127
Views
23
CrossRef citations to date
0
Altmetric
Original Article

TALE Homeoproteins as HOX11-Interacting Partners in T-cell Leukemia

, , &
Pages 241-256 | Published online: 01 Jul 2009

References

  • Lichty B. D., Ackland-Snow J., Noble L., Kamel-Reid S., Dube I. D. Dysregulation of HUX11 by chromosome translocations in T-cell acute lymphoblastic leukemia: a paradigm for homeobox gene involvement in human cancer. Leuk. Lymphoma 1995; 16: 209–215
  • Lu M., Gong Z., Shen W., Ho A. D. The tel-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J. 1991; 10: 2905–2910
  • Dube I. D., Kamel-Reid S., Yuan C. C., Lu M., Wu X., Corpus G., Raimondi S. C., Crist W. M., Carroll A. J., Minowada J., Baker J. B. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10, 14). Blood 1991; 78: 2996–3003
  • Hatano M., Roberts C. W., Minden M., Crist W. M., Korsmeyer S. J. Deregulation of a homeobox gene, HOX11, by the t(10, 14) in T cell leukemia. Science 1991; 253: 79–82
  • Kennedy M. A., Gonzalez-Sarmiento R., Kees U. R., Lam-Pert F., Dear N., Boehm T., Rabbitts T. H. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl. Acad. Sci. USA 1991; 88: 8900–8904
  • Dear T. N., Sanchez-Garcia I., Rabbitts T. H. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc. Natl. Acad. Sci. USA 1993; 90: 4431–4435
  • Wen X.-Y., Tang S., Breitman M. L. Genetic mapping of two mouse homeobox genes Tlx-1 and Tlx-2 to murine chromosomes 19 and 6. Genomics 1994; 24: 388–390
  • Roberts C. W., Shutter J. R., Korsmeyer S. J. Hox11 controls the genesis of the spleen. Nature 1994; 368: 747–749
  • Dear T. N., Colledge W. H., Carlton M. B., Lavenir I., Larson T., Smith A. J., Warren A. J., Evans M. J., Sofroniew M. V., Rabbitts T. H. The Hox11 gene is essential for cell survival during spleen development. Development 1995; 121: 2909–2915
  • Lawrence H. J., Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood 1992; 80: 2445–2453
  • Thorsteinsdottir U., Sauvageau G., Humphries R. K. Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol. Oncol. Clin. North Am. 1997; 11: 1221–1237
  • Maconochie M., Nonchev S., Morrison A., Krumlauf R. Paralogous Hox genes: function and regulation. Annu. Rev. Genet. 1996; 30: 529–556
  • Nakamura T., Largaespada D. A., Lee M. P., Johnson L. A., Ohyashiki K., Toyama K., Chen S. J., Willman C. L., Chen I.-M., Feinherg A. P., Jenkins N. A., Copeland N. G., Shaughnessy J. D., Jr. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7:11)(p15,p15) in human myeloid leukaemia. Nature Genet. 1996; 12: 154–158
  • Borrow J., Shearman A. M., Stanton V. P., Jr., Becher R., Collins T., Williams A. J., Dube I., Katz F., Kwong Y. L., Moms C., Ohyashiki K., Toyama K., Rowley J., Housman D. E. The t(7,11)(p15,p15) translocation in acute myeloid leukaemia fuses the genes for the nucleoporin NUP98 and class I homeoprotei. HOXA9. Nature Genet. 1996; 12: 159–167
  • Nakamura T., Largaespada D. A., Shaughnessy J. D., Jr., Jenkins N. A., Copeland N. G. Cooperative activation of Howa and Pbxl-related genes in murine myeloid leukaemias. Nature Genet. 1996; 12: 149–153
  • Kroon E., Krosl J., Thorsteinadottir Baban U. S., Buch-Berg A. M., Sauvqreau G. Hoxa9 transforms primary bone through cells through specific collaboration with Meis la but no. Pbxlb. EMBO J. 1998; 17: 3714–3725
  • Shen W.-F., Montgomery J. C., Rozenleld S., Moskow J. J., Lawrence H. J., Buchberg A. M., Largman C. AhdB-Like Hox protein stabilize DNA binding by the Meisl homeodomain protein. Mol. Cell. Biol. 1997; 17: 6448–6458
