13
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Current Status of Retroviral Vector Mediated Gene Transfer into Human Hematopoietic Stem Cells

&
Pages 465-482 | Received 29 Aug 2000, Published online: 01 Jul 2009

References

  • Williams D. A., Lemischka I. R., Nathan D. G., Mulligan R. C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984; 310: 476–480
  • Keller G., Paige C., Gilboa E., Wagner E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 1985; 318: 149–154
  • Bodine D. M., Moritz T., Donahue R. E., Luskey B. D., Kessler S. W., Martin D. I., Orkin S. H., Nienhuis A. W., Williams D. A. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into cd34+ bone marrow cells. Blood 1993; 82: 1975–1980
  • Weinberg K. I., Kohn D. B. Gene therapy for congenital lymphoid immunodeficiency diseases. Seminars In Hematology 1998; 35: 354–366
  • Kantoff P. W., Gillio A. P., McLachlin J. R., Bordignon C., Eglitis M. A., Keman N. A., Moen R. C., Kohn D. B., Yu S. F., Karson E. Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer. Journal of Experimental Medicine 1987; 166: 219–234
  • Van Beusechem V. W., Kukler A., Bakx T. A., Valerio D. Somatic cell gene therapy: The model of adenosine deaminase deficiency. Bone Marrow Transplantation 1989; 4(Suppl 4)133–136
  • Hoeben R. C., Valerio D., van der Eb A. J., van Ormondt H. Gene therapy for human inherited disorders: Techniques and status. Critical Reviews In Oncology/Hematology 1992; 13: 33–54
  • van Beusechem V. W., Kukler A., Einerhand M. P., Bakx T. A., van der Eb A. I., van Bekkum D. W., Valerio D. Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses. Journal of Experimental Medicine 1990; 172: 729–736
  • Valerio D., Dekker B. M., Duyvesteyn M. G., van der Voorn L., Berkvens T. M., van Ormondt H., van der Eb A. J. One adenosine deaminase allele in a patient with severe combined immunodeficiency contains a point mutation abolishing enzyme activity. EMBO Journal 1986; 5: 113–119
  • van Beusechem V. W., Kukler A., Heidt P. J., Valerio D. Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 7640–7644
  • Hoogerbrugge P. M., von Beusechem V. W., Kaptein L. C., Einerhand M. P., Valerio D. Gene therapy for adenosine deaminase deficiency. British Medical Bulletin 1995; 51: 72–81
  • Migchielsen A. A., Breuer M. L., Hershfield M. S., Valerio D. Full genetic rescue of adenosine deaminase-deficient mice through introduction of the human gene. Human Molecular Genetics 1996; 5: 1523–1532
  • Kaptein L. C., Einerhand M. P., Braakman E., Valerio D., van Beusechem V. W. Bone marrow gene therapy for adenosine deaminase deficiency. Immunodeficiency 1993; 4: 335–345
  • Osborne W. R., Hock R. A., Kaleko M., Miller A. D. Long-term expression of human adenosine deaminase in mice after transplantation of bone marrow infected with amphotropic retroviral vectors. Human Gene Therapy 1990; 1: 31–41
  • Dunbar C. E., Kohn D. B., Schiffmann R., Barton N. W., Nolta J. A., Esplin J. A., Pensiero M., Long Z., Lockey C., Emmons R. V., Csik S., Leitman S., Krebs C. B., Carter C., Brady R. O., Karlsson S. Retroviral transfer of the glucocerebrosidase gene into cd34+ cells from patients with gaucher disease: In vivo detection of transduced cells without myeloablation. Human Gene Therapy 1998; 9: 2629–2640
  • Kohn D. B., Nolta J. A., Weinthal J., Banner I., Yu X. J., Lilley J., Crooks G. M. Toward gene therapy for gaucher disease. Human Gene Therapy 1991; 2: 101–105
