94
Views
33
CrossRef citations to date
0
Altmetric
Original Article

Excessive Apoptosis in Low Risk Myelodysplastic Syndromes (MDS)

&
Pages 1-24 | Received 28 Feb 2000, Published online: 01 Jul 2009

References

  • Kerr J.F.R., Wyllie A. H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 1972; 26: 239–257
  • Yoshida Y. Hypothsis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 1993; 1: 144–146
  • Raza A., Gezer S., Mundle S., Gao X. Z., Alvi S., Borok R., Rifkin S., Iftikhar A., Shetty V., Parcharidou A., Loew J., Marcus B., Khan Z., Chaney C., Showel J., Gregory S., Preisler H. Apoptois in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995; 86: 268–276
  • Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., Henson P. M. Exposue of phos-phatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology 1992; 148: 2207–2216
  • Martin S. J., Cotter TG. Ultraviolet B irradiation of human leukemia HL-60 cells in vitro induces apoptosis. International Journal of Radiation Biology 1991; 59: 1001–1016
  • Hickman J. A. Apoptosis induced by anticancer drugs. Cancer Metastasis Reviews 1992; 11: 121–139
  • Laster S. M., Wood J. G., Gooding L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. Journal of Immunology 1988; 141: 2629–2634
  • Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–1178
  • Williams G. T., Smith C. A., Spooncer E., Dexter T. M., Taylor D. R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 1990; 343: 76–79
  • Thornberry N. A., Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316
  • Alnemri E. S., Livingston D. J., Nicholson D. W., Salvesen G., Thornberry N. A., Wong W. W., Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171
  • Van De Craen M., Van Loo G., Pype S., Van Criekinge W., Van Den Brande I., Molemans E., Fiers W., Declercq W., Vandenabeele P. Identification of a new cas-pase homologue: caspase-14. Cell Death and Differentiation 1998; 5: 838–846
  • Slee E. A., Harte M. T., Kluck R. M., Wolf B. B., Casiano C. A., Newmeyer D. D., Wang H. G., Reed J. C., Nicholson D. W., Alnemri E. S., Green D. R., Martin S. J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. Journal of Cell Biology 1999; 144: 281–292
  • Muzio M., Chinnaiyan A. M., Kischkel EC., O'Rourke K., Shevchenko A., Ni J., Scaffidi C., Bretz J. D., Zhang M., Gentz R., Mann M., Krammer P. H., Peter M. E., Dixit V. M. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–827
  • Boldin M. P., Goncharov T. M., Goltsev Y. V., Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85: 803–815
  • Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochome c and dATP-dependent formation of Apaf-1/cas-pase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489
  • Pan G., Humke E. W., Dixit V.M. Activation of caspases triggered by cytochrome c in vitro. FEES Letters 1998; 426: 151–154
  • Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B. A., Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98–103
  • Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. A. caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50
  • Liu X., Li P., Widlak P., Zou H., Luo X., Garrard W. T., Wang X. (1978) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proceedings of the National Academy of Sciences of the United States of America 1998; 95:8461–8466. 1998
  • Earnshaw W. C., Martins L. M., Kaufmann S. H. Mammalian caspases: Structure, activation, substrates and functions during apoptosis. Ann Rev Biochemistry 1999; 68: 383
  • Nagata S., Golstein P. The Fas death factor. Science 1995; 267: 1449–1456
  • Itoh N., Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. Journal of Biological Chemistry 1993; 268: 10932–10937
  • Banner D. W., D'Arcy A., Janes W., Gentz R., Schoenfeld H. J., Broger C., Loetscher H., Lesslauer W. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993; 73: 431–435
  • Chinnaiyan A. M., O'Rourke K., Tewari M., Dixit V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512
  • Hsu H., Xiong J., Goeddel D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995; 81: 495–504
  • Hsu H., Huang J., Shu H. B., Baichwal V., Goeddel D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387–396
  • Hsu H., Shu H. B., Pan M. G., Goeddel D. V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299–308
  • Imai Y., Kimura T., Murakami A., Yajima N., Sakamaki K., Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of cas-pase-8 during apoptosis. Nature 1999; 398: 777–785
  • Binder C., Schulz M., Hiddemann W., Oellerich M. Capsase activation and induction of inducible nitric oxide-synthase during TNF alpha-triggered apoptosis. Anticancer Research 1999; 19: 1715–1720
