83
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Retinoic Acid Receptor α (RARα) Mutations in Human Leukemia

, &
Pages 271-282 | Received 10 May 2000, Published online: 01 Jul 2009

References

  • de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15,17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor a gene to a novel transcribed locus. Nature 1990; 347: 558–561
  • Borrow J, Goddard A D, Sheer D, Solomon E. Molecular analysis of APL breakpoint cluster region on chromosome 17. Science 1990; 249: 1577–1580
  • Kakizuka A, Miller W H, Jr, Umesono K, Warrell R P, Jr, Frankel S R, Murty V VVS, Dmitrovsky E, Evans R M. Chromosomal translocation t(15,17) in human acute pro-myelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674
  • Alcalay M, Zangrilli D, Pandolfi P P, Longo L, Mencarelli A, Giacomucci A, Rocchi M, Biondi A, Rambaldi A, LoCoco F, Diverio D, Donti E, Grignani F, Pelicci P G. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proceedings of the National Academy of Sciences of the United States of America. 1991; 88: 1977–1981
  • Chen Z, Brand N J, Chen A, Chen S J, Tong J H, Wang Z Y, Waxman S, Zelent A. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11,17) translocation associated with acute promyelocytic leukaemia. EMBO Journal 1993; 12: 1161–1167
  • Redner R L, Rush E A, Faas S, Rudert W A, Corey S J. The t(5,17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996; 87: 882–886
  • Wells R A, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nature Genetics 1997; 17: 109–113
  • Arnould C, Philippe C, Bourdon V, Gregoire M J, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Human Molecular Genetics 1999; 8: 1741–1749
  • Lawson N D, Berliner N. Neutrophil maturation and the role of retinoic acid. Experimental Hematology 1999; 27: 1355–1367
  • Huang M E, Ye Y C, Chen S R, Chai J R, Lu J X, Zhoa L, Gu L J, Wang Z Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572
  • Chomienne C, Ballerini P, Balitrand N, Daniel M T, Fenaux P, Castaigne S, Degos L. All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 1990; 76: 1710–1717
  • Castaigne S, Chomienne C, Daniel M T, Ballerini P, Berger R, Fenaux P, Degos L. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–1709
  • Licht J D, Chomienne C, Goy A., Chen A, Scott A A, Head D R, Michaux J L, Wu Y, DeBlasio A, Miller W H, Jr, Zelenetz A D, Willman C L, Chen Z, Chen S J, Zelent A, Macintyre E, Veil A, Cortes J, Kantarjian H, Waxman S. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11,17). Blood 1995; 85: 1083–1094
  • Johnson R L, Tabin C J. Molecular models for vertebrate limb development. Cell 1997; 90: 979–990
  • Kastner P, Grondona J M, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J L, Dolle P, Chambon P. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 1994; 78: 987–1003
  • Chazaud C, Chambon P, Dolle P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 1999; 126: 2589–2596
  • Taneja R, Rochette-Egly C, Plassat J L, Penna L, Gaub M P, Chambon P. Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO Journal 1997; 16: 6452–6465
  • Giguere V, Ong E S, Segui P, Evans R M. Identification of a receptor for the morphogen retinoic acid. Nature 1987; 330: 624–629
  • Petkovich M, Brand N J, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987; 330: 444–450
  • Heyman R A, Mangelsdorf D J, Dyck J A, Stein R B, Eichele G, Evans R M, Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68: 397–406
  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J Y, Staub A, Garnier J M, Mader S, Chambon P. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 1992; 68: 377–395
  • Benbrook D, Lernhardt E, Pfahl M. A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 1988; 333: 669–672
  • Brand N, Pctkovich M, Krust A, Chambon P, de The H, Marchio A, Tiollais P, Dejean A. Identitication of a second human retinoic acid receptor. Nature 1988; 332: 850–853
  • Krust A, Kastner P, Petkovich M, Zelent A, Chambon P. A third human retinoic acid receptor. hRAR-γ. Proceedings of the National Academy of Sciences of the United States of America. 1989; 86: 5310–5314
  • Mangelsdorf D J, Borgmeyer U, Heyman R A, Zhou J Y, Ong E S, Oro A E, Kakizuka A, Evans R M. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes & Development 1992; 6: 329–344
  • de The H, Marchio A, Tiollais P, Dejean A. Differentiail expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO Journal 1989; 8: 429–433
