β-Alanine synthase: purification and allosteric properties. Arch. Biochem. Biophys. 1992; 293: 254
  • Matthews M. M., Traut T. W. Regulation of N-carbamoyl-β-alanine amidohydrolase, the terminal enzyme in pyrrolidine catabolism, by ligand-induced change in polymerization. J. Biol. Chem. 1987; 262: 7232
  • Krystal G., Webb T. E. Multiple forms of uridine kinase in normal and neoplastic rat liver. Biochem. J. 1971; 124: 943
  • Keefer R. C., Morris H. P., Webb T. E. 5-Azacytidine-modified patterns of uridine kinase activities in normal and neoplastic tissues. Cancer Res. 1974; 34: 2260
  • Greenberg N., Schumm D. E., Hurtubise P. E., Webb T. E. Uridine kinase activities in normal and neoplastic lymphoid cells. Cancer Res. 1977; 37: 1028
  • Ahmed N. K., Welch A. D. Some properties of uridine-cytidine kinase from a human malignant lymphoma. Cancer Res. 1979; 39: 3102
  • Dubinina I. G., Shkurko V. G., Vornovitskaya G. I. Isolation and properties of uridine kinase from Zajdela ascites hepatoma cells. Biokhimya 1982; 46: 1503
  • Ahmed N. K. Multiple forms and inhibitors of uridine-cytidine kinase in neoplastic cells. Int. J. Biochem. 1982; 14: 259
  • Gilbert L., Gilbert G. A. Sedimentation velocity measurement of protein association. Methods Enzymol. 1973; 27: 273
  • Kegeles G., Cann J. R. Kinetically controlled mass transport of associating-dissociating macromol-ecules. Methods Enzymol. 1978; 48: 248
  • Steiner R. E. Ligand binding and self-association of proteins. Mol. Cell. Biochem. 1980; 31: 5
  • Ropp P. A., Traut T. W. Purine nucleoside phosphorylase: allosteric regulation of a dissociating enzyme. J. Biol. Chem. 1991; 266: 7682
  • Mora M., Bozal J. Phosphorolytic and ribosyl transfer mechanisms of purified chicken liver purine nucleoside phosphorylase. Comp. Biochem. Physiol. 1985; 82: B 805
  • Ellis K. J., Kuntz K., Sturtevant J. M. The activation of muscle adenylate deaminase by substrate. J. Biol. Chem. 1971; 246: 6631
  • Kosk-Kosicka D., Bzdega T. Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J. Biol. Chem. 1988; 263: 18184
  • Teipel J. W., Hill R. L. The subunit interactions of fumarase. J. Biol. Chem. 1971; 246: 4859
  • Aaronson R. P., Frieden C. Rabbit muscle phosphofructokinase: studies on the polymerization. J. Biol. Chem. 1972; 247: 7502
  • Pavelich M. J., Hammes G. G. Aggregation of rabbit muscle phosphofructokinase. Biochemistry 1973; 12: 1408
  • Hesterberg L. K., Lee J. C. Sedimentation study of a catalytically active form of rabbit muscle phosphofructokinase at pH 8.55. Biochemistry 1980; 19: 2030
  • Hesterberg L. K., Lee J. C. Self-association of rabbit muscle phosphofructokinase at pH 7. 0: stoichiometry. Biochemistry 1981; 20: 2974
  • Hesterberg L. K., Lee J. C. Self-association of rabbit muscle phosphofructokinase: effects of ligands. Biochemistry 1982; 21: 216
  • Reinhart G. D. Influence of fructose 2, 6-bisphosphate on the aggregation properties of rat liver phosphofructokinase. J. Biol. Chem. 1983; 258: 10827
  • Bosca L., Aragon J. J., Sols A. Modulation of muscle phosphofructokinase at physiological concentration of enzyme. J. Biol. Chem. 1985; 260: 2100
  • Giorgio N. A., Jr., Yip A. T., Fleming J., Plaut G. W. E. Diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J. Biol. Chem. 1970; 245: 5469
  • Frieden C., Coleman R. F. Glutamate dehydrogenase concentration as a determinant in the effect of purine nucleotides on enzymatic activity. J. Biol. Chem. 1967; 242: 1705
  • Huang C. Y., Graves D. J. Correlation between subunit interactions and enzymatic activity of phosphorylase a Method for determining equilibrium constants from initial rate measurements. Biochemistry 1970; 9: 660