  • Berke G. The CTL's kiss of death. Cell 1995; 81: 9
  • Froelich C. J., Dixit V. M., Yang X. Lymphocyte granule-mediated apoptosis: Matters of viral mimicry and deadly proteases. Immunology Today 1998; 19: 30–36
  • Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunology Today 1997; 18: 44–51
  • Marchetti P., Castedo M., Susin S. A., Zamzami N., Hir-Sch T., Macho A., Haeffner A., Hirsch E., Geuskens M., Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. Journal of Experimental Medicine 1996; 184: 1155–1160
  • Skulachev V. P. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Letters 1996; 397: 7–10
  • Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157
  • Zou H., Henzel W. J., Liu X. S., Lutschg A., Wang X. D. Apaf-1, a human protein homologous to C-ele-gans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413
  • Vander Heiden M.G., Chandel N. S., Williamson E. K., Schumacker P. T., Thompson C.B. Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91: 627–637
  • Mancini M., Nicholson D. W., Roy S., Thornberry N. A., Peterson E. P., Casciola-Rosen L.A., Rosen A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. Journal of Cell Biology 1998; 140: 1485–1495
  • Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Brenner C., Larochette N., Prevost M. C., Alzari P. M., Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. Journal of Experimental Medicine 1999; 189: 381–394
  • Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D. R., Aebersold R., Siderovski D. P., Penninger J. M., Kroemer G. Molecular characterization of mitochondrial apop-tosis-inducing factor. Nature 1999; 397: 441–446
  • Lorenzo H. K., Susin S. A., Penninger J. M., Kroemer G. Apoptosis-inducing factor (AIF) a phylogeneti-cally old, caspase-independentt effector of cell death. Cell Death and Differentiation 1999; 6: 516–524
  • Yang E., Korsmeyer S. J. Molecular thanatop-sis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401
  • Jacobson M. D., Burne J. F., King M. P., Miyashita T., Reed J. C., Raff M. C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 1993; 361: 365–369
  • Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L., Ng S. L., Fesik S. W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341
  • Schendel S. L., Xie Z. H., Montal M. O., Matsuyama S., Montal M., Reed J. C. (1978) Channel formation by antiapoptotic protein Bcl-2. Proceedings of the National Academy of Sciences of the United States of America 1997; 94:5113–5118. 1997
  • Minn A. J., Velez P., Schendel SL., Liang H., Muchmore SW., Fesik S. W., Fill M., Thompson C. B. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357
  • Jurgensmeier J. M., Xie Z., Deveraux Q., Ellerby L., Bredesen D., Reed J. C. (1978) Bax directly induces release of cytochrome c from isolated mitochondria. Proceedings of the National Academy of Sciences of the United States of America 1998; 95:4997–5002. 1998
  • Hsu Y-T, Wolter K.G, Youle R. J. (1978) Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proceedings of the National Academy of Sciences of the United States of America 1997; 94:3668. 1997
  • Wolter K. G., Hsu Y-T, Smith C. L., Nechushtan A., Xi X-G., Youle R. J. Movement of Bax from the cytosol to mitochondria during apoptosis. Journal of Cell Biology 1997; 119: 1281–1292
  • Griffiths G. J., Dubrez L., Morgan C. P., Jones N. A., Whitehouse J., Corfe B. M., Dive C., Hickman J. A. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. Journal of Cell Biology 1999; 144: 903–914
  • Desagher S., Osen-Sand A., Nichols A., Eskes R., Mon-Tessuit S., Lauper S., Maundrell K., Antonsson B., Martinou J. C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. Journal of Cell Biology 1999; 144: 891–901
  • Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-XL. Cell 1996; 87: 619–628
  • Oltvai Z. N., Milliman C. L., Korsmeyer S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619
  • Reed J. C. Double identity for proteins of the Bcl-2 family. Nature 1997; 387: 773–776
  • Kharbanda S., Pandey P., Schofield L., Israels S., Roncinske R., Yoshida K., Bharti A., Yuan Z. M., Saxena S., Weichselbaum R., Nalin C., Kufe D. (1978) Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America Proc Natl Acad Sc USA 1997; 94:6939–6942. 1997
  • Hu Y., Benedict M. A., Wu D., Inohara N., Nunez G. (1978) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proceedings of the National Academy of Sciences of the United States of America 1998; 95:4386–4391. 1998