  • Gallagher R E, Said F, Pua I, Papenhausen P R, Paietta E, Wiernik P H. Expression of retinoic acid receptor-alphamRNA in human leukemia cells with variable responsiveness to retinoic acid. Leukemia 1989; 3: 789–795
  • Brand N J, Petkovich M, Chambon P. Characterization of a functional promoter for the human retinoic acid receptor-alpha (hRAR-alpha). Nucleic Acid Research 1990; 18: 6799–6806
  • Pandolfi P P, Alcalay M, Fagioli M, Zangrilli D, Menearelli Diverio A. D., Biondi A, Lo Coco F, Rambaldi A, Grignani F, Rochette-Egly C, Gaube M P, Chambon P, Pelicci P G. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO Journal 1992; 11: 1397–1407
  • Zelent A. Translocation of the RARα locus to the PML or PLZF gene in acute promyelocytic leukaemia. British Journal of Haematology 1994; 86: 451–460
  • Hjalt T AH, Murray J C. Genomic structure of the human retinoic acid receptor-alphal gene. Mammalian Genome 1999; 10: 528–529
  • Leroy P, Nakshatri H, Chambon P. Mouse retinoic acid receptor alpha 2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 10138–10142
  • Zelent A, Enver T, Gallagher R, Waxman S. RARα2 isoform in normal granulopoiesis and leukemia. Blood 1996; 88(Supplement I)52a, abstract
  • Zelent A, Zhu J, Lanotte M, Gallagher R, Waxman S, Heyworth C M, Enver T. Differential expression of retinoic receptors during multilieage differentiation of haemopoitic progenitor cells-role of the RARα2 isoform in normal granulopoiesis and leukaemia. Blood 1997; 90(Supplement 1)44a–45a, abstract
  • Nagpal S, Friant S, Nakshatri H, Chambon P. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO Journal 1993; 12: 2349–2360
  • de The H, Vivanco-Ruiz M M, Tiollais P, Stunnenberg H, Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature 1990; 343: 177–180
  • Umesono K, Murakami K K, Thompson C C, Evans R M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65: 1255–1266
  • Naar A M, Boutin J M, Lipkin S M, Yu V C, Holloway J M, Glass C K, Rosenfeld M G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 1991; 65: 1267–1279
  • Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri H, Chambon P. Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 1992; 70: 1007–1019
  • Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Current Opinion in Cell Biology 1998; 10: 384–391
  • Xu L, Glass C K, Rosenfeld M G. Coactivator and corepressor complexes in nuclear receptor function. Current Opinion in Genetics & Development 1999; 9: 140–147
  • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997; 389: 349–352
  • Davie J R. Covalent modifications of histones : expression from chromatin templates. Current Opinion in Genetics & Development 1998; 173–178
  • McLnick A, Licht J U. Deconstructing a disease RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3715
  • Hiorns L R, Min T, Swansbury G J, Zelent A, Dyer M J, Catowsky D. Interstitial insertion of retinoic acid receptor-:alpha gene in acute promyelocytic leukemia with normal chromosomes 15 and 17. Blood 1994; 83: 2946–2951
  • Grimwade D, Gorman P, Duprez E, Howe K, Langabeer S, Oliver F, Walker H, Culligan D, Waters J, Pomfret M, Goldstone A, Burnett A, Freemont P, Sheer D, Solomon E. Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. Blood 1997; 90: 4876–4885
  • Chillon M C, Gonzalez M, Garcia-Sanz R, Balanzategui A, Gonzalez D, Lopez-Perez R, Mateos M V, Alaejos J, Rayon C, Arbeteta J, Hernandez J M, Orfao A, San Miguel J. Two new 3′, PML breakpoints in t(15:17)(q22,q21)-positive acute promyelocytic leukemia. Genes Chromosones and Cancer 2000; 27: 35–43
  • Fenaux P, Chomienne C. Biology and treatment of acute promyelocytic leukemia. Current Opinion in Oncology 1996; 8: 3–12
  • Alcalay M, Zangrilli D, Fagioli M, Pandolfi P P, Mencarelli A, LoCoco F, Biondi A, Pelicci P G. Expression pattern of the RARα/PMI, fusion gene in acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 4840–4844
  • Li Y P, Andersen J, Zelent A, Rao S, Paietta E, Tallman M S, Wiernik P H, Gallagher R E. RARα1/RARα2-PML mRNA expression in acute promyelocytic leukemia cells: a molecular and laboratory-clinical correlative study. Blood 1997; 90: 306–312
  • Castaigne S, Balitrand N, de The H, DeJean A, Degos L, Chomienne C. A PML/retinoic acid receptor α fusion transcript is constantly detected by RNA-based polymerase chain reaction in acute promyelocytic leukemia. Blood 1992; 79: 3110–3115