  • Kim G., Graves D. J. On the hysteretic response of rabbit skeletal muscle phosphorylase kinase. Biochemistry 1973; 12: 2090
  • Whanger P. D., Phillips A. T., Rabinowitz K. W., Piperno J. R., Shada J. D., Wood W. A. The mechanism of action of 5-adenylic acid-activated threonine dehydrase. II. Protomer-oligomer interconversions and related properties. J. Biol. Chem. 1968; 243: 167
  • Traut T. W., Payne R. C. Dependence of the catalytic activities on the aggregation and conformation states of uridine 5-phosphate synthase. Biochemistry 1980; 19: 6068
  • Maness P., Orengo A. Activation of rat liver pyrimidine nucleoside monophosphate kinase. Biochim. Biophys. Acta 1976; 429: 182
  • Neet K. E., Ainslie G. R. Cooperativity and slow transitions in the regulation of oligomeric and monomelic enzymes. Trends Biochem. Sci. 1976; 1: 145
  • Neet K. E., Ainslie G. R. Hysteretic enzymes. Methods Enzymol 1980; 64: 192
  • McClure W. R. A kinetic analysis of coupled enzyme assays. Biochemistry 1969; 8: 2782
  • Easterby J. S. A generalized theory of the transition time for sequential enzyme reactions. Biochem. J. 1981; 199: 155
  • Yang S. Y., Schulz H. Kinetics of coupled enzyme reactions. Biochemistry 1987; 26: 5579
  • Chan W. W.-C., Mawer H. M. Studies on protein subunits. II. Preparation and properties of active subunits of aldolase bound to a matrix. Arch. Biochem. Biophys. 1972; 149: 136
  • Porter D. H., Cardenas J. M. Single subunits of sepharose-bound pyruvate kinase are inactive. Biochemistry 1981; 20: 2532
  • Jurgensen S. R., Wood D. C., Mahler J. C., Harrison J. H. The immobilization of mitochondrial malate dehydrogenase on Sepharose beads and the demonstration of catalytically active subunits. J. Biol. Chem. 1981; 256: 2383
  • Hill A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. (London) 1910; 40: iv
  • Chu A. H., Turner B. W., Ackers G. K. Effects of protons on the oxygenation-linked subunit assembly in human hemoglobin. Biochemistry 1984; 23: 604
  • Love W. E., Klock P. A., Lattman E. A., Padlan E. A., Ward K. B., Jr. The structure of lamprey and bloodworm hemoglobins in relation to their evolution and function. Cold Spring Harb. Symp. Quant. Biol. 1971; 36: 349
  • Robey E. A., Schachman H. K. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate trans-carbamoylase. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 361
  • Honzatko R. B., Crawford J. L., Monaco H. L., Ladner J. E., Edwards B. P. F., Evans D. R., Warren S. G., Wiley D. C., Ladner R. C., Lipscomb W. N. Crystal and molecular structures of native and CTP-linked aspartate carbamoyltransferase fro. Escherichia coli, J. Mol. Biol. 1982; 160: 219
  • Kantrowitz E., Lipscomb W. N. Escherichia coli aspartate transcarbamylase: the relationship between structure and function. Science 1988; 241: 669
  • Evans P. R., Hudson P. J. Structure and control of phosphofructokinase from Bacillus stearothermophilus. Nature 1979; 279: 500
  • Evans P. R., Farrants G. W., Hudson P. J. Phosphofructokinase: structure and control. Phil. Trans. R. Soc. London B 1981; 293: 53
  • Schirmer T., Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature 1990; 343: 140
  • Evans P. R., Farrants G. W., Lawrence M. C. Crystallographic structure of allosterically inhibited phosphofructokinase at 7 Å resolution. J. Mol. Biol. 1986; 191: 713
  • Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J. Mol. Biol. 1988; 204: 973
  • Rath V. L., Newgard C. B., Sprang S. R., Goldsmith E. J., Fletterick R. J. Modeling the biochemical differences between rabbit muscle and human liver phosphorylase. Proteins 1987; 2: 225
  • Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature 1989; 340: 609
  • Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5-adenylic acid to muscle phosphorylasa. Biochemistry 1967; 6: 3695
  • Metzger B., Helmreich E., Glaser L. The mechanism of activation of skeletal muscle phosphorylase a by glycogen. Proc. Natl. Acad. Sci. U.S.A. 1967; 57: 994
  • Poorman R. A., Randolph A., Kemp R. G., Heinrikson R. L. Evolution of phosphofructokinase gene duplication and creation of new effector sites. Nature 1984; 309: 467
  • Algimantas P. V., Foe L. G., Kemp R. G. Desensitization of muscle phosphofructokinase to ATP inhibition by removal of a carboxyl-terminal heptapeptide. J. Biol. Chem. 1987; 262: 5044
  • Gazith J., Schulze I. T., Gooding R. H., Womack F. C., Colowick S. P. Multiple forms and subunits of yeast hexokinase. Ann. N.Y. Acad. Sci. 1968; 151: 307
  • Shill J. P., Peters B. A., Neet K. E. Monomerdimer equilibria of yeast hexokinase during reacting enzyme sedimentation. Biochemistry 1974; 13: 3864
  • Steitz T. A., Anderson W. F., Fletterick R. J., Anderson C. M. High-resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors. J. Biol. Chem. 1977; 252: 4494
  • Carter P., Bedouelle H., Winter G. Construction of heterodimer tyrosyl-tRNA synthetase shows tRNATYR interacts with both subunits. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 1189
  • Ealick S. E., Rule S. A., Carter D. C., Greenhough T. J., Babu Y. S., Cook W. J., Habash J., Helliwell J. R., Stoeckler J. D., Parks R. E., Jr., Chen S., Bugg C. E. Three-dimensional structure of human erythrocyte purine nucleoside phosphorylase at 3.2 Å resolution. J. Biol. Chem. 1990; 265: 1812
  • Conrad M., Topal M. D. DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nae I. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 9707
  • Lazo P. A., Sols A., Wilson J. E. Brain hexokinase has two spatially discrete sites for binding glucose-6-phosphate. J. Biol. Chem. 1980; 255: 7548
  • Schwab D. A., Wilson J. E. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2563
  • Schwab D. A., Wilson J. E. Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from the cloned cDNA. Arch. Biochem. Biophys. 1991; 285: 365
  • Thelen A. P., Wilson J. E. Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from Novikoff ascites tumor. Arch. Biochem. Biophys. 1991; 286: 645
  • Baijal M., Wilson J. E. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinase. Arch. Biochem. Biophys. 1992; 298: 271
  • Blangy D., Buc H., Monod J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol. 1968; 31: 13
  • McClard R. W., Black M. J., Livingstone L. R., Jones M. E. Isolation and initial characterization of the single polypeptide that synthesizes uridine 5-monophosphate from orotate in Ehrhch ascites carcinoma. Purification by tandem affinity chromatography of uridine 5-phosphate synthase. Biochemistry 1980; 19: 4699
  • Traut T. W. Uridine-5-phosphate synthase: evidence for substrate cycling involving this bifunctional protein. Arch. Biochem. Biophys. 1989; 268: 108
  • Coll R. J., Murphy A. J. Kinetic evidence for two nucleotide binding sites on the CaATPase of sarcoplasmic reticulum. Biochemistry 1991; 30: 1456
  • Shill J. P., Neet K. E. Allosteric properties and the slow transition of yeast hexokinase. J. Biol. Chem. 1975; 250: 2259
  • Lowry O. H., Passonneau J. V. Kinetic evidence for multiple binding sites on phosphofructokinase. J. Biol. Chem. 1966; 241: 2268
  • Feldman K., Zeisel H., Helmreich E. Interactions between native and chemically modified subunits of matrix-bound glycogen phosphorylase. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2278