  • Shibasaki F., McKeon F. Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. Journal of Cell Biology 1995; 131: 735–743
  • Naumovski L., Cleary M. L. The p53-binding protein 53BP2 also interacts with Be 12 and impedes cell cycle progression at G2/M. Molecular Cell Biology 1996; 16: 3884–3892
  • Wang H. G., Rapp U. R., Reed J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996; 87: 629–638
  • Sheridan J. P., Marsters S. A., Pitti R. M., Gurney A., Skubatch M., Baldwin D., Ramakrishnan L., Gray C. L., Baker K., Wood W. I., Goddard A. D., Godowski P., Ashkenazi A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277: 818–821
  • Pan G., Ni J., Wei Y. F., Yu G., Gentz R., Dixit V. M. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997; 277: 815–818
  • Macfarlane M., Ahmad M., Srinivasula S. M., Fern-Andes-Alnemri T., Cohen G. M., Alnemri E. S. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. Journal of Biological Chemistry 1997; 272: 25417–25420
  • Marsters S. A., Sheridan J. P., Pitti R. M., Huang A., Skubatch M., Baldwin D., Yuan J., Gurney A., Goddard A. D., Godowski P., Ashkenazi A. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Current Biology 1997; 1: 1003–1006
  • Schneider P., Bodmer J. L., Thome M., Hofmann K., Holler N., Tschopp J. Characterization of two receptors for TRAIL. FEBS Letters 1997; 416: 329–334
  • Emery J. G., McDonnell P., Burke M. B., Deen K. C., Lyn S., Silverman C., Dul E., Appelbaum E. R., Eichman C., Diprinzio R., Dodds R. A., James I. E., Rosenberg M., Lee J. C., Young P. R. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. Journal of Biological Chemistry 1998; 273: 14363–14367
  • Pitti R. M., Marsters S. A., Lawrence D. A., Roy M., Kischkel F. C., Dowd P., Huang A., Donahue C. J., Sherwood S. W., Baldwin D. T., Godowski P. J., Wood W. I., Gurney A. L., Hillan K. J., Cohen R. L., Goddard A. D., Botstein D., Ashkenazi A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396: 699–703
  • Jiang Y., Woronicz J. D., Liu W., Goeddel D. V. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999; 283: 543–546
  • Condorelli G., Vigliotta G., Cafieri A., Trencia A., Andalo P., Oriente R., Miele C., Caruso M., Formisano P., Beguinot F. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 1999; 18: 4409–4415
  • Irmler M., Thome M., Hahne M., Schneider P., Hofmann K., Steiner V., Bodmer J. L., Schroter M., Burns K., Mattmann C., Rimoldi D., French L. E., Tschopp J., Thome M. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195
  • Srinivasula S. M., Ahmad M., Ottilie S., Bullrich E., Banks S., Wang Y., Fernandes-Alnemri T., Croce CM., Litwack G., Tomaselli K. J., Armstrong R. C., Alnemri E. S. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. Journal of Biological Chemistry 1997; 212: 18542–18545
  • Kumar A., Commane M., Flickinger T. W., Horvath CM., Stark G. R. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997; 278: 1630–1632
  • Duckett C. S., Nava V. E., Gedrich R. W., Clem R. J., Van Dongen J.L., Gilfillan M. C., Shiels H., Hardwick J. M., Thompson C. B. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO Journal 1996; 15: 2685–2694
  • Liston P., Roy N., Tamai K., Lefebvre C., Baird S., Cherton-Horvat G., Farahani R., McLean M., Ikeda J. E., Mackenzie A., Korneluk R. G. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353
  • Uren A. G., Pakusch M., Hawkins C. J., Puis K. L., Vaux D. L. (1978) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proceedings of the National Academy of Sciences of the United States of America 1996; 93:4974–4978. 1996
  • Deveraux Q. L., Roy N., Stennicke H. R., Van Arsdale T., Zhou Q., Srinivasula S. M., Alnemri E. S., Salvesen G. S., Reed J. C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO Journal 1998; 17: 2215–2223
  • Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304
  • Roy N., Deveraux Q.L, Takahashi R., Salvesen G. S., Reed J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO Journal 1997; 16: 6914–6925
  • Tamm I., Wang Y., Sausville E., Scudiero D. A., Vigna N., Oltersdorf T., Reed J. C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Research 1998; 58: 5315–5320
  • Srinivasula S. M., Ahmad M., Guo Y., Zhan Y., Lazebnik Y., Fernandes-Alnemri T., Alnemri E. S. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Research 1999; 59: 999–1002
  • Seol D. W., Billiar T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. Journal of Biological Chemistry 1999; 274: 2072–2076
  • Grana X., Reddy E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11: 211–219
  • Sherr C. J. Mammalian G1 cyclins. Cell 1993; 73: 1059–1065
  • Kato J., Matsushime H., Hiebert S. W., Ewen M. E., Sherr C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes and Development 1993; 7: 331–342
  • Lam E. W., La T. N. DP and E2F proteins: coordinating transcription with cell cycle progression. Current Opinion in Cell Biology 1994; 6: 859–866
  • Johnson D. G., Schwarz J. K., Cress W. D. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 1993; 365: 349–352
  • Helin K., Harlow E., Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Molecular Cell Biology 1993; 13: 6501–6508
  • Levine AJ. p53, the cellular gatekeeper for growth and cell division. Cell 1997; 88: 323–331
  • Lin D., Shields M. T., Ullrich S. J., Appella E., Mercer W. E. (1978) Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proceedings of the National Academy of Sciences of the United States of America 1992; 89:9210–9214. 1992
  • El Deiry W.S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825
  • Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., Reed J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–1805
  • Owen-Schaub L.B., Zhang W., Cusack J.C, Angelo L. S., Santee S. M., Fujiwara T., Roth J. A., Deisseroth A. B., Zhang W. W., Kruzel E., Radinsky R. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Molecular Cell Biology 1995; 15: 3032–3040
  • Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389: 300–305
  • Barak Y., Juven T., Haffner R., Oen M. mdm2 expression is induced by wild type p53 activity. EMBO Journal 1993; 12: 461–468
  • Jost C. A., Marin M. C., Kaelin W. G. p73 is a human p53-related protein that can induce apoptosis. Nature 1997; 389: 191–194
  • Kaghad M., Bonnet H., Yang A., Creancier L., Biscan J. C., Valent A., Minty A., Chalon P., Lelias J. M., Dumont X., Ferrara P., McKeon F., Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819
  • Yang A., Kaghad M., Wang Y., Gillett E., Fleming M. D., Dotsch V., Andrews N. C., Caput D., McKeon F. p63. a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316
  • Clark D. M., Lampert I. A. Apoptosis is a common histopathological finding in myelodysplasia: The correlate of ineffective haematopoiesis. Leukemia Lymphoma 1990; 2: 415–418
  • Ohmori M., Ohmori S., Ueda Y., Yoshida Y, Okuma M. Ineffective hematopoiesis in the myelodysplastic syndromes (MDS) as studied by daily in situ observation of colony-cluster formation. International Journal of Cell Cloning 1991; 9: 521–530
  • Rajapaksa R., Ginzton N., Rott L. S., Greenberg PL. Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells. Blood 1996; 88: 4275–4287
  • Bogdanovic A. D., Trpinac D.P, Jankovic G. M., Bum-Basirevic V.Z., Obradovic M., Colovic M. D. Incidence and role of apoptosis in myelodysplastic syndrome: morphological and ultrastructural assessment. Leukemia 1997; 11: 656–689
  • Parker J. E., Fishlock K. L., Czepulkowski B., Mijovic A., Pagliuca A., Mufti G. J. 'Low risk' Myelodysplastic Syndrome (MDS) is associated with excessive apoptosis and an increased ratio of pro- versus anti- apop-totic Bcl-2 related proteins. British Journal of Haematology 1998; 103: 1075–1082
  • Anzai N., Kawabata H., Hirama T., Masutani H., Ohmori M., Yoshida Y., Okuma M. Marked apoptosis of human myelomonocytic cell line P39. Significance of cellular differentiation. Leukemia 1994; 8: 446–453
  • Bouscary D., De Vos J., Guesnu M., Jondeau K., Viguier F., Melle J., Picard F., Dreyfus F., Fontenay-Roupie M. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11: 839–845
  • Hellstrom-Lindberg E., Kanter-Lewensohn L., Ost A. Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin. Leukemia Research 1997; 21: 415–425
  • Ormerod M. G. Analysis of DNA. General methods. Flow Cytometry. A Practical Approach, MG Ormerod. IRL press at Oxford University Press, Oxford 1990; 69
  • Tsoplou P., Kouraklis-Symeonidis A., Thanopoulou E., Zikos P., Orphanos V., Zoumbos N. Apoptosis in patients with myelodysplastic syndromes: differential involvement of marrow cells in 'good' versus 'poor' prognosis patients and correlation with apoptosis-related genes. Leukemia 1999; 13: 1554–1563
  • Darzynkiewicz Z., Bedner E., Traganos F, Murakami T. Critical aspects in the analysis of apoptosis and necrosis. Human Cell 1998; 11: 3–12
  • Greenberg PL. Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment. Leukemia Research 1998; 22: 1123–1136
  • Yaguchi M., Miyazawa K., Otawa M., Katagiri T., Nishi-Maki J., Uchida Y., Iwase O., Gotoh A., Kawanishi Y, Toyama K. Vitamin K2 selectively induces apoptosis of blastic cells in myelodysplastic syndrome: flow cytometric detection of apoptotic cells using APO2.7 monoclonal antibody. Leukemia 1998; 12: 1392–1397
  • Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., Van-Oers M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420
  • Vermes I., Haanen C., Steffens-Nakken H., Reuteling-Sperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods 1995; 184: 39–51
  • Greenberg P., Cox C., Lebeau M. M., Fenaux P., Morel P., Sanz G., Sanz M., Vallespi T., Hamblin T., Oscier D., Ohyashiki K., Toyama K., Aul C., Mufti G., Bennett J. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088
  • Marsh J. C., Chang J., Testa N. G., Hows J. M., Dexter T. M. In vitro assessment of marrow 'stem cell' and stromal cell function in aplastic anaemia. British Journal of Haematology 1991; 78: 258–267
  • Asano H., Hotta T., Ichihara M., Murate T., Kobayashi M., Saito H. Growth analysis of marrow CD34-positive hematopoietic progenitor cells in patients with myelodysplastic syndromes. Leukemia 1994; 8: 833–838
  • Silverman L. R., Zinzar S., Holland J. F. Biological consequences of stromal abnormalities in the myelodysplastic syndrome (MDS) its influence on the hematopoietic dysregulation. Leukemai Research 1997; 21: S20
  • Aizawa S., Nakano M., Iwase O., Yaguchi M., Hiramoto M., Hoshi H., Nabeshima R., Shima D., Handa H., Toyama K. Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leukemia Research 1999; 23: 239–246
  • List A. F., Glinsmann-Gibson B., Spier C., Taetle R. In vitro and in vivo response to cyclosporin-A in myelodysplastic syndromes: Identification of a hypocellu-lar subset responsive to immune suppression. Blood 1992; 80: 28a
  • Goossens V., Grooten J., De Vos K., Fiers W. (1978) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America 1995; 92:8115–8119. 1995
  • Peddie CM., Wolf R., McLellan L. I., Collins A. R., Bowen D. T. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-α concentration. British Journal of Haematology 1997; 99: 625–631
  • Dreher D., Junod A. F. Role of oxygen-free radicals in cancer development. European Journal of cancer 1996; 32A: 30
  • Lyons J., Janssen J. W., Bartram C., Layton M., Mufti G. J. Mutation of Ki-ras and N-ras oncogenes in myelodysplastic syndromes. Blood 1988; 71: 1707–1712
  • Ridge S. A., Worwood M., Oscier D., Jacobs A., Padua R. A. (1978) FMS mutations in myelodysplastic, leukemic, and normal subjects. Proceedings of the National Academy of Sciences of the United States of America 1990; 87:1377–1380. 1990
  • Verhoef G. E., De Schouwer P., Ceuppens J. L., Van Damme J., Goossens W., Boogaerts M. A. Van Damme J., Goossens W., Boogaerts MA Measurement of serum cytokine levels in patients with myelodysplastic syndromes. Leukemia 1992; 6: 1268–1272
  • Kitagawa M., Saito I., Kuwata T., Yoshida S., Yamaguchi S., Takahashi M., Tanizawa T., Kamiyama R., Hirokawa K. Overexpression of tumor necrosis factor (TNF)-α and interferon (IFN)-γ by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054
  • Gersuk G. M., Beckham C., Loken M. R., Kiener P., Anderson J. E., Farrand A., Troutt A. B., Ledbetter J. A., Deeg H. J. A role for tumour necrosis factor-α, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. British Journal of Haematology 1998; 103: 176–188
  • Mundle S. D., Reza S., Ali A., Mativi Y., Shetty V., Venugopal P., Gregory S. A., Raza A. Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Letters 1999; 140: 201–207
  • Maciejewski J., Selleri C., Anderson S., Young N. S. Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995; 85: 3183–3196
  • Kitagawa M., Yamaguchi S., Takahashi M., Tanizawa T., Hirokawa K., Kamiyama R. Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 1998; 12: 486–492
  • Lepelley P., Grardel N., Envy O., Iaru T., Obein V., Cos-Son A., Fenaux P. Fas/APO-1 (CD95) expression in myelodysplastic syndromes. Leukemia Lymphoma 1998; 30: 307–312
  • O'Connell J., O'Sullivan G.C., Collins J. K., Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. Journal of Experimental Medicine 1996; 184: 1075–1082
  • Hahne M., Rimoldi D., Schroter M., Romero P., Schreier M., French L. E., Schneider P., Bornand T., Fontana A., Lienard D., Cerottini J., Tschopp J. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366
  • Gupta P., Niehans G. A., Leroy S. C., Gupta K., Morrison V. A., Schultz C., Knapp D. J., Kratzke R. A. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival. Leukemia 1999; 13: 44–53
  • Krajewska M., Krajewski S., Epstein J. I., Shabaik A., Sauvageot J., Song K., Kitada S., Reed J. C. Immunohistochemical analysis of bcl-2, bax, bcl-x, and mcl-1 expression in prostate cancers. American Journal of Pathology 1996; 148: 1567–1576