  • Lo Coeo F, Diverio D, Falini B, Biondi A, Nervi C, Pelicci P G. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 1999; 94: 12–22
  • Guidez F, Huang W, Tong J H, Dubois C, Balitrand N, Wax-Man S, Michaux J L, Martiat P, Degos L, Chen Z, Chomienne C. Poor response to all-trans retinoic acid therapy in a t(11 :17) PLZF/RARα patient. Leukemia 1994; 8: 312–317
  • Mozziconacci M J, Liberatore C, Grignani F, Sainty D, Pel-Icci P G, Birg F, Lafage-Pochitaloff M. Atypical response to all-trans retinoic acid in a der(5)t(5:17) acute promyelo-cytic leukemia. Leukemia 1999; 13: 862–868
  • Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M., Pelicci P G, Atwater S, Bishop J M. A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 2551–2556
  • He L Z, Tribioli C, Rivi R, Peruzzi D, Pelicci P G, Soares V, Cattoretti G, Pandolfi P P. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 5302–5307
  • He L Z, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi P P. Distint interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genetics 1998; 18: 126–135
  • Cheng G X, Zhu X H, Men X Q, Wang L, Huang Q H, Jin X L, Xiong S M, Zhu J, Guo W M, Chen J Q, Xu S F, So E, Chan L C, Waxman S, Zelent A, Chen G Q, Dong S, Liu J X, Chen S J. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARα and NPM-RARα. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 6318–6323
  • He L Z, Merghoub T, Pandolfi P P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 1999; 18: 5278–5292
  • Pollock J L, Westervelt P, Kurichety A K, Pelicci P G, Grisolano J L, Ley T J. A bcr-3 isoform of RARα-PML potentiates the development of PML-RARα-driven acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 15103–15108
  • Corral J, Lavenir I, Impey H, Warren A J, Forster A, Larson T A, Bell S, McKenzie A N, King G, Rabbitts T H. An MLL-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861
  • Castilla L H, Wijmenga C, Wang Q, Stacy T, Speck N A, Eckhaus M, Marin-Padilla M, Collins F S, Wynshaw-Boris A, Liu P P. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFβ-MYH11. Cell 1996; 87: 687–696
  • Gu H, Zou Y R, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993; 73: 1155–1164
  • Smith A J, De Sousa M A, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts T H. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nature Genetics 1995; 9: 376–385
  • Shockett P, Difilippantonio M, Hellman N, Schatr D G. A modified tetracycline-regulated system provides autoregu-latory, inducible gene expression in cultured cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 6522–6526
  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner J W, 2nd, Cordon-Cardo C, Yancopoulos G D, DePinho R A. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472
  • Grignani F, Ferrucci P F, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci P G. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431
  • Chen Z, Guidez F, Rousselot P, Agadir A, Chen S J, Wang Z Y, Degos L, Zelent A, Waxman S, Chomienne C. PLZF-RARα fusion proteins generated from the variant t(11:17)(q23,q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 1178–1182
  • Jansen J H, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A. Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxi-some-proliferator signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 7401–7405
  • Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO Journal 1993; 12: 3171–3182
  • Licht J D, Shaknovich R, English M A, Melnick A, Li J Y, Reddy J C, Dong S, Chen S J, Zelent A, Waxman S. Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-α chimera generated in t(11:17)-asaociated acute promyelocytic leukemia. Oncogene 1996; 12: 323–336
  • Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong H J, Wang Z Y, Licht J, Waxman S, Chomienne C, Chen Z, Zelent A, Chen S J. Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-a fusion protein. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 3624–3629
  • Kogan S C, Hong S H, Shultz D B, Privalsky M L, Bishop J M. Leukemia initiated by PMLRARα: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood 2000; 95: 1541–1550
  • Daniel M T, Koken M, Romagne O, Barbey S, Bazarbachi A, Stadler M, Guillemin M C, Degos L, Chomienne C, de The H. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 1993; 82: 1858–1867
