64
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Bone Marrow Cell Graft Engineering: From Bench to Bedside

, &
Pages 19-34 | Received 15 Jul 2000, Published online: 01 Jul 2009

References

  • Brooks P. M. Hematopoietic stem cell transplantation for autoimmune diseases. J Rheumatol 1997; 24: 19–22
  • Exner B. G., Groninger J. H., Ildstad S. T. Bone marrow transplantation for therapy in autoimmune disease. Stem Cells 1997; 15: 171–176
  • Good R. A., Ikehara S. Preclinical investigations that subserve efforts to employ bone marrow transplantation for rheumatoid or autoimmune diseases. J Rheumatol 1997; 24: 5–12
  • Marmont A. M. Autoimmunity and allogeneic bone marrow transplantation. Bone Marrow Transplant 1992; 9: 1–3
  • Vermylen C., Cornu G. Hematopoietic stem cell transplantation for sickle cell anemia. Curr Opin Hematol 1997; 4: 377–380
  • Marmont A. M. Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83: 733–743
  • Li H., Kaufman C. L., Boggs S. S., Johnson P. C., Patrene K. D., Ildstad S. T. Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in non-obese diabetic (NOD) mice. J Immunol 1996; 156: 380–388
  • Ikehara S., Ohtsuki H., Good R. A., Asamoto H., Nakamura T., Sekita K., Muso E., Tochino Y., Ida T., Kuzuya H., Imura H., Hamashima Y. Prevention of type I diabetes in nonobese diabetic mice by allogeneic bone marrow transplantation. Proc Natl Acad Sci USA 1985; 82: 7743–7747
  • LaFace D. M., Peck A. B. Reciprocal allogeneic bone marrow transplantation between NOD mice and diabetes-nonsusceptible mice associated with transfer and prevention of autoimmune diabetes. Diabetes 1989; 38: 894–901
  • Yin J. A. L., Lowitt S. N. Resolution of immune-mediated diseases following allogeneic bone marrow transplantation for leukaemia. Bone Marrow Transplant 1992; 9: 31–33
  • Knaan-Shanzer S., Houben P., Kinwel-Bohre E. P., Van Bekkum D. W. Remission induction of adjuvant arthritis in rats by total body irradiation and autologous bone marrow transplantation. Bone Marrow Transplant 1991; 8: 333–338
  • Ishida T., Inaba M., Hisha H., Sugiura K., Adachi Y., Nagata N., Ogawa R., Good R. A., Ikehara S. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-lpr/lpr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 1994; 152: 3119–3127
  • Nishioka N., Toki J., Cherry Sugiura K., Than S., Yasumizu R., Inaba M., Nishimura M., Ikehara S. Repair mechanism of lupus nephritis in (NZB NZW)F1 mice by allogeneic bone marrow transplantation. Immunobiology 1995; 192: 279–296
  • Levite M., Zinger H., Zisman E., Reisner Y., Mozes E. Beneficial effects of bone marrow transplantation on the serological manifestations and kidney pathology of experimental systemic lupus erythematosus. Cell Immunol 1995; 162: 138–145
  • Wang B., Yamamoto Y., El-Badri N. S., Good R. A. Effective treatment of autoimmune disease and progressive renal disease by mixed bone-marrow transplantation that establishes a stable mixed chimerism in BXSB recipient mice. Proc Natl Acad Sci USA 1999; 96: 3012–3016
  • Chester C. H., Sykes M., Sachs D. H. Multiple mixed chimeras: reconstitution of lethally irradiated mice with syngeneic plus allogeneic bone marrow from multiple strains. Res Immunol 1989; 140: 503–516
  • Petz L. D., Yam P., Wallace R. B., Stock A. D., de Lange G., Knowlton R. G., Brown V. A., Donis-Keller H., Hill L. R., Forman S. J. Mixed hematopoietic chimerism following bone marrow transplantation for hematologic malignancies. Blood 1987; 70: 1331–1337
  • Sharrow S. O., Mathieson B. J., Singer A. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras. J Immunol 1981; 126: 1327–1335
  • Sprent J., Boehmer H. V., Nabholz M. Association of immunity and tolerance to host H-2 determinants in irradiated F1 hybrid mice reconstituted with bone marrow cells from one parental strain. J Exp Med 1975; 142: 321–331
  • Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Sachs D. H. Characterization of mixed allogeneic chimeras: Immunocompetence, in vitro reactivity and genetic specificity of tolerance. J Exp Med 1985; 162: 231–244
  • Spitzer T. R., Delmonico F., Tolkoff-Rubin N., McAfee S., Sackstein R., Saidman S., Colby C., Sykes M., Sachs D. H., Cosimi A. B. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999; 68: 480–484
  • Li H., Kaufman C. L., Ildstad S. T. Allogeneic chimerism induces donor-specific tolerance to simultaneous islet allografts in non-obese diabetic (NOD) mice. Surgery 1995; 118: 192–198
  • Colson Y., Zadach K., Ildstad S. T. Mixed xenogeneic bone marrow chimerism (mouse + rat-mouse) induces donor-specific tolerance for cardiac grafts across a species barrier. Surg Forum 1993; 44: 294–295
  • Colson Y., Zadach K., Nalesnik M., Ildstad S. T. Mixed allogeneic chimerism in the rat. Donor-specific transplantation tolerance without chronic rejection for primarily vascularized cardiac allografts. Transplantation 1995; 60: 971–980
  • Ildstad S. T., Wren S. M., Oh E., Hronakes M. L. Mixed allogeneic reconstitution (A + B-A) to induce donor-specific transplantation tolerance. Permanent acceptance of a simultaneous donor skin graft. Transplantation 1991; 51: 1262–1267
  • Li H., Colson Y. L., Ildstad S. T. Mixed allogeneic chimerism achieved by lethal and nonlethal conditioning approaches induces donor-specific tolerance to simultaneous islet allografts. Transplantation 1995; 60: 523–529
  • Maeda T., Eto M., Nishimura Y., Nomoto K., Kong Y. Y. Role of peripheral hemopoietic chimerism in achieving donor-specific tolerance in adult mice. J Exp Med 1990; 171: 97–113
  • Markus P. M., Selvaggi G., Cai X., Fung J. J., Starzl T. E. Induction of donor-specific transplantation tolerance to skin and cardiac allografts using mixed chimerism in (A+B-A) in rats. Cell Transplant 1993; 2: 345–353
  • Antin J. H. Graft-Versus-Leukemia: No longer an epiphenomenon. Blood 1993; 82: 2273–2277
  • Youm W., Colson Y. L., Komatsu K., Ildstad S. T., Yousem S. A., Griffith B. P., Pham S. M. Mixed chimerism to achieve donor-specific transplantation tolerance for lung allografts in rats. Surg Forum 1994; 50: 271–273
  • Zeng Y., Ildstad S. T., Rilo H. L., Beretier D. R., Carroll P. B., Tzakis A. G., Starzl T. E., Ricordi C. Long-term survival of donor-specific pancreatic islet xenografts in fully xenogeneic chimeras (F344 rat to B10 mouse). Transplant Proc 1992; 24: 641
  • Slavin S., Reitz B., Bieber C. P., Kaplan H. S., Strober S. Transplantation tolerance in adult rats using total lymphoid irradiation: Permanent survival of skin, heart, and marrow allografts. J Exp Med 1978; 147: 700–707
  • Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Sachs D. H. Characterization of mixed allogeneic chimeras: Immunocompetence, in vitro reactivity and genetic specificity of tolerance. J Exp Med 1985; 162: 231–244
  • Colson Y. L., Tripp R. A., Doherty P. C., Wren S. M., Neipp M., Abou-El Ezz A. Y., Ildstad S. T. Antiviral cytotoxic activity across a species barrier in mixed xenogeneic chimeras: functional restriction to host MHC. J Immunol 1998; 160: 3790–3796
  • Rayfield L. S., Brent L. Tolerance, immunocompetence, and secondary disease in fully allogeneic radiation chimeras. Transplantation 1983; 36: 183–189
  • Ferrara J., Deeg H. J. Graft-Versus-Host Disease. N Engl J Med 1991; 324: 667–674
  • Blazar B. R., Taylor P. A., Panoskaltsis-Mortari A., Vallera D. A. Rapamycin inhibits the generation of graft-versus-host disease-and graft-versus-leukemia-causing T cells by interfering with the production of Th1 or Th1 cytotoxic cytokines. J Immunol 1998; 160: 5355–5365
  • Williamson E., Garside P., Bradley J. A., Mowat A. M. IL-12 is a central mediator of acute graft-versus-host disease in mice. Kinetics of Th1 and Th2 cytokine production during the early course of acute and chronic murine graft-versus-host disease. Regulatory role of donor CD8+ T cells. J Immunol 1996; 157: 689–699
