13
Views
1
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Isolation and Sequence Analysis of the trpBA Gene Cluster, Encoding Tryptophan Synthase, from Azospirillum brasilense

, &
Pages 287-293 | Received 17 Mar 2000, Published online: 11 Jul 2009

References

  • Altschul S. F., Madden T. L., Schaffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 1997; 25: 3389–3402
  • Auerbach S., Gao J., Gussin G. N. Nucleotide sequences of the trpl, trpB, and frpA genes of Pseudomonus syringae: positive control unique to fluorescent pseudomonads. Gene 1993; 123: 25–32
  • Baldi B. G., Maher B. R., Slovin J. P., Cohen J. D. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiology 1991; 95: 1203–1208
  • Bar T., Okon Y. Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7. Canadian Journal of Microbiology 1993; 39: 81–86
  • Cho M. J., Gal S. W., Choi Y. J., Yoon H. W., Kim C. Y., Hong J. C., Bahk J. D. Overproduction of indole acetic acid in Azospirillum lipoferum using the Escherichia coli trp operon. Microbial Releases 1993; 1: 197–202
  • Costacurta A., Keijers V., Vanderleyden J. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular and General Genetics 1994; 243: 463–472
  • De Troch P., Dosselaere F., Keijers V., De Wilde P., Vanderleyden J. Isolation and characterization of the Azospirillum brasilense trpE(G) gene, encoding anthranilate synthase. Current Microbiology 1997; 34: 27–32
  • Hartmann A., Singh M., Klingmuller W. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian Journal of Microbiology 1983; 29: 916–923
  • Li S. J., Cronan J. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. Journal of Bacteriology 1993; 175: 332–340
  • Lu Z., Nagata S., McPhie P., Miles E. W. Lysine 87 in the beta subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transamination, catalysis, and product release. Journal of Biological Chemistry 1993; 268: 8727–8734
  • Miles E. W. Structural basis for catalysis by tryptophan synthase. Advances in Enzymology and Related Areas in. Molecular Biology 1991; 64: 93–172
  • Nagata S., Hyde C. C., Miles E. W. The alpha subunit of tryptophan synthase. Evidence that aspartic acid 60 is a catalytic residue and that the double alteration of residues 175 and 211 in a second-site revertant restores the proper geometry of the substrate binding site. Journal of Biological Chemistry 1959; 264: 6288–6296
  • Normanly J., Cohen J. D., Fink G. R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 10355–10359
  • Okon Y., Vanderleyden J. Root-associated Azospirillum species can stimulate plants. ASM News 1997; 63: 366–370
  • Prinsen E., Costacurta A., Michiels K., Vanderleyden J., van Onckelen H. Azaspirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular Plant-Microbe Interactions 1993; 6: 609–615
  • Walshaw D. L., Poole P. S. The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Molecular Microbiology 1996; 21: 1239–1252
  • Wright A. D., Moehlenkamp C. A., Perrot G. H., Neuffer M. G., Cone K. C. The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. Plant Cell 1992; 4: 711–719
  • Yutani K., Ogasahara K., Tsujita T., Kanemoto K., Matsumoto M., Tanaka S., Miyashita T., Matsushiro A., Sug-Ino Y., Miles E. W. Tryptophan synthase alpha subunit glutamic acid 49 is essential for activity. Studies with 19 mutants at position 49. Journal of Biological Chemistry 1987; 262: 13429–13433
  • Zheng S., Haselkorn R. A glutamate/glutamine/ aspartate/asparagine transport operon in. Rhodobacter capsulatus. Molecular Microbiology 1996; 20: 1001–1011
  • Zimmer W., Aparicio C., Elmerich C. Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpCDC cluster. Molecular and General Genetics 1991; 229: 41–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.