17
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Leukemia Relapse Reconsidered from the Molecular Aspect

, &
Pages 527-534 | Received 09 Oct 1999, Published online: 01 Jul 2009

References

  • Burnett A. K., Eden O. B. The treatment of acute leukaemia. Lancet 1997; 349: 270–275
  • Bishop J. F. The treatment of adult acute myeloid leukemia. Semin Uncol 1997; 24: 57–49
  • Laport G. F., Larson R. A. Treatment of adult acute lymphoblastic leukemia. Semin Uncol 1997; 24: 70–82
  • Hoelzer D. Treatment of acute lymphoblastic leukemia. Semin Hematol 1994; 31: 1–15
  • Pui C. H., Evans W. E. Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615
  • Ohno R., Naoe T., Kanamaru A., Yoshida M., Hiraoka A., Kobayashi T., Ueda T., Minami S., Morishima Y., Saito Y., Furusawa S., Imai K., Takemoto Y., Miura Y., Teshima H., Hamajima H., Kohseishou Leukemia Study Group. A double‐blind controlled study of granulocyte colony‐stimulating factor started two days before. induction chemotherapy in refractory acute myeloid leukemia. Blood 1994; 83: 2086–2092
  • Gale R. P., Horowitz M. M., Rees J. K., Gray R. G., Oken M. M., Estey E. H., Kim K. M., Zhang M. J., Ash R. C., Atkinson K., Champlin R. E., Dicke K. A., Gajewski J. L., Goldman J. M., Helbig W., Henslee‐Downey P. S., Hinter‐berger W., Jacobsen N., Keating A., Klein J. P., Marmont A. M., Prentice H. G., Reiffers J., Rimm A. A., Rowlings P. A., Sobocinski K. A., Speck B., Wingard J. R., Bortin M. M. Chemotherapy versus transplants for acute myelogenous leukemia in second remission. Leukemia 1996; 10: 13–19
  • Pui C. H., Raimondi S. C., Behm F. G., Ochs J., Furman W. L., Bunin N. J., Ribeiro R. C., Tinsley P. A., Mirro J. Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood 1986; 68: 1306–1310
  • van Wering E. R., Beishuizen A., Roeffen E. T., van der Linden‐Schrever B. E., Verhoeven M. A., Hahlen K., Hooijkaas H., van Dongen J. J. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 1995; 9: 1523–1533
  • Schneider E., Cowan K. H., Bader H., Toomey S., Schwartz G. N., Karp J. E., Burke P. J., Kaufmann S. H. Increased expression of the multidrug resistance‐associated protein gene in relapsed acute leukemia. Blood 1995; 85: 186–193
  • Filipits M., Suchomel R. W., Lechner K., Pirker R. Immunocytochemical detection of the multidrug resistance‐associated protein and P‐glycoprotein in acute myeloid leukemia: impact of antibodies, sample source and disease status. Leukemia 1997; 11: 1073–1077
  • Garson O. M., Hagemeijer A., Sakurai M., Reeves B. R., Swansbury G. J., Williams G. J., Alimena G., Arthur D. C., Berger R., de la Chapelle A., Mitelman F., Van Den Berghe H., Lawler S. D., Rowley J. D. Cytogenetic studies of 103 patients with acute myelogenous leukemia in relapse. Cancer Genet Cytogenet 1989; 40: 187–202
  • Estey E., Keating M. J., Pierce S., Stass S. Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 1995; 9: 972–976
  • Beishuizen A., Verhoeven M. A., van Wering E. R., Hahlen K., Hooijkaas H., van Dongen J. J. Analysis of Ig and T‐cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–2247
  • Wasserman R., Yamada M., Ito Y., Finger L. R., Reichard B. A., Shane S., Lange B., Rovera G. VH gene rearrangement events can modify the immunoglobulin heavy chain during progression of B‐lineage acute lymphoblastic leukemia. Blood 1992; 79: 223–228
  • Scuderi R., Palucka K. A., Pokrovskaja K., Bjorkholm M., Wiman K. G., Pisa P. Cyclin E overexpression in relapsed adult acute lymphoblastic leukemias of B‐cell lineage. Blood 1996; 87: 3360–3367