  • Nolta J. A., Yu X. J., Banner I., Kohn D. B. Retroviral-mediated transfer of the human glucocerebrosidase gene into cultured gaucher bone marrow [published erratum appears in j clin invest 1992 oct; 90(4):Following 1634]. Journal Of Clinical Investigation 1992; 90: 342–348
  • Schuening F., Longo W. L., Atkinson M. E., Zaboikin M., Kiem H. P., Sanders J., Scott C. R., Storb R., Miller A. D., Reynolds T., Bensinger W., Rowley S., Gooley T., Darovsky B., Appelbaum F. Retrovirus-mediated transfer of the cdna for human glucocerebrosidase into peripheral blood repopulating cells of patients with gaucher's disease. Human Gene Therapy 1997; 8: 2143–2160
  • Weinthal J., Nolta J. A., Yu X. J., Lilley J., Uribe L., Kohn D. B. Expression of human glucocerebrosidase following retroviral vector-mediated transduction of murine hematopoietic stem cells. Bone Marrow Transplantation 1991; 8: 403–412
  • Lee T. C., Sullenger B. A., Gallardo H. F., Ungers G. E., Gilboa E. Overexpression of rre-derived sequences inhibits hiv-1 replication in cem cells. New Biol 1992; 4: 66–74
  • Sullenger B. A., Gallardo H. F., Lingers G. E., Gilboa E. Overexpression of tar sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63: 601–608
  • Dunbar C. E., Cottier-Fox M., O'Shaughnessy J. A., Doren S., Carter C., Berenson R., Brown S., Moen R. C., Greenblatt J., Stewart F. M. Retrovirally marked cd34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 1995; 85: 3048–3057
  • Rill D. R., Moen R. C., Buschle M., Bartholomew C., Foreman N. K., Mirro J. J., Krance R. A., Ihle J. N., Brenner M. K. An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer. Blood 1992; 79: 2694–2700
  • Brenner M. K., Rill D. R., Holladay M. S., Heslop H. E., Moen R. C., Buschle M., Krance R. A., Santana V. M., Anderson W. F., Ihle J. N. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 1993; 342: 1134–1137
  • Keller G., Snodgrass R. Life span of multipotential hematopoietic stem cells in vivo. J Exp Med 1990; 171: 1407–1418
  • Blaese R. M., Culver K. W., Miller A. D., Carter C. S., Fleisher T., Clerici M., Shearer G., Chang L., Chiang Y., Tolstoshev P., et al. T lymphocyte-directed gene therapy for ada-scid: Initial trial results after 4 years. Science 1995; 270: 475–480
  • Bordignon C., Notarangelo L. D., Nobili N., Ferrari G., Casorati G., Panina P., Mazzolari E., Maggioni D., Rossi C., Servida P., et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ada-immunodeficient patients. Science 1995; 270: 470–475
  • Kohn D. B., Weinberg K. I., Nolta J. A., Heiss L. N., Lenarsky C., Crooks G. M., Hanley M. E., Annett G., Brooks J. S., el-Khoureiy A., et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nature Medicine 1995; 1: 1017–1023
  • Hoogerbrugge P. M., van Beusechem V. W., Fischer A., Debree M., le Deist F., Perignon J. L., Morgan G., Gaspar B., Fairbanks L. D., Skeoch C. H., Moseley A., Harvey M., Levinsky R. J., Valerio D. Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Therapy 1996; 3: 179–183
  • Brenner M. K., Rill D. R., Moen R. C., Krance R. A., Mirro J. J., Anderson W. F., Ihle J. N. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993; 341: 85–86
  • Deisseroth A. B., Zu Z., Claxton D., Hanania E. G., Fu S., Ellerson D., Goldberg L., Thomas M., Janicek K., Anderson W. F., et al. Genetic marking shows that ph+ cells present in autologous transplants of chronic myelogenous leukemia (cml) contribute to relapse after autologous bone marrow in cml. Blood 1994; 83: 3068–3076
  • Hanania E. G., Giles R. E., