5
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Positive and negative regulatory elements of the rabbit embryonic ϵ-globin gene revealed by an improved multiple alignment program and functional analysis

, , , , , , & show all
Pages 163-176 | Received 18 Jun 1993, Published online: 11 Jul 2009

References

  • Allan M., Lanyon G., Paul J. Multiple origins of transcription in the 4.5 kb upstream of the ϵ-globin gene. Cell 1983; 35: 187–197
  • Altschul S. F. Gap costs for multiple sequence alignment. J. Theor. Biol. 1989; 138: 297–309
  • Bailey W. J., Slightom J. L., Goodman M. Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ϵ-globin gene. Science 1992; 256: 86–89
  • Baralle F. E., Shoulders C., Proudfoot N. The primary structure of the human e-globin gene. Cell 1980; 21: 621–626
  • Buchman A. R., Kimmerly W. J., Rine J., Kornberg R. D. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 1988; 8: 210–225
  • Cao S. X., Gutman P. D., Dave H. P.G., Schechter A. N. Identification of a transcriptional silencer in the 5′-flanking region of the human ϵ-globin gene. Proc. Natl. Acad. Sci. USA 1989; 86: 5306–5309
  • Cao S. X., Mishoe H., Elion J., Berg P. E., Schechter A. N. Activation of the human ϵ-and β-globion promoters by SV40 T antigen. Biochem. J. 1989; 258: 769–776
  • Chao K. M., Hardison R. C., Miller W. Multiple alignment in linear space. 1993, Submitted
  • Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 1987; 25: 351–360
  • Gong Q. H., Dean A. Enhancer-dependent transcription of the ϵ-globin promoter requires promoter-bound GATA-1 and enhancer-bound AP-1/NF-E2. Mol. Cell. Biol. 1993; 13: 911–917
  • Gong Q. H., Stern J., Dean A. Transcriptional role of a conserved GATA-1 site in the human ϵ-globin gene promoter. Mol. Cell. Biol. 1991; 11: 2558–2566
  • Grosveld F., van Assendelft G. B., Greaves D., Kollias G. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 1987; 51: 975–985
  • Gumucio D. L., Shelton D. A., Bailey W. J., Slightom J. L., Goodman M. Phylogenetic footprinting reveals unexpected complexity in trans factor binding upstream from the e-globin gene. Proc. Natl. Acad. Sci. USA 1993; 90: 6018–6022
  • Gumucio D. L., Heilstedt-Williamson H., Gray T. A., Tarle S. A., Shelton D. A., Tagle D., Slightom J., Goodman M., Collins F. S. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human γ and ϵ globin genes. Mol. Cell. Biol. 1992; 12: 4919–4929
  • Gutman P. O., Cao S. X., Dave H. P.G., Mittleman M., Schechter A. N. Binding of erythroid and non-erythroid nuclear proteins to the silencer of the human e-globin-encoding gene. Gene 1992; 110: 197–203
  • Hardison R., Miller W. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters. Mol. Biol. Evol. 1993; 10: 73–102
  • Hardison R., Xu J., Jackson J., Mansberger J., Selifonova O., Crotch B., Biesecker J., Petrykowska H., Miller W. Comparative analysis of the locus control region of the rabbit β-like globin gene cluster: HS3 increases transient expression of an embryonic e-globin gene. Nucleic Acids Res. 1993; 21: 1265–1272
  • Hardison R. C. The nucleotide sequence of the rabbit embryonic globin gene β4. J. Biol. Chem. 1983; 258: 8739–8744
  • Hardison R. C. Comparison of the β-like globin gene families of rabbits and humans indicates that the gene cluster 5′ ϵ-γ-δ-β 3′ predates the mammalian radiation. Mol. Biol. Evol. 1984; 1: 390–410
  • Hariharan N., Kelley D. E., Perry R. P. Δ, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein. Proc. Natl. Acad. Sci. USA 1991; 88: 9799–9803
  • Huang X., Hardison R., Miller W. A space-efficient algorithm for local similarities. Computer Appl. Biosci. 1990; 6: 373–381
  • Hug B. A., Moon A. M., Ley T. J. Structure and function of the murine β-globin locus control region 5′ HS-3. Nucleic Acids Res. 1992; 21: 5771–5778
  • Lemarchandel V., Ghysdael J., Mignotte V., Rahuel C., Romeo P. H. GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol. Cell. Biol. 1993; 13: 668–676
  • Li Q., Powers P. A., Smithies O. Nucleotide sequence of 16-kilobase pairs of DNA 5′ to the human ϵ-globin gene. J. Biol. Chem. 1985; 260: 14901–14910