  • Thorsteinsdottir U., Krosl J., Kroon E., Haman A., Hoang T., Sauvageau G. The oncoprotein E2A-Pbxla collaborates with Hoxca9 to acutely transform primary bone marrow cells. Mol. Cell. Biol. 1999; 6355–6361
  • Nourse J., Mellentin J. D., Gilili N., Wilkinson J., Stan-Bridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1:19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1900; 60: 535–546
  • Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1:19) translocation protein in pre-B ALL. Cell 1990; 60: 547–555
  • Burglin T. R., Ruvkun G. New motif in PBX genes. Nature Genet. 1912; 1: 310–320
  • Mann R. S., Chain S. K. Extra, specificity from extradentricle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996; 12: 258–262
  • Di Rocco G., Mavilio F., Zappavigna V. Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO, J. 1997; 16: 3644–3654
  • Ryoo H. D., Mann R. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 1999; 1703–1716
  • Chang C. P., Jacobs Y., Nakamura T., Jenkins N. A., Copeland N. G., Cleary M. L. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol. Cell. Biol. 1997; 17: 5679–5687
  • Knoepfler P. S., Calvo K. R., Chen H., Antonarakis S. E., Kamp M. P. Meisl and pKnoxl bind DNA cooperative with Pbx1 utilizing an interaction ice disrupted in oncoprotein-Pbxl. E2a-Pbxl Proc Natl. Acad. Sci. USA 1997; 94: 14553–14558
  • Shen W.-F., Rozenfeld S., Kwong A., Komuves L. G., Lawrence H. J., Largman C. HOX A9 forms triple complexes with PBX2 and MEISI in myeloid cells. Mol. Cell. Biol. 1999; 19: 3051–3061
  • Shanmugam K., Green Rambaldi N. C.I., Saragovi H. U., Featherstone M. S. PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX proteins. Mol. Cell. Biol. 1999; 19: 7577–7588
  • Schnabel C. A., Jacobs Y., Cleary M. L. HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene. 2000; 19: 608–616
  • Laughon A. DNA binding specificity of homeodomains. Biochemistry 1991; 30: 1137–1167
  • Monica K., Galili N., Nourse J., Saltman D., Cleary M. L. PBX2PBX3, new homoeobox genes with extensive homology to the human proto-oncogen. PBXI. Mol. Cell. Biol. 1991; 11: 6149–6157
  • Nakamura T., Jenkins N. A., Copeland N. G. Identification of a new family of Pbx-related homeobox genes. Oncogene 1996; 13: 2235–2242
  • Hawley R. G., Fong A. Z. C., Lu M., Hawley T. S. The HOXII homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 1994; 9: 1–12
  • Vallette F., Mege H., Reiss A., Adesnik M. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucl. Acids Res. 1989; 17: 723–733
  • Hawley R. G., Lieu F. H. L., Fong A. Z. C., Goldman S. J., Leonard J. P., Hawley T. S. Retroviral vectors for production of interleukin-12 in the bone marrow to induce a graft-versus-leukemia effect. Ann. N.Y. Acad. Sci. 1996; 795: 341–345
  • Markowitz D., Goff S., Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 1988; 62: 1120–1124
  • Hawley R. G., Fong A. Z. C., Reis M. D., Zhang N., Lu M., Hawley T. S. Transforming function of the HOXII/TCL3 homeobox gene. Cancer Res. 1997; 57: 337–345
  • Keller G., Wall C., Fong A. Z. C., Hawley T. S., Hawley R. G. Overexpression of HOXII leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood 1998; 92: 877–887
  • Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162: 156–159
  • Schreiber E., Matthias P., Muller M. M., Schaffner W. Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucl. Acids Res. 1989; 17: 6419