  • Campos L., Guyotat D., Archimbaud E., Calmard‐Oriol P., Tsuruo T., Troncy J., Treille D., Fiere D. Clinical significance of multidrug resistance P‐glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 1992; 79: 473–476
  • Kith C. P., Kopecky K. J., Godwin J., McConnell T., Slovak M. L., Chen I. M., Head D. R., Appelbaum F. R., Willman C. L. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89: 3323–3329
  • Legrand O., Simonin G., Beauchamp‐Nicoud A., Zittoun R., Marie J. P. Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood 1999; 94: 1046–1056
  • Roninson I. B., Abelson H. T., Housman D. E., Howell N., Varshavsky A. Amplification of specific DNA sequences correlates with multi‐drug resistance in Chinese hamster cells. Nature 1984; 309: 626–628
  • Nakayama M., Wada M., Harada T., Nagayama J., Kusaba H., Ohshima K., Kozuru M., Komatsu H., Ueda R., Kuwano M. Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood 1998; 92: 4296–307
  • Leegwater P. A., Lambooy L. H., De Abreu R. A., Bokkerink J. P., van den Heuvel L. P. DNA methylation patterns in the calcitonin gene region at first diagnosis and at relapse of acute lymphoblastic leukemia (ALL). Leukemia 1997; 11: 971–978
  • Hartwell L. H., Kastan M. B. Cell cycle control and cancer. Science 1994; 266: 1821–1828
  • Hunter T., Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994; 79: 573–82
  • Hebert J., Cayuela J. M., Berkeley J., Sigaux F. Candidate tumor‐suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T‐ but not from B‐cell lineage acute lymphoblastic leukemias. Blood 1994; 84: 4038–4044
  • Hangaishi A., Ogawa S., Imamura N., Miyawak S., Miura Y., Uike N., Shimazaki C., Emi N., Takeyama K., Hirosawa S., Kamada N., Kobayashi Y., Takemoto Y., Kitani T., Toyama K., Ohtake S., Yazaki Y., Ueda R., Hirai H. Inactivation of multiple tumor‐suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p1SINK4B, p53, and Rb genes in primary lymphoid malignancies. Blood 1996; 87: 4949–4958
  • Uchida T., Kinoshita T., Hotta T., Murate T. High‐risk myelodysplastic syndromes and hypermethylation of the p15Ink4B gene. Leuk Lymphoma 1998; 32: 9–18
  • Maloney K. W., McGavran L., Odom L. F., Hunger S. P. Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Btood 1999; 93: 2380–2385
  • Sauerbrey A., Hafer R., Zintl F., Volm M. Analysis of cyclin D1 in de novo and relapsed childhood acute lymphoblastic leukemia. Anticancer Res 1999; 19: 645–449
  • Xu D., Gruber A., Peterson C., Pisa P. Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol 1998; 102: 1367–1375
  • Whitlock J. A., Greer J. P., Lukens J. N. Epipodophyllotoxin‐related leukemia. Identification of a new subset of secondary leukemia. Cancer 1991; 68: 600–604
  • Felix C. A., Winick N. J., Negrini M., Bowman W. P., Croce C. M., Lange B. J. Common region of ALL‐1 gene disrupted in epipodophyllotoxin‐related secondary acute myeloid leukemia. Cancer Res 1993; 53: 2954–2956
  • Raghavachar A., Thiel E., Bartram C. R. Analyses of phenotype and genotype in acute lymphoblastic leukemias at first presentation and in relapse. Blood 1987; 70: 1079–1083
  • Green E., McConville C. M., Powell J. E., Mann J. R., Darbyshire P. J., Taylor A. M., Stankovic T. Clonal diversity of Ig and T‐cell‐receptor gene rearrangements identifies a subset of childhood B‐precursor acute lymphoblastic leukemia with increased risk of relapse. Blood 1998; 92: 952–958
  • Bird J., Galili N., Link M., Stites D., Sklar J. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med 1988; 168: 229–245
  • Reth M. G., Jackson S., Alt F. W. VHDJH formation and DJHreplacement during pre‐B differentiation: non‐random usage of gene segments. EMBO J 1986; 5: 2131–2138
  • Kiyoi H., Naoe T., Horibe K., Ohno R. Characterization of the immunoglobulin heavy chain complementarity determining region (CDR)‐III sequences from human B cell precursor acute lymphoblastic leukemia cells. J Clin Invest 1992; 89: 739–746
  • Bones J. C., Cayuela J. M., Loiseau P., Sigaux F. Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression. Blood 1991; 78: 2053–2061
  • Look A. T. Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064
  • Bos J. L. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689
  • Radich J. P., Kopecky K. J., Willman C. L., Weick J., Head D., Appelbaum F. N‐ras mutations in adult de novo acute myelogeneous leukemia: prevelance and clinical significance. Blood 1990; 76: 801–807
  • Lubbert M., Mirro J. J., Miller C. W., Kahan J., Isaac G., Kitchingman G., Mertelsmann R., Hemnann F., McCor‐mick F., Koeffler H. P. N‐ras gene point mutations in childhood acute lymphocytic leukemia correlate with a poor prognosis. Blood 1990; 75: 1163–1169
  • Neubauer A., Dodge R. K., George S. L., Davey F. R., Silver R. T., Schiffer C. A., Mayer R. J., Ball E. D., Wurster‐Hill D., Bloomfield C. D., Lui E. T. Prognostic importance of mutations in the ras proto‐onco‐genes in de novo acute myeloid leukemia. Blood 1994; 83: 1603–1611
  • Kubo K., Naoe T., Kiyoi H., Fukutani H., Kato Y., Oguri T., Yamamori S., Akatsuka Y., Kodera Y., Ohno R. Clonal analysis of multiple point mutations in the N‐ras gene in patients with acute myeloid leukemia. Jpn J Cancer Res 1993; 84: 379–387
  • Hirai H., Kobayashi Y., Mano H., Hagiwara K., Maru Y., Omine M., Mizoguchi H., Nishida J., Takaku F. A point mutation at codon 13 of the N‐ras oncogene in myelodysplastic syndrome. Nature 1987; 327: 430–432
  • Fan C., Gill R., Katz F., Gibbons B., Marshall C. J. Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol 1991; 77: 323–327
  • Nakano Y., Kiyoi H., Miyawaki S., Asou N., Ohno R., Saito H., Naoe T. Molecular evolution of acute myeloid leukaemia in relapse: unstable N‐ ras and FLT3 genes compared with p53 gene. Br J Haematol 1999; 104: 659–664
  • Hollstein M., Sidransky D., Vogelstein B., Harris C. C. P53 mutations in human cancers. Science 1991; 253: 49–53
  • Preudhomme C., Fenaux P. The clinical significance of mutations of the P53 tumour suppressor gene in hae‐matological malignancies. Br J Haemutol 1997; 98: 502–511
  • Wattel E., Preudhomme C., Hecquet B., Vanrumbeke M., Quesnel B., Dervite I. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157
  • Hu G., Zhang W., Deisseroth A. B. P53 gene mutations in acute myelogenous leukaemia. Br J Haematol 1992; 81: 489–494
  • Nakai H., Misawa S., Toguchida J., Yandell D. W., Ishizaki K. Frequent p53 gene mutations in blast crisis of chronic myelogenous leukemia, especially in myeloid crisis harboring loss of a chromosome 17p. Cancer Res 1992; 52: 6588–6593
  • Hsiao M. H., Yu A. L., Yeargin J., Ku D., Haas M. Nonhereditary p53 mutations in T‐cell acute lymphoblastic leukemia are associated with the relapse phase. Blood 1994; 83: 2922–2930
  • Diccianni M. B., Yu J., Hsiao M., Mukhejee S., Shao L. E., Yu A. L. Clinical significance of p53 mutations in relapsed T‐cell acute lymphoblastic leukemia. Blood 1994; 84: 3105–3112