  • Ter-Harmsel B., Smedts F., Kuijpers J., Jeunink M., Trimbos B., Ramaekers F. BCL-2 immunoreactivity increases with severity of CIN: a study of normal cervical epithelia, CIN, and cervical carcinoma. Journal of Pathology 1996; 179: 26–30
  • Agular-Santelises M., Rottenberg M. E., Lewin N., Mell-Stedt H., Jondal M. Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression. International Journal of Cancer 1996; 69: 114–119
  • Pepper C., Hoy T., Bentley D. P. Bcl-2/Bax ratios in chonic lymphocytic lelukaemia and their correlation with in vitro apoptosis and clinical resistance. British Journal of Cancer 1997; 76: 935–938
  • Meijerink J. P., Smetsers T. F., Sloetjes A. W., Linders E. H., Mensink E. J. Bax mutations in cell lines derived from hematological malignancies. Leukemia 1995; 9: 1828–1832
  • Davis R. E., Greenberg P. L. Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leukemia Research 1998; 22: 767–777
  • Hunter T., Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994; 79: 573–582
  • Jiang W., Zhang Y. J., Kahn S. M., Hollstein M. C., San-Tella R.M., Lu S. H., Harris C. C., Montesano R., Wein-Stein LB. (1978) Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. Proceedings of the National Academy of Sciences of the United States of America 1993; 90:9026–9030. 1993
  • Paggi M. G., Baldi A., Bonetto F., Giordano A. Retinoblastoma protein family in cell cycle and cancer: a review. Journal of Cell Biochemistry 1996; 62: 418–430
  • Preudhomme C., Vachee A., Lepelley P., Vanrumbeke M., Zandecki M., Quesnel B., Cosson A., Fenaux P. Inactivation of the retinoblastoma gene appears to be very uncommon in myelodysplastic syndromes. British Journal of Haematology 1994; 87: 61–67
  • Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V., Stockert E., Day R. S., III., Johnson B. E., Skolnick M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–440
  • Nobori T., Miura K., Wu D. J., Lois A., Takabayashi K., Carson D. A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368: 753–756
  • Hirama T., Koeffler H. P. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 1995; 86: 841–854
  • Herman J. G., Jen J., Merlo A., Baylin S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Research 1996; 56: 722–777
  • Herman J. G., Civin C. I., Issa J.P.J., Collector M. I., Sharkis S. J., Baylin S. B. Distinct patterns of inactivation of p15 4B and p16INK4A characterize the major types of hematological malignancies. Cancer Research 1997; 57: 837–841
  • Uchida T., Kinoshita T., Nagai H., Nakahara Y., Saito H., Hotta T., Murate T. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 1997; 90: 1403–1409
  • Quesnel B., Guillerm G., Vereecque R., Wattel E., Preudhomme C., Bauters E., Vanrumbeke M., Fenaux P. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990
  • Jonveaux P., Fenaux P., Quiquandon I., Pignon J. M., Lai J. L., Loucheux-Lefebvre M.H., Goossens M., Bauters F., Berger R. Mutations in the p53 gene in myelodysplastic syndromes. Oncogene 1991; 6: 2243–2247
  • Sugimoto K., Hirano N., Toyoshima H., Chiba S., Mano H., Takaku F., Yazaki Y., Hirai H. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 1993; 81: 3022–3026
  • Wattel E., Preudhomme C., Hecquet B., Vanrumbeke M., Quesnel B., Dervite I., Morel P., Fenaux P. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157
  • Ben Yehuda D., Krichevsky S., Caspi O., Rund D., Polli-Ack A., Abeliovich D., Zelig O., Yahalom V., Paltiel O., Or R., Peretz T., Ben Neriah S., Yehuda O., Rachmilewitz E. A. Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 1996; 88: 4296–4303
  • Maheswaran S., Englert C., Bennett P., Heinrich G., Haber D. A. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes and Development 1995; 9: 2143–2156
  • Tamaki H., Ogawa H., Ohyashiki K., Ohyashiki J. H., Iwama H., Inoue K., Soma T., Oka Y., Tatekawa T., Oji Y., Tsuboi A., Kim E. H., Kawakami M., Fuchigami K., Tomonaga M., Toyama K., Aozasa K., Kishimoto T., Sugiyama H. The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999; 13: 393–399
  • Preudhomme C., Quesnel B., Vachee A., Lepelley P., Collyn D'Hooghe M., Wattel E., Fenaux P. Absence of amplification of MDM2 gene, a regulator of p53 function, in myelodysplastic syndromes. Leukemia 1993; 7: 1291–1293
  • Bueso-Ramos C.E., Yang Y., Deleon E., McCown P., Stass S. A., Albitar M. The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623