  • Krenger W., Cooke K. R., Crawford J. M., Sonis S. T., Simmons R., Pan L., Delmonte J., Jr, Karandikar M., Ferrara J. L. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation 1997; 62: 1278–1285
  • Serody J. S., Cook D. N., Kirby S. L., Reap E., Shea T. C., Frelinger J. A. Murine T lymphocytes incapable of producing macrophage inhibitory protein-1 are impaired in causing graft-versus-host disease across a class I but not class II major histocompatibility complex barrier. Blood 1999; 93: 43–50
  • Hill G. R., Crawford J. M., Cooke K. R., Brinson Y. S., Pan L., Ferrara J. L. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90: 3204–133
  • Cooke K. R., Hill G. R., Crawford J. M., Bungard D., Brinson Y. S., Delmonte J., Jr., Ferrara J. L. Tumor necrosis factorα production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest 1998; 102: 1882–1891
  • Hill G. R., Cooke K. R., Brinson Y. S., Bungard D., Ferrara J. L. Pretransplant chemotherapy reduces inflammatory cytokine production and acute graft-versus-host disease after allogeneic bone marrow transplantation. Transplantation 1999; 67: 1478–1480
  • Gale R. P., Bortin M. M., Van Bekkum D. W., Biggs J. C., Dicke K. A., Gluckman E., Good R. A., Hoffmann R. G., Kay H. E. M., Kersey J. H., Marmont A., Masaoka T., Rimm A. A., van Rood J. J., Zwaan F. E. Risk factors for acute graft-versus-host disease. Br J Haematol 1987; 67: 397–406
  • Hagglund H., Bostrom L., Ringden O., Nilsson B., Remberger M. Risk factors for acute graft-versus-host disease in 325 consecutive bone marrow recipients. Transplant Proc 1994; 26: 1821–1822
  • Storb R., Leisenring W., Deeg H. J., Anasetti C., Appel-baum F., Bensinger W., Buckner C. D., Clift R., Doney K., Hansen J., Martin P., Sanders J., Stewart P., Sullivan K., Thomas E. D., Witherspoon R. Long-term follow-up of a randomized trial of graft-versus-host disease prevention by methotrexate/cyclosporine versus methotrexate alone in patients given marrow grafts for severe aplastic anemia. Blood 1994; 83: 2749–2750
  • Munn R. K., Henslee-Downey P. J., Romond E. H., Marciniak E. J., Fleming D. R., Messino M. J., Macdonald J. S., Rayens M. K., Harder E. J., Phillips G. L., Thompson J. S. Treatment of leukemia with partially matched related bone marrow transplantation. Bone Marrow Transplant 1997; 19: 421–427
  • Anasetti C., Beatty P. G., Storb R., Martin P. J., Mori M., Sanders J. E., Thomas E. D., Hansen J. A. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol 1990; 29: 79–91
  • Korngold R., Sprent J. Lethal GVHD after bone marrow transplantation across minor histocompatability barriers in mice: prevention by removing mature T cells from marrow. J Exp Med 1978; 148: 1687–1698
  • Hamilton B., Bevan M., Parkman R. Anti-recipient cytotoxic T lymphocyte precursors are present in the spleen of mice with acute graft-versus-host disease due to minor histocompatibility antigens. J Immunol 1981; 126: 621–625
  • Martin P., Hansen J., Buckner C., Sanders J., Deeg H., Stewart P., Appelbaum F., Clift R., Fefer A., Witherspoon R., Kennedy M., Sullivan K., Flournoy N., Storb R., Thomas E. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 1985; 66: 664–672
  • Kernan N. A., Flomenberg N., Dupont B., O'Reilly R. J. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation 1987; 43: 842–847
  • Maraninchi D., Gluckman E., Blaise D., Guyotat D., Rio B., Pico J. L., Leblond V., Michallet M., Dreyfus R., Ifrah N. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 1987; 2: 175–188
  • Ash R. C., Horowitz M. M., Gale R. P., Van Bekkum D. W., Casper J. T., Gordon-Smith E. C., Henslee P. J., Kolb H. J., Lowenberg B., Masaoka T. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant 1991; 7: 443–452
  • Kernan N. A., Bordignon C., Heller G., Cunningham I., Castro-Malaspina H., Shank B., Flomenberg N., Bums J., Yang S. Y., Black P. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood 1989; 74: 2227–2236
  • Champlin R. E., Horowitz M. M., Van Bekkum D. W., Camilla B. M., Elfenbein G. E., Gale R. P., Gluckman E., Good R. A., Rimm A. A., Rozman C. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood 1989; 73: 606–613
  • Bordignon C., Keever C. A., Small T. N., Flomenberg N., Dupont B., O'Reilly R. J., Kernan N. A. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: II. In vitro analyses of host effector mechanisms. Blood 1989; 74: 2237–2433
  • Badri N. S., Good R. A. Lympho hemopoietic reconstitution using wheal germ agglutinin-positive hemopoietic stem cell transplantation within but not across the major histocompatibility antigen barriers. Proc Natl Acad Sci USA 1993; 90: 6681–6685
  • Kaufman C. L., Colson Y. L., Wren S. M., Watkins S. L., Simmons R. L., Ildstad S. T. Phenotypic characterization of a novel bone-marrow derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 1994; 84: 2436–2446
  • Gandy K. L., Domen J., Aguila H., Weissman I. L. CD8+TCR+ and CD8+TCR− cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 1999; 11: 579–590
  • Nilsson S. K., Doone M. S., Tiarks C. Y., Weier H. U., Quesenberry P. J. Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 1997; 89: 4013–4020
  • Soderling C. C., Song C. W., Blazar B. R., Vallera D. A. A correlation between conditioning and engraftment in recipients of MHC-mismatched T cell-depleted murine bone marrow transplants. J Immunol 1985; 125: 941–946
  • Ildstad S. T., Sachs D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 1984; 307: 168–170
  • Shizuru J. A., Jerabek L., Edwards C. T., Weissman I. L. Transplantation of purified hematopoietic stem cells: Requirements for overcoming the barriers of allogeneic engraftment. Biol Blood Marrow Transplant 1996; 2: 3–14
  • Uchida N., Tsukamolo A., He D., Friera A. M., Scollay R., Weissman I. L. High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts. J Clin Invest 1998; 101: 961–966
  • Bachar-Lustig E., Rachamim N., Li H. W., Lan F., Reisner Y. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med 1995; 1: 1268–1273
  • Aversa F., Tabilio A., Velardi A., Cunningham I., Terenzi A., Falzelti R., Ruggeri L., Barbabietola G., Aristei C., Latini P., Reisner Y., Martelli M. F. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193
  • Roep B. O., Stobbe I., Duinkerken G., van Rood J. J., Lernmark A., Keymeulen B., Pipeleers D., Claas F. H., de Vries R. R. Auto-and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 1999; 48: 484–490
  • Martin P. J. Donor CD8 cells prevent allogeneic marrow graft rejection in mice: Potential implications for marrow transplantation in humans. J Exp Med 1993; 178: 703–712
  • Murphy W. J., Kumar V., Cope J. C., Bennett M. An absence of T cells in murine bone marrow allografts leads to an increased susceptibility lo rejection by natural killer cells and T cells. J Immunol 1990; 144: 3305–3311
  • Abou El., Boggs S. S., Johnson P. C., Li H., Palrene K. D., Itskowitz M. S., Kaufman C. L., Ildstad S. T. A minimal conditioning approach to achieve stable multilineage mouse + rat chimerism. Transplant Immunol 1995; 3: 98–106
  • Colson Y. L., Wren S. M., Schuchert M. J., Patrene K. D., Johnson P. C., Boggs S. S., Ildstad S. T. A nonlethal conditioning approach lo achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol 1995; 155: 4179–4188
  • Sykes M., Szot G. L., Swenson K. A., Pearson D. A. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelo-suppressive conditioning. Nat Med 1997; 3: 783–787
  • Slavin S., Fuks Z., Kaplan H. S., Strober S. Transplantation of allogeneic bone marrow without graft-vs-host disease using total lymphoid irradiation. J Exp Med 1978; 147: 963–972
  • Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Stephany D., Sachs D. H. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10+B10.D2 B10). J Immunol 1986; 136: 28–33
  • Storb R., Yi C., Wagner J. L.H. J., Deeg R. A., Nash Kiem H.P., Leissenring W., Shultman H. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 1997; 89: 3048–3054
  • Petz L. D., Yam P., Wallace R. B., Stock A. D., de Lange G., Knowlton R. G., Brown V. A., Donis-Keller H., Hill L. R., Forman S. J. Mixed hematopoietic chimerism following bone marrow transplantation for hematologic malignancies. Blood 1987; 70: 1331–1337
  • Blackman M., Kappler J., Marrack P. The role of the T cell receptor in positive and negative selection of developing T cells. Science 1990; 248: 1335–1341
  • Marrack P., Lo D., Brinster R., Palmiter R., Burkly L., Flavell R. H., Kappler J. The effect of thymus environment on T cell development and tolerance. Cell 1988; 53: 627–634
  • Martin P. J., Rowley S. D., Anasetti C., Chauncey T. R., Gooley T., Petersdorf E. W., van Burik J. A., Flowers M. E., Storb R., Appelbaum F. R., Hansen J. A. A phase I-II clinical trial to evaluate removal of CD4 cells and partial depletion of CD8 cells from donor marrow for HLA-mismatched unrelated recipients. Blood 1999; 94: 2192–2199
  • Herrera C., Torres A., Garcia-Castellano J. M., Roman J., Martin C., Serrano J., Falcon M., Alvarez M. A., Gomez P., Martinez F. Prevention of graft-versus-host disease in high risk patients by depletion of CD4+ and reduction of CD8+ lymphocytes in the marrow graft. Bone Marrow Transplant 1999; 23: 443–450
  • Sao H., Kitaori K., Kasai M., Shimokawa T., Kato C., Yamanishi H., Ueda R., Morishima Y. A new marrow T cell depletion method using anti-CD6 monoclonal antibody-conjugated magnetic beads and its clinical application for prevention of acute graft-vs.-host disease in allogeneic bone marrow transplantation: results of a phase I-II trial. Int J Hematol 1999; 69: 27–35
  • van Dijk A. M., Kessler F. L., Stadhouders-Keet S. A., Verdonck L. F., de Gast G. C., Otten H. G. Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute graft-versus-host disease. Br J Haematol 1999; 107: 169–175
  • Bar B. M., Schattenberg A., Van Dijk B. A., De Man A. J., Kunst V. A., De Witte T. Host and donor erythrocyte repopulation patterns after allogeneic bone marrow transplantation analysed with antibody-coated fluorescent microspheres. Br J Haematol 1989; 72: 239–245
  • Guinan E. C., Boussiotis V. A., Neuberg D., Brennan L. L., Hirano N., Nadler L. M., Gribben J. G. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 1999; 340: 1704–1714
  • Harding F. A., McArthur J. G., Gross J. A., Raulet D. H., Allison J. P. CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992; 356: 607–609
  • Judge T. A., Tang A., Turka L. A. Immunosuppression through blockade of CD28:B7-mediated costimulatory signals. Immunol Res 1996; 15: 38–49
  • Neipp M., Exner B. G., Maru D., Haber M., Gammie J. S., Pham S. M., Ildstad S. T. T-cell depletion of allogeneic bone marrow using anti-αβTCR monoclonal antibody: prevention of graft-versus-host disease without affecting engraftment potential in rats. Exp Hematol 1999; 27: 860–867
  • Huang Y., Cramer D., Ray M. B., Chilton P. M., Que X., Ildstad S. T. The role of αβ-TCR and γδ-TCR cells in allogeneic donor marrow on engraftment, chimerism and GVHD. Submitted to Blood 2000
  • Klein J. Blood cells and their origin. Immunology, J. Klein. Blackwell Scientific Publications, Boston, MA 1991; 8–29
  • Brodsky R. A., Smith B. D. Bone marrow transplantation for autoimmune diseases. Curr Opin Oncol 1999; 11: 83–86
  • Brooks P. M. Hematopoietic stem cell transplantation for autoimmune diseases. J Rheumatol 1997; 24: 19–22
  • Burt R. K. Immune ablation and hematopoietic stem cell rescue for severe autoimmune diseases (SADS). Cancer Treat Res 1997; 77: 317–332
  • Exner B. G., Domenick M. A., Bergheim M., Mueller Y. M., Ildstad S. T. Clinical applications of mixed chimerism. Ann N Y Acad Sci 1999; 872: 377–385
  • Ikehara S. Bone marrow transplantation for autoimmune diseases. Acta Haematol 1998; 99: 116–132
  • Marmont A. M. Stem cell transplantation for severe autoimmune disorders, with special reference to rheumatic diseases. J Rheumatol 1997; 24: 13–18
  • Sullivan K. M., Furst D. E. The evolving role of blood and marrow transplantation for the treatment of autoimmune diseases. J Rheumatol Suppl 1997; 48: 1–4
  • Wu J., Zhou T., He J., Mountz J. D. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J Exp Med 1993; 178: 461–488
  • Lynch D. H., Watson M. L., Alderson M. R., Baum P. R., Miller R. E., Tough T., Gibson M., Davis-Smith T., Smith C. A., Hunter K. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1994; 1: 131–166
  • Sobel E. S., Kakkanaiah V. N., Cohen P. L., Eisenberg R. A. Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene. Int Immunol 1993; 5: 1275–1278
  • George J. F., Sweeney S. D., Kirklin J. K., Simpson E. M., Goldstein D. R., Thomas J. M. An essential role for Fas ligand in transplantation tolerance induced by donor bone marrow. Nat Med 1998; 4: 333–335
  • Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J.E. D., Murphy Roths J.B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 1978; 148: 1198–1215
  • Li H., Kaufman C. L., Boggs S. S., Johnson P. C., Patrene K. D., Ildstad S. T. Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in non-obese diabetic (NOD) mice. J Immunol 1996; 156: 380–388
  • Seung E., Iwakoshi N., Woda B. A., Markees T. G., Mordes J. P., Rossini A. A., Greiner D. L. Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 2000; 95: 2175–2182
  • Bernard C. C., Carnegie P. R. Experimental autoimmune encephalomyelitis in mice: immunologic response to mouse spinal cord and myelin basic proteins. J Immunol 1975; 114: 1537–1540
  • Brackertz D., Mitchell G. F., Mackay I. R. Antigen-induced arthritis in mice. I. Induction of arthritis in various strains of mice. Arthritis Rheum 1977; 20: 841–500
  • van Gelder M., Van Bekkum D. W. Effective treatment of relapsing experimental autoimmune encephalomyelitis with pseudoautologous bone marrow transplantation. Bone Marrow Transplant 1996; 18: 1029–1034
  • Karussis D., Vourka-Karussis U., Mizrachi-Koll R., Abramsky O. Acute/relapsing experimental autoimmune encephalomyelitis: induction of long lasting, and-gen-specific tolerance by syngeneic bone marrow transplantation. Mult Scler 1999; 5: 17–21
  • Nelson J. L., Torrez R., Louie F. M., Choe O. S., Storb R., Sullivan K. M. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol 1997; 24: 23–29
  • Hurt R. K., Traynor A. E., Pope R., Schroeder J., Cohen B., Karlin K. H., Lobeck L., Goolsby C., Rowlings P., Davis F. A., Stefoski D., Terry C., Keever-Taylor C., Rosen S., Vesole D., Fishman M., Brush M., Mujias S., Villa M., Burns W. H. Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. Blood 1998; 92: 3505–3514
  • Marmont A. M., van Lint M. T., Gualandi F., Bacigalupo A. Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. Lupus 1997; 545–48
  • Wulffraat N. M., Kuis W. Autologous stem cell transplantation: a possible treatment for refractory juvenile chronic arthritis?. Rheumatology (Oxford.) 1999; 38: 764–766
  • Champlin R. E. T-cell depletion for bone marrow transplantation: effects on graft rejection, graft-versus-host disease, graft-versus-leukemia, and survival. Cancer Treat Res 1990; 50: 99–111
  • Anasetti C., Beatty P. G., Storb R., Martin P. J., Mori M., Sanders J. E., Thomas E. D., Hansen J. A. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Human Immunology 1990; 29: 79–91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.