  • Zhu Y. M., Foroni L., McQuaker I. G., Papaioannou M., Haynes A., Russell H. H. Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia. Br J Cancer 1999; 79: 1151–1157
  • Yokota S., Kiyoi H., Nakao M., Iwai T., Misawa S., Okuda X., Sonoda Y., Abe T., Kashima K., Matsuo Y., Naoe T. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hemat_logical malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609
  • Kiyoi H., Naoe X., Yokota S., Nakao M., Minami S., Kuri‐yama K., Takeshita A., Saito K., Hasegawa S., Shimodaira S., Tamura J., Shimazaki C., Matsue K., Kobayashi H., Arima N., Suzuki R., Morishita H., Saito H., Ueda R., Ohno R. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia 1997; 11: 1447–1452
  • Kiyoi H., Naoe X., Nakano Y., Yokota S., Minami S., Miyawaki S., Asou N., Kuriyama K., Jinnai I., Shimazaki C., Akiyama H., Saito K., Oh H., Motoji T., Omoto E., Saito H., Ohno R., Ueda R. Prognostic implication of FLT3 and N‐RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–80
  • Horiike S., Yokota S., Nakao M., Iwai T., Sasai Y., Kaneko H., Taniwaki M., Kashima K., Fujii H., Abe X., Misawa S. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997; 11: 1442–1446
  • Kiyoi H., Towatari M., Yokota S., Hamaguchi M., Ohno R., Saito H., Naoe X. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337
  • Kitamura K., Kiyoi H., Yoshida H., Saito H., Ohno R., Naoe X. Mutant AF‐2 domain of PML‐RARα in retinoic acid‐resistant NB4 cells: differentiation induced by RA is triggered directly through PML‐ RARα and its down‐regulation in acute promyelocytic leukemia. Leukemia 1997; 11: 1950–1956
  • Imaizumi M., Suzuki H., Yoshinari M., Sato A., Saito T., Sugawara A., Tsuchiya S., Hatae Y., Fujimoto T., Kakizuka A., Konno T., Iinuma K. Mutations in the E‐domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all‐trans retinoic acid in acute promyelocytic leukemia. Blood 1998; 92: 374–382
  • Ding W., Li Y. P., Nobile L. M., Grills G., Carrera I., Paietta E., Tallman M. S., Wiernik P. H., Gallagher R. E. Leukemic cellular retinoic acid resistance and missense mutations in the PML‐RARα fusion gene after relapse of acute promyelocytic leukemia from treatment with all‐trans retinoic acid and intensive chemotherapy. Blood 1998; 92: 1172–1183
  • Yoshida H., Kitamura K., Tanaka K., Omura S., Miyazaki X., Hachiya X., Ohno R., Naoe X. Accelerated degradation of PML‐retinoic acid receptor alpha (PML‐RARA) oncoprotein by all‐trans‐retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Rex 1996; 56: 2945–2948
  • Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer. CeN 1996; 87: 159–170
  • Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–1038
  • Ohyashiki J. H., Ohyashiki K., Aizawa S., Kawakubo K., Shimamoto X., Iwama H., Hayashi S., Toyama K. Replication errors in hematological neoplasias: genomic instability in progression of disease is different among different types of leukemia. Clin Cancer Res 1996; 2: 1583–1589
  • Tasaka T., Lee S., Spira S., Takeuchi S., Nagai M., Taka‐hara J., Koeffle G. H. P. Microsatellite instability during the progression of acute myelocytic leukaemia. Br J Haematol 1997; 98: 219–221
  • Zhu Y. M., Das‐Gupta E. P., Russell N. H. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 1999; 94: 733–740
  • de las Alas M. M., Aebi S., Fink D., Howell S. B., Los G. Loss of DNA mismatch repair: effects on the rate of mutation to drug resistance. J Natl Cancer Inst 1997; 89: 1537–1541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.