  • Li W. H., Gouy M., Sharp P., O'hUigin C., Yang Y. W. Molecular phylogeny of rodentia, lagomorpha, primates, artiodactyla and carnivora and molecular clocks. Proc. Natl. Acad. Sci. USA 1990; 87: 6703–6706
  • Margot J. B., Demers C. W., Hardison R. C. Complete nucleotide sequence of the rabbit β-like globin gene cluster: Analysis of intergenic sequences and comparison with the human β-like globin gene cluster. J. Mol. Biol. 1989; 205: 15–40
  • Motamed K., Bastiani C., Zhang Q., Bailey A., Shen C. K.J. CACC box and enhancer response of human embryonic ϵ-globin promoter. Gene 1993; 123: 235–40
  • Park K., Atchison M. L. Isolation of a candidate represser/activator, NF-E1 (YY-1, Δ), that binds to the immunoglobulin K 3′ enhancer and the immunoglobulin heavy-chain μE1 site. Proc. Natl. Acad. Sci. USA 1991; 88: 9804–9808
  • Peters B., Merezhinskaya N., Diffley J. F.X., Noguchi C. T. Protein-DNA interactions in the e-globin gene silencerj. Biol. Chem. 1993; 268: 3430–3437
  • Raich N., Papayannopoulou T., Stamatoyannopoulos G., Enver T. Demonstration of a human e-globin gene silencer with studies in transgenic mice. Blood 1992; 79: 861–864
  • Shapiro S. G., Schon E. A., Townes T. M., Lingrel J. B. Sequence and linkage of the goat ϵ1 and ϵ11 β-globin genes. J. Mol. Biol. 1983; 169: 31–52
  • Shehee R., Loeb D. D., Adey N. B., Burton F. H., Casavant N. C., Cole P., Davies C. J., McGraw R. A., Schichman S. A., Severynse D. M., Voliva C. F., Weyter F. W., Wisely G. B., Edgell M. H., Hutchison C. A., III. Nucleotide sequence of the BALB/c mouse β-globin complex. J. Mol. Biol. 1989; 205: 41–62
  • Shi Y., Seto E., Chang L. S., Shenk T. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus El A protein. Cell 1991; 678: 377–388
  • Shih D. M., Wall R. J., Shapiro S. G. A 5′ control region of the human e-globin gene is sufficient for embryonic specificity in transgenic mice. J. Biol. Chem. 1993; 268: 3066–3071
  • Tagle D., Stanhope M. )., Siemieniak D. R., Benson P., Goodman M., Slightom J. L. The /3-globin gene cluster of the prosimian primate. Galago crassicaudatus: Nucleotide sequence determination of the 41-kb cluster and comparative sequence analysis. Genomics 1992; 13: 741–760
  • Tagle D. A., Koop B. F., Goodman M., Slightom J., Hess D. L., Jones R. T. Embryonic ϵ and γlobin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J. Mol. Biol. 1988; 203: 7469–7480
  • Thompson J. P., Simkevich C. P., Holness M. A., Kang A. H., Raghow R. In vitro methylation of the promoter and enhancer of Proal (I) collagen gene leads to its transcriptional inactivation. J. Biol. Chem. 1991; 266: 2549–2556
  • Trepicchio W. L., Dyer M. A., Baron M. H. Developmental regulation of the human embryonic β-like globin gene is mediated by synergistic interactions among multiple tissue-and stage-specific elements. Mol. Cell. Biol. 1993; 13, in press
  • Tuan D., Solomon W., Li Q., London I. M. The β-like globin gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 1985; 82: 6384–6388
  • Vyas P., Sharpe J. A., Watt P., Higgs D., Wood W. Regulation of human embryonic ϵ-and ζ-globin genes in stably transformed K562 cells. Blood 1992; 80: 1832–1837
  • Wada-Kiyama Y., Peters B., Noguchi C. T. The ϵ-globin silencer: Characterization by in vitro transcription. J. Biol. Chem. 1992; 267: 11532–11538
  • Watt P., Lamb P., Proudfoot N. J. Distinct negative regulation of the human embryonic globin genes ζ and ϵ. Gene Expression 1993; 3: 61–75
  • Wu J., Grindlay G. J., Bushel P., Mendelsohn L., Allan M. Negative regulation of the human e-globin gene by transcriptional interference: Role of an Alu element. Mol. Cell. Biol. 1990; 10: 1209–1216
  • Wu J., Grindlay G. J., Johnson C., Allan M. Interaction of ϵ-globin cis-acting control elements with erythroidspecific regulatory macromolecules. Proc. Natl. Acad. Sci. USA 1990b; 87: 8115–8119
  • Yost S. E., Shewchuk B., Hardison R. Nuclear protein binding sites in a transcriptional control region of the rabbit α-globin gene. Mol. Cell. Biol. 1993; 13, in press
  • Yu C. Y., Motamed K., Chen J., Bailey A. D., Shen C. K.J. The CACC box upstream of human embryonic ϵ globin gene binds Sp1 and is a functional promoter element in vitro and in vivo. J. Biol. Chem. 1991; 266: 8907–8915

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.