  • Shetty V., Mundle S., Alvi S., Showel M., Broady-Rob-Inson L., Dar S., Borok R., Showel J., Gregory S., Rifkin S., Gezer S., Parcharidou A., Venugopal P., Shah R., Hernandez B., Klein M., Alston D., Robin E., Dominquez C., Raza A. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leukemia Research 1996; 20: 891–900
  • Bincoletto C., Saad S. T., Soares Da Silva E., Queiroz M. L. Autonomous proliferation and bcl-2 expression involving haematopoietic cells in patients with myelodysplastic syndrome. British Journal of Cancer 1998; 78: 621–624
  • Parker J. E., Fishlock K. L., Pagliuca A., Mufti G. J. The role of apoptosis, proliferation and amifostine in the myelodysplastic syndromes (MDS) and AML secondary to MDS. Blood 1998; 92: 418a
  • Merchav S., Wagemaker G., Souza L. M., Tatarsky I. Impaired response of myelodysplastic marrow progenitors to stimulation with recombinant haemopoietic growth factors. Leukemia 1991; 5: 340–346
  • Hellstrom-Lindberg E. Efficacy of erythropoietin in the myelodysplastic syndromes: A meta-analysis of 205 patients from 17 studies. British Journal of Haematology 1995; 89: 67–71
  • Silva M., Grillot D., Benito A., Richard C., Nunez G., Fernandez-Luna J.L. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 1996; 88: 1576–1582
  • Squadrito F., Altavilla D., Squadrito G., Campo G. M., Arlotta M., Quartarone C., Saitta A., Caputi A. P. Recombinant human erythropoietin inhibits iNOS activity and reverts vascular dysfunction in splanchnic artery occlusion shock. British Journal of Pharmacology 1999; 127: 482–488
  • Hellstrom-Lindberg E., Forsblom A. M., Syruckova Z., Christensen B. Effects of G-CSF, EPO, SCF, ATRA and the CD 95 blocking antibody f(ab') 2 on in vitro apoptosis and proliferation in myelodysplastic (MDS) bone marrow. Blood 1997; 90: 521a
  • Hellstrom-Lindberg E., Ahlgren T., Beguin Y., Carlsson M., Carneskog J., Dahl I. M., Dybedal I., Grimfors G., Kanter-Lewensohn L., Linder O., Luthman M., Lofven-Berg E., Nilsson-Ehle H., Samuelsson J., Tangen J. M., Winqvist I., Oberg G., Osterborg A., Ost A. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood 1998; 92: 68–75
  • Economopoulos T., Mellou S., Papageorgiou E., Pappa V., Kokkinou V., Stathopoulou E., Pappa M., Raptis S. Treatment of anemia in low-risk myelodysplastic syndromes with granulocyte-macrophage colony-stimulating factor plus recombinant human erythropoietin. Leukemia 1999; 13: 1009–1012
  • Reza S., Shetty V., Dar S., Qawi H., Raza A. Tumor necrosis factor-alpha levels decrease with anticytokine therapy in patients with myelodysplastic syndromes. Journal of Interferon Cytokine Research 1998; 18: 871–877
  • Allen D. A., Breen C., Yaqoob M. M., Macdougall I. C. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: role of IFN-gamma and TNF-alpha. Journal of Investigative Medicine 1999; 47: 204–211
  • Navarro J. F., Mora C., Garcia J., Rivero A., Macia M., Gallego E., Mendez M. L., Chahin P. M. Effects of pentoxifylline on the haematologic status in anaemic patients with advanced renal failure. Scandanavian. Journal of Urology Nephrology 1999; 33: 121–144
  • Ganser A., Maurer A., Contzen C., Seipelt G., Ottmann O. G., Schadeck-Gressel C., Kolbe K., Haas R., Zander C., Reutzel R., Hoelzer D. Improved multilineage response of hematopoiesis in patients with myelodysplastic syndromes to a combination therapy with all-trans-retinoic acid, granulocyte colony-stimulating factor, erythropoietin and alpha-tocopherol. Annals of Hematology 1996; 72: 237–244
  • Stasi R., Brunetti M., Bussa S., Conforti M., Martin L. S., La Presa M., Bianchi M., Parma A., Pagano A. Serum levels of tumour necrosis factor-alpha predict response to recombinant human erythropoietin in patients with myelodysplastic syndrome. Clinical Laboratory Haematology 1997; 19: 197–201
  • Campos L., Sabido O., Viallet A., Piselli S., Guyotat D. Implication of ICE and CPP32 in the in vitro growth defects of committed progenitors from myelodysplastic syndromes. Blood 1997; 90: 521a
  • Denmeade S. R., Lin X. S., Tombal B., Isaacs JT. Inhibition of caspase activity does not prevent the signaling phase of apoptosis in prostate cancer cells. Prostate 1999; 39: 269–279
  • Bossy-Wetzel E., Newmeyer D. D., Green D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO Journal 1998; 17: 37–49
  • Jones P. A., Taylor S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93
  • Momparler R. L., Dore B. T., Momparler L. F. Effect of 5-aza-2'-deoxycytidine and retinoic acid on differentiation and c-myc expression in HL-60 myeloid leukemic cells. Cancer Letters 1990; 54: 21–28