  • Fletterick R. J., Madsen N. B. The structures and related functions of phosphorylas. a, Annu. Rev. Biochem. 1980; 49: 31
  • Niemeyer H., Cardenas M. D., Rabajille E., Ureta T., Clark-Turri L., Peñaranda J. Sigmoidal kinetics of glucokinase. Enzyme 1975; 20: 321
  • Holroyde M. J., Allen M. B., Storer A. C., Warshy A. S., Chesher J. N. E., Trayer I. P., Cornish-Bowden A., Walker D. G. The purification in high yield and characterization of rat hepatic glucokinase. Biochem. J. 1976; 153: 363
  • Storer A. C., Cornish-Bowden A. Kinetics of rat liver glucokinase. Biochem. J. 1976; 159: 7
  • Cardenas M. L., Rabajille E., Niemeyer H. Maintenance of the monomelic structure of glucokinase under reacting conditions. Arch. Biochem. Biophys. 1978; 190: 142
  • Gregoriou M., Trayer I. P., Cornish-Bowden A. Isotope-exchange evidence for an ordered mechanism for rat liver glucokinase, a monomelic cooperative enzyme. Biochemistry 1981; 20: 499
  • Berthillier G., Got R. Effets de l'ATP et de la photo-oxydation sur l'agrégation de la glucokinase microsomique du foie de rat. Biochim. Biophys. Acta 1972; 258: 88
  • Yang S. T., Deal W. C., Jr. Metabolic control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde-3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 1969; 8: 2806
  • Stancel G. M., Deal W. C., Jr. Metabolic control and structure of glycolytic enzymes. V. Dissociation of yeast glyceraldehyde-3-phosphate dehydrogenase into subunits by ATP. Biochem. Biophys. Res. Commun. 1968; 31: 398
  • Hoagland V. D., Jr., Teller D. C. Influence of substrates on the dissociation of rabbit muscle D-glyceraldehyde 3-phosphate dehydrogenase. Biochemistry 1969; 8: 594
  • Keleti T., Batke J., Ovadi J., Jancsik V., Bartha F. Macromolecular interactions in enzyme regulation. Adv. Era. Regul. 1977; 15: 233
  • Meighen E. A., Schachman H. K. Hybridization of native and chemically modified enzymes. I. Development of a general method and its application to the subunit structure of aldolase. Biochemistry 1970; 9: 1177
  • Bonsignore A., Cancedda R., Nicolini A., Damiani G., DeFlora A. Metabolism of human erythrocyte glucose-6-phosphate dehydrogenase. VI. Interconversion of multiple molecular forms. Arch. Biochem. Biophys. 1971; 147: 493
  • Scott W. A. Physical properties of glucose-6-phosphate dehydrogenase from Neurospora crassa. J. Biol. Chem. 1971; 246: 6353
  • Johnson G. G., Eisenberg L. R., Migeon B. R. Human and mouse hypoxanthine-guanine phosphoribosyltransferase: dimers and tetramers. Science 1979; 203: 174
  • Kahler S. G., Kirkman H. N. Intracellular glucose-6-phosphate dehydrogenase does not monomerize in human erythrocytes. J. Biol. Chem. 1983; 258: 717
  • Kotlarz D., Buc H. Regulatory properties of phosphofructokinase from Escherichia coli. Eur. J. Biochem. 1981; 117: 569
  • Guixe V., Babul J. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 o. Escherichia coli, Arch. Biochem. Biophys. 1988; 264: 519
  • Deville-Bonne D., Le Bras G., Teschner W., Garel J. R. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN. Biochemistry 1989; 28: 1917
  • Luther M. A., Gilbert H. F., Lee J. C. Self-association of rabbit muscle phosphofructokinase: role of subunit interaction in regulation of enzymatic activity. Biochemistry 1983; 22: 5494
  • Mayr G. W. Interaction of calmodulin with muscle phosphofructokinase. Eur. J. Biochem. 1984; 143: 513
  • Bock P. E., Frieden C. Phosphofructokinase. I. Mechanism of the pH-dependent inactivation and reactivation of the rabbit muscle enzyme. J. Biol. Chem. 1976; 251: 5630
  • Luther M. A., Hesterberg L. K., Lee J. C. Subunit interaction of rabbit muscle phosphofructokinase: effects of purification procedures. Biochemistry 1985; 24: 2463