  • Dyck J A, Maul G G, Miller W H, Jr, Chen J D, Kakiruka A, Evans R M. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76: 333–343
  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76: 345–356
  • Kohen M H, Puvion-Dutilleul F, Guillemin M C, Viron A, Linares-Cruz G, Stuurmnn N, de Jong L, Szostecki C, Calvo F, Chomienne C, Degos L, Puvion E, de The H. The t(15:17) translocatioii alters a nuclear body in a retinoic acid-reversible fashion. EMBO Journal 1994; 13: 1073–1083
  • Koken M HM, Reid A, Quignon F, Chelbi-Alix M K, Davies J M, Kabarouski J HS, Zhu J, Dong S, Chen S J, Chen Z, Tan C C, Licht J, Waxman S, de Thé H., Zelent A. Leukemia-associated retinoic acid receptor α fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 10255–10260
  • Ruthardt M, Orleth A, Tomassoni L, Puccetti E, Riganelli D, Alcalay M, Mannucci R, Nicoletti I, Grignani F, Fagioli M, Pelicci P G. The acute promyelocytic leukaemia specific PML and PLZF proteins localize to adjacent and functionally distinct nuclear bodies. Oncogene 1998; 16: 1945–1953
  • Koken M H, Daniel M T, Gianni M, Zelent A, Licht J, Buzyn A, Minnrd P, Degos L, Varet B, de The H. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11:17)(q23,q21) APL patient. Oncogene 1999; 18: 1113–1118
  • Hummel J L, Wells R A, Dube I D, Licht J D, Kamel-Reid S. De-regulation of NPM and PLZF in a variant t(5,17) case of acute promyelocytic leukemia. Oncogene 1909; 18: 633–641
  • Grignani F, Testa U, Rogaia D, Ferrucci P E, Samoggia P, Pinto A, Aldinucci D, Gelmetti V, Fagioli M, Alcalay M, Seeler J, Grignani F, Nicoletti I, Peschle C, Pelicci P G. Effects on differentiation by the promyelocytic leukemia PML/RARα protein depend on the fusion on the PML protein dimerization and RARα DNA binding domains. EMBO Journal 1996; 15: 4969–4958
  • Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, Ohno R, Naoe T. Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Research 1996; 56: 2945–2948
  • Raelson J V, Nervi C, Rosenauer A, Benedetti L, Monezak Y, Pearson M, Pelicci P G, Miller W H, Jr. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 1996; 88: 2826–2832
  • Nervi C, Ferrara F F, Fanelli M, Rippo M R, Tomassini B, Ferrucci P F, Ruthardt M, Gelmetti V, Gambacorti-Passerini C, Diverio D, Grignani F, Pelicci P G, Testi R. Caspases mediate retinoic acid-induced degradation of the acute myelocytic leukemia PML/RARα fusion protein. Blood 1998; 92: 2244–2251
  • Fanelli M, Minucci S, Gelmetti V, Nervi C, Gambacorti-Passerini C, Pelicci P G. Constitutive degradation of PML/RARα through the proteasome pathway mediates retinoic acid resistance. Blood 1999; 93: 1477–1481
  • Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RARα) and oncogenic RARα fusion proteins. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 14807–14812
  • Naoe T, Kitamura K. Relationship between degradation of PML-RARα and differentiation. Fanelli M. Pelicci P G. Response. Blood 1999; 94: 1478–1479
  • Nervi C, Poindexter E C, Grignani F, Pandolfi P P, Lo Coco F, Avvisati G, Pelicci P G, Jetten A M. Characterisation of the PML-RARα chimeric product of the acute promyelocytic leukemia-specific t(15:17) translocation. Cancer-Research 1992; 52: 3687–3692
  • Ruthardt M, Testa U, Nervi C, Ferrucci P F, Grignani F, Puccetti E, Gripnani F, Peschle C, Pelicci P G. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor a (RARα) and PLZF-RARα fusion proteins on retinoic acid signalling. Molecular and Cellular Biology 1997; 17: 4859–4869
  • Casini T, Pelicci P G. A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene 1999; 18: 3235–3243
  • Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara F F, Bonci D, Gripnani F, Nervi C, Pelicci P G. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 1999; 18: 6313–6321
  • Zhong S, Deva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman L P, Pandolfi P P. A RA-dependent, tumor growth suppressive transcription complex is the target of the PML-RARa and T18 oncoproteins. Nature Genetics 1999; 23: 287–295
  • Sitterlin D, Tiollais P, Transy C. The RAR alpha-PLZF chimera associated with Acute Promyelocytic Leukemia has retained a sequence-specific DNA-binding domain. Oncogene 1997; 14: 1067–1074
  • Yeyati P L, Shaknovich R, Boterashvili S, Li J, Ball H J, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Lieht J D. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999; 18: 925–934