  • Attadia V. Effects of 5-aza-2'-deoxycytidine on differentiation and oncogene expression in the human monoblastic leukemia cell line U-937. Leukemia 1993; 7: 9–16
  • Zagonel V., Lo Re G., Maotta G., Babare R., Sardeo G., Gattei V., De Angelis V., Monfardini S., Pinto A. 5-Aza-2'-deoxycytidine (Decitabine) induces trilineage response in unfavorable myelodysplastic syndromes. Leukemia 1993; 7: 30–35
  • Wijermans P., Lubbert M., Verhoef G., Bosly A., Ravoet C., Andre M., Ferrant A. A phase II study with low dose decitabine, a DNA hypomethylating pyrimidine analogue, in high risk MDS patients. Blood 1998; 92: 632a
  • Silverman L. R. Effects of treatment with Azacytidine in patients with the myelodysplastic syndrome. Leukemia Research 1999; 23: S70
  • Kornblith A. B., Herndon J. E., II, Silverman L. R., Demakos E. P., Reissig R., Holland J. F., Powell B. L., Decastro C., Ellerton J., Larson R. A., Schiffer C., Holland J.C. (1978) The impact of 5-azacytidine on the quality of life of patients with the myelodysplastic syndrome (MDS) treated in a randomized phase III trial of the Cancer and Leukemia Group B (CALGB). Proceedings of the American Society of Clinical Oncology 1998; 17:49a. 1998
  • Pineau T., Hudgins W. R., Liu L., Chen L. C., Sher T., Gonzalez F. J., Samid D. Activation of a human peroxisome proliferator-activated receptor by the antitumor agent phenylacetate and its analogs. Biochemical Pharmacology 1996; 52: 659–667
  • Gore S. D., Samid D., Weng L. J. Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells. Clinical Cancer Research 1997; 3: 1755–1762
  • Gore S. D., Miller C. B., Weng L. J., Burks K., Griffin C. A., Chen T. L., Smith V., Birke P. J., Grever M., Rowinsky E. K. Clinical development of sodium phenylbutyrate as a putative differentiating agent in myeloid malignancies. Anticancer Research 1997; 17: 3938a
  • Calabro-Jones P.M., Aguilera J. A., Ward J. F., Smoluk G. D., Fahey R. C. Uptake of WR-2721 derivatives by cells in culture: identification of the transported form of the drug. Cancer Research 1988; 48: 3634–3640
  • List A. F., Heaton R., Glinsmann-Gibson B., Capizzi RL. Amifostine stimulates formation of multipotent and erythroid bone marrow progenitors. Leukemia 1998; 12: 1596–1602
  • Klimecki W., Heaton R., Glinsmann-Gibson B., List A. Amifostine suppresses apoptosis in myelodysplastic CD34+ cells and promotes progenitor growth via polyamine-like effects. Blood 1997; 80: 520a
  • List A. F. Anti-apoptotic therapy: over-riding the cell death program in MDS. Leukemia Research 1999; 23: S77
  • List A. F., Brasfield F., Heaton R., Glinsmann-Gibson B., Crook L., Taetle R., Capizzi R. Stimulation of Hematopoiesis by Amifostine in Patients With Myelodysplastic Syndrome. Blood 1997; 90: 3364–3369
  • Raza A., Qawi H., Naseer O. B., Dar S., Lisak L., Andric T., Ali S. I., Quadri M., Ahmed B., Venugopal P., Gezer S., Gregory S., Loew J., Robin E., Rifkin S. Cytopenias improve in response to amifostine pen-toxifylline/ciprofloxacin/dexamethasone (PCD) in patients with myelodysplastic syndromes (MDS). Blood 1998; 92: 631a
  • Neumeister P., Jager G., Schmidt H., Linkesch W. Amifostine in combination with erythropoietin and G-CSF promotes multilineage hematopoiesis in patients with myelodysplastic syndrome (MDS) - a pilot study. Leukemia Research 1999; 23: S78
  • De Planque M.M., Kluin-Nelemans H.C., Van Krieken H.J.M., Kluin P. M., Brand A., Beverstock G. C., Wille-Mze R., Van Rood J.J. Evolution of acquired severe aplastic anaemia to myelodysplasia and subsequent leukaemia in adults. British Journal of Haematology 1988; 70: 55–62
  • Tichelli A., Gratwohl A., Nissen C., Speck B. Late clonal complications in severe aplastic anemia. Leukemia Lymphoma 1994; 12: 167–175
  • Molldrem J. J., Caples M., Mavroudis D., Plante M., Young N. S., Barrett A. J. Antithymocyte globulin for patients with myelodysplastic syndrome. British Journal of Haematology 1997; 99: 699–705
  • Jonasova A., Neuwirtova R., Cermak J., Vozobulova V., Mocikova K., Siskova M., Hochova I. Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. British Journal of Haematology 1998; 100: 304–309
  • Molldrem J. J., Jiang Y. Z., Stetler-Stevenson M., Mavroudis D., Hensel N., Barrett A. J. Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. British Journal of Haematology 1998; 102: 1314–1322
  • Killick S., Marsh J.C.W., Gordon-Smith E.C. In vitro antithymocyte globulin (ATG) stimulation of hemopoietic stem cells: correlation with clinical response in patients with aplastic anemia (AA) and myelodysplastic syndromes (MDS). Blood 1998; 92: 693a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.