  • Hofmann E., Kurganov B. I., Schellenberger W., Schulz T., Sparmann G., Wenzel K. U., Zimmermann G. Association-dissociation behavior of erythrocyte phosphofructokinase and tumor pyruvate kinase. Adv. Enz. Regul. 1975; 13: 247
  • Oberfelder R. W., Lee L. L.-Y., Lee J. C. Thermodynamic linkage in rabbit muscle pyruvate kinase: kinetic, equilibrium, and structural studies. Biochemistry 1984; 23: 3813
  • LéJohn H. A., McCrea B. E., Suzuki I., Jackson S. Association-dissociation reactions of mitochondrial isocitric dehydrogenase induced by protons and various ligands. J. Biol. Chem. 1969; 244: 2484
  • De Riel J. K., Paulus H. Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli I. Kinetic evidence. Biochemistry 1978; 17: 5134
  • De Riel J. K., Paulus H. Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli II. Physical evidence. Biochemistry 1978; 17: 5141
  • De Riel J. K., Paulus H. Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli III. Role in desensitization. Biochemistry 1978; 17: 5146
  • Chan W. W.-C., Mort J. S., Chong S. K. K., MacDonald P. D. M. Studies on protein subunits. III. Kinetic evidence for the presence of active sub-units during the renaturation of muscle aldolase. J. Biol. Chem. 1973; 248: 2778
  • Chan W. W.-C. The relationship between quaternary structure and enzyme activity. Trends Biochem. Sci. 1976; 1: 258
  • Penhoet E. C., Rutter W. J. Catalytic and immunochemical properties of homomeric and heteromeric combinations of aldolase subunits. J. Biol. Chem. 1971; 246: 318
  • Jurgensen S. R., Harrison J. H. Active subunits in hybrid-modified malate dehydrogenase. J. Biol. Chem. 1982; 257: 569
  • Mullinax T. R., Mock J. N., MeEvily A. J., Harrison J. H. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. J. Biol. Chem. 1982; 257: 13233
  • Iwatsuki N., Okazaki R. Mechanism of regulation of deoxythymidine kinase of Escherichia coli I. Effect of regulatory deoxynucleotides on the state of aggregation of the enzyme. J. Mol. Biol. 1967; 29: 139
  • Iwatsuki N., Okazaki R. Mechanism of regulation of deoxythymidine kinase of Escherichia coli II. Effect of temperature on the enzyme activity and kinetics. J. Mol. Biol. 1967; 29: 155
  • Maley G. F., Maley F. Regulatory properties and subunit structure of chick embryo deoxycytidylate deaminase. J. Biol. Chem. 1968; 243: 4506
  • Maley G. F., Maley F. Active and inactive sites of deoxycytidylate deaminase and their relation to subunit structure. J. Biol. Chem. 1968; 243: 4513
  • Rowe P. B., Wyngaarden J. B. Glutamine phosphoribosylpyrophosphate amidotransferase. Purification, substructure, amino acid composition, and absorption spectra. J. Biol. Chem. 1968; 243: 6373
  • Munch-Petersen B. Differences in the kinetic properties of thymidine kinase isoenzymes in the unstimulated and phytohemagglutinin-stimulated human lymphocytes. Mol. Cell Biochem. 1984; 64: 173
  • Porter P. M., Bull D., Jones O. W. Stabilization of SV40 transformed human fibroblast cytoplasmic thymidine kinase by ATP. Mol. Cell Biochem. 1980; 35: 59
  • Maley F., Belfort M., Maley G. Probing the infrastructure of thymidylate synthase and deoxycytidylate deaminase. Adv. Em. Regul 1984; 22: 413
  • Ellims P. H., Kao A. Y., Chabner B. A. Deoxycytidylate deaminase. Purification and some properties of the enzyme isolated from human spleen. J. Biol. Chem. 1981; 256: 6335
  • Nucci R., Raia C. A., Vaccaro C., Sepe S., Scarano E., Rossi M. Freezing of dCMP aminohydrolase in the activated conformation by glutaraldehyde. J. Mol. Biol. 1978; 124: 133
  • Wong J. Y., Meyer E., Switzer R. L. Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis, a novel iron-sulfur protein. J. Biol. Chem. 1977; 252: 7424