  • So C W, Dong S, So C K, Cheng G X, Huang Q H, Chen S J, Chan L. C. The impact of differential binding of wild-type RARα, PML-, PLZF- and NPM-RARα fusion proteins towards transcriptional co-activator, RIP-140, on retinoic acid responses in acute promyelocytic leukemia. Leukemia 2000; 14: 77–83
  • Hong S H, David G, Wong C W, Dejean A, Privalsky M L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) acid PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of American 1997; 94: 9028–9033
  • Lin R J, Nagy L, Inoue S, Shao W, Miller W H, Jr, Evans R M. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 1998; 391: 811–814
  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara F F, Zamir I, Seiser C, Grignani F, Lazar M A, Minucci S, Pelicci P G. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818
  • Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642
  • Delva L, Cornic M, Balitrand N, Guidez F, Miclea J M, Delmer A, Teillet F, Fenaux P, Castaigne S, Degoa L, Chomienne C. Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood 1993; 82: 2175–2181
  • Cornic M, Chomienne C. Induction of retinoid resistance by all-trans retinoic acid in acute promyelocytic leukemia after remission. Leukemia & Lymphoma 1995; 18: 249–257
  • Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P, Berger R, Lanotte M. A retinoid acid “resistant” t(15,17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features. Leukemia 1992; 6: 1281–1287
  • Kizaki M, Matsushita H, Takayama N, Muto A, Ueno H, Awaya N, Kawai Y, Asou H, Kamada N, Ikeda Y. Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-I) with retinoic acid-resistant features. Blood 1996; 88: 1824–1833
  • Shao W, Benedetti L, Lamph W W, Nervi C, Miller W H, Jr. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RARα mutation. Blood 1997; 89: 4282–4289
  • Imaizumi M, Suzuki H, Yoshinari M, Sato Saito A. T., Sugawara A, Tsuchiya S, Hatae Y, Fujimoto T, Kakizuka A, Konno T, Iinuma K. Mutations in the E-domain of RARα portion of the PML/RARα chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood 1998; 92: 374–382
  • Ding W, Li Y P, Nobile L M, Grills G, Carrera I, Paietta E, Tallman M S, Wiernik P H, Gallagher R E. Leukemia cellular retinoic acid resistance and missense mutations in the PML-RARα fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood 1998; 92: 1172–1183
  • Robertson K A, Emami B, Collins S J. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 1992; 80: 1885–1889
  • Tsai S, Collins S J. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocytic stage. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 7153–7157
  • Parrado A, West R, Jordan D, Bastard C, McKenna S, Whittaker J, Bentley P, White D, Chomienne C, Padua R A. Alterations of the retinoic acid receptor α (RARα) gene in myeloid and lymphoid leukaemias. British Journal of Haematology 1999; 104: 738–741
  • Morosetti R, Grignani F, Liberatore C, Pelicci P G, Schiller G J, Kizaki M, Bartram C R, Miller C W, Koeffler H P. Infrequent alterations of the RARα gene in acute myelogenous leukemias, retinoic acid-resistant acute promyelocytic leukemias, myelodysplastic syndromes, and cell lines. Blood 1996; 87: 4399–4403
  • Imamura J, Miyoshi I, Koeffler H P. p53 in hematologic malignancies. Blood 1994; 84: 2412–2421
  • Stankovic T, Weber P, Stewart G, Bedenham T, Murray J, Byrd P J, Moss P AH, Taylor A MR. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999; 353: 26–29
  • Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M, Albitar M, Reed J C, Croce C M. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Research 1999; 59: 24–27
  • Grønbák K, Thor Straten P, Ralfkiaer E, Ahrenkiel V, Andersen M K, Hansen N E, Zeuthen J, Hou-Jensen K, Guldberg P. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92: 3018–3024
  • Naderi S, Blomhoff H K. Retinoic acid prevents phosphorylation of pRB in normal human lymphocytes: regulation of cyclin E, cyclin A, and p21Cip1. Blood 1999; 94: 1348–1358
  • Kipps T J. Signal transduction pathways and mechanisms of apoptosis in CLL-B lymphocytes: their role in CLL pathogenesis. Hematology & Cell Therapy 1997; 39: S17–S27
  • Du C, Redner R L, Cooke M P, Lavau C. Overexpression of wild-type retinoic acid receptor α (RARα) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARα-fusion genes. Blood 1999; 94: 793–802

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.