  • Zhang N., Gong Z.-Z., Minden M., Lu M. The HOX-II (TCL-3) homeobox proto-oncogene encodes a nuclear protein that undergoes cell cycle-dependent regulation. Oncogene 1993; 8: 3265–3270
  • Lu Q., Kamps M. P. Structural determinants within Pbxl that mediate cooperative DNA binding with pentateptide-containing Hox proteins: proposal for a model of a Pbxl-Hox-DNA complex. Mol. Cell. Biol. 1996; 16: 1632–1640
  • Shen W.-F., Chang C.-P., Rozenfeld S., Sauvageau G., Humphries R. K., Lu M., Lawrence H. J., Cleary M. L., Largman C. Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucl. Acids Res. 1996; 24: 898–906
  • Phelan M. L., Rambaldi I., Featherstone M. S. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol. Cell. Biol. 1995; 15: 3989–3997
  • Chang C., Shen P., Rozenfeld W. K.S., Lawrence H. J., Largman C., Cleary M. L. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 1995; 9: 663–674
  • Neuteboom S. T., Peltenburg L. T., van Dijk M. A., Murre C. The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins. Proc. Natl. Avail. Sci. USA 1995; 92: 9166–9170
  • Tang S., Breitman M. L. The optimal binding sequence of the Hox II protein contains a predicted recognition core motif. Nucl. Acids Res. 1995; 23: 1928–1935
  • Chang C.-P., Brocchieri L., Shen W.-F., Largman C., Cleary M. L. Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across th. Hox locus. Mol. Cell. Biol. 1996; 16: 1734–1745
  • Krosl J., Baban S., Krosl G., Rozenfeld S., Largman C., Sauvageau G. Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 1998; 16: 3403–3412
  • Greene W. K., Bahn S., Masson N., Rabbitts T. H. The T-cell oncogenic protein HOXl1 activates Aldhl expression in NIH 3T3 cells but represses its expression in mouse spleen development. Mol. Cell. Biol. 1998; 18: 7030–7037
  • Masson N., Greene W. K., Rabbitts T. H. Optimal activation of an endogenous gene by HOX11 requires the NH2-terminal 50 amino acids. Mol. Cell. Biol. 1998; 18: 3502–3508
  • Selleri L., Cleary M. L. Loss of the proto-oncoprotein Pbxl results in spleen agenesis and abnormal thymus development. Blood 1999; 94(Suppl 1)693a
  • Peltenburg L. T.C., Murre C. Engrailed and Hox homeodomain proteins contain a related Pbx interaction motif that recognizes a common structure present in Pbx. EMBOJ 1996; 15: 3385–3393
  • Peers B., Sharma S., Johnson T., Kamps M., Montminy M. The pancreatic islet factor STF-1 binds cooperatively with Pbx to a regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol. Cell. Biol. 1995; 15: 7091–7097
  • Kawabe T., Muslin A. J., Korsmeyer S. J. HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2M cell-cycle checkpoint. Nature 1997; 385: 454–458
  • Knoepfler P. S., Lu Q., Kamps M. P. Pbxl-Hox heterodimers bind DNA on inseparable half-sites that permit intrinsic DNA binding specificity of the Hox partner at nucleotides 3′, to a TAAT motif. Nucl. Acids Res. 1996; 24: 2288–2294
  • Phelan M. L., Featherstone M. S. Distinct HOX N-terminal arm residues are responsible for specificity of DNA recognition by HOX monomers and HOX-PBX heterodimers. J. Biol. Chem. 1997; 272: 8635–8643
  • Berthelsen J., Kilstrup-Nielsen C., Blasi F., Mavilio F., Zappavigna V. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev. 1999; 13: 946–953
  • Ferretti E., Schulz H., Talarico D., Blasi F., Berthelsen J. The PBX-regulating protein PREP1 is present in different PBX-complexed forms in mouse. Mech. Dev. 1999; 83: 53–64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.