  • Holmes E. W., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J. Biol. Chem. 1973; 248: 6035
  • Singer S. C., Holmes E. W. Human glutamine phosphoribosylpyrophosphate amidotransferase. Hysteretic properties. J. Biol. Chem. 1977; 252: 7959
  • Brown N. C., Reichards P. Ribonucleoside diphosphate reductase. Formation of active and inactive complexes of proteins B1 and B2. J. Mol. Biol. 1969; 46: 25
  • Thelander L., Eriksson S., Akerman M. Ribonucleotide reductase from calf thymus separation of the enzyme into two nonidentical subunits, proteins Ml and M2. J. Biol. Chem. 1980; 255: 7426
  • Thomas C. B., Arnold W. J., Kelley W. N. Human adenine phosphoribosyltransferase. Purification, subunit structure, and substrate specificity. J. Biol. Chem. 1973; 248: 2529
  • Holden J. A., Meredith G. S., Kelley W. N. Human adenine phosphoribosyltransferase. Affinity purification, subunit structure, amino acid composition, and peptide mapping. J. Biol. Chem. 1979; 254: 6951
  • Sloan D. L., Mayer L. Crosslinking studies of the structures of some yeast phosphoribosyltransferases. Fed. Proc. 1983; 42: 2192
  • Caradonna S. J., Adamkiewicz D. M. Purification and properties of the deoxyuridine triphosphate nucleotidohydrolase enzyme derived from HeLa S3 cells. Comparison to a distinct dUTP nucleotidohydrolase induced in herpes simplex virus-infected HeLa S3 cells. J. Biol. Chem. 1984; 259: 5459
  • Powers S. G., Meister A., Haschemeyer R. H. Linkage between self-association and catalytic activity of Escherichia coli carbamyl phosphate synthetase. J. Biol. Chem. 1980; 255: 1554
  • Boettcher B., Meister A. Conversion of UMP, an allosteric inhibitor of carbamyl phosphate synthetase, to an activator by modification of the UMP ribose moiety. J. Biol. Chem. 1981; 256: 5977
  • Koshland D. E., Jr., Levitzki A. CTP synthetase and related enzymes. The Enzymes, P. D. Boyer. Academic Press, New York 1974; Vol. 10: 539
  • Long C., Koshland D. E., Jr. Cytidine triphosphate synthetase. Methods Enzymol. 1978; 51: 79
  • Anderson P. M. CTP synthetase from Escherichia coli: an improved purification procedure and characterization of hysteretic and enzyme concentration effects on kinetic properties. Biochemistry 1983; 22: 3285
  • McPartland R. P., Weinfeld H. Cytidine-5-triphosphate synthetase of calf liver. Size, polymerization, and reaction stoichiometry. J. Biol. Chem. 1976; 251: 4372
  • Schubert K. R., Switzer R. L., Shelton E. Studies on the quaternary structure and the chemical properties of phosphoribosylpyrophosphate synthetase from Salmonella typhimurium. J. Biol. Chem. 1975; 254: 11394
  • Gibson K. J., Schubert R., Switzer R. L. Binding of the substrates and allosteric inhibitor adenosine 5-diphosphate to phosphoribosylpyrophosphate synthetase fro. Salmonella typhimurium, J. Biol. Chem. 1982; 257: 2391
  • Meyer L. J., Becker M. A. Human erythrocyte phosphoribosylpyrophosphate synthetase. Dependence of activity on state of subunit association. J. Biol. Chem. 1977; 252: 3919
  • Arnvig K., Hove-Jensen B., Switzer R. L. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis. Eur. J. Biochem. 1990; 192: 195
  • Traut T. W., Jones M. E. Kinetic and conformational studies of the orotate phosphoribo-syltransferase: orotidine-5-phosphate decarboxylase enzyme complex from mouse Ehrlich ascites cells. J. Biol. Chem. 1977; 252: 8374
  • Edwards Y. H., Edwards P. A., Hopkinson D. A. A trimeric structure for mammalian purine nucleoside phosphorylase. FEBS Lett. 1973; 32: 235
  • Ropp P. A., Traut T. W. Allosteric regulation of purine nucleoside phosphorylase. Arch. Biochem. Biophys. 1991; 288: 614
  • Frieden C. Glutamic dehydrogenase. I. The effect of coenzyme on the sedimentation velocity and kinetic behavior. J. Biol. Chem. 1959; 234: 809
  • Frieden C. Glutamic dehydrogenase. II. The effect of various nucleotides on the association-dissociation and kinetic properties. J. Biol. Chem. 1959; 234: 815
  • Frieden C. Different structural forms of reversibly dissociated glutamic dehydrogenase: relation between enzymatic activity and molecular weight. Biochem. Biophys. Res. Commun. 1963; 10: 410
  • Kempner E. S., Miller J. H. Radiation inactivation of glutamate dehydrogenase hexamer: lack of energy transfer between subunits. Science 1983; 222: 586
  • Strambini G. B., Cioni P., Puntoni A. Relationship between the conformation of glutamate dehydrogenase, the state of association of its subunits, and catalytic function. Biochemistry 1989; 28: 3808
  • Lusty C. J. Catalytically active monomer and dimer forms of rat liver carbamoyl-phosphate synthetase. Biochemistry 1981; 20: 3665
  • Wampler D. E. Threonine-sensitive aspartokinase-homoserine dehydrogenase complex from Escherichia coli Subunit stoichiometry and size of the catalytic subunit. Biochemistry 1972; 11: 4428
  • Calhoun D. H., Rimerman D. A., Hatfield G. W. Threonine deaminase from Escherichia coli I. Purification and properties. J. Biol. Chem. 1973; 248: 3511
  • Boernke W. E., Stevens F. S., Peraino C. Effects of self-association of ornithine aminotransferase on its physicochemical characteristics. Biochemistry 1981; 20: 115
  • Boernke W. E., Stevens F. J., Edwards J. J., Peraino C. Differential changes in ornithine aminotransferase self-affinity produced by exposure to basic amino acids and increases in the intrinsic electronegativity of the enzyme monomer. Arch. Biochem. Biophys. 1982; 216: 152
  • Ashcraft B. A., Fillers W. S., Augustine S. L., Clarke S. D. Polymer-protomer transition of acetyl CoA carboxylase occurs in vivo and varies with nutritional conditions. J. Biol. Chem. 1980; 255: 10033
  • Clarke B. A., Clarke S. D. Polymer-protomer transition of acetyl CoA carboxylase as a regulator of lipogenesis in rat liver. Arch. Biochem. Biophys. 1982; 218: 92
  • Clarke S. D., Salati L. M. Fatty acid-mediated disaggregation of acetyl-CoA carboxylase in isolated liver cells. Fed. Proc. 1985; 44: 2458
  • Ricard J., Meunier J. C., Buc J. Regulatory behavior of monomelic enzymes. I. The mnemonical enzyme concept. Eur. J. Biochem. 1974; 49: 195
  • Meunier J. C., Buc J., Navarro A., Ricard J. The mnemonical enzyme concept. II. Wheat-germ hexokinase as a mnemonical enzyme. Eur. J. Biochem. 1974; 49: 209
  • Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. H. Studies on the in vitro phosphorylation of 6-phosphofructo-l-kinase from rat liver. Arch. Biochem. Biophys. 1982; 215: 379
  • Oberfelder R. W., Barisa B. G., Lee J. C. Thermodynamic linkage in rabbit muscle pyruvate kinase: analysis of experimental data by a two-state model. Biochemistry 1984; 23: 3822
  • McPartland R. P., Weinfeld H. Cooperative effects of CTP on calf liver CTP synthetase. J. Biol. Chem. 1979; 254: 11394
  • Meyer E., Switzer R. L. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase activity by end products. J. Biol. Chem. 1979; 254: 5397
  • Olsen B. R., Svenneby G., Kvamme E., Tveit B., Eskeland T. Formation and ultrastructure of enzymically active polymers of pig renal glutaminase. J. Mol. Biol. 1970; 52: 239
  • Hatfield G. W., Burns R. O. Threonine deaminase from Salmonella typhimurium III. The intermediate substructure. J. Biol. Chem. 1970; 245: 787
  • Hatfield G. W., Burns R. O. Ligand-induced maturation of threonine deaminase. Science 1970; 167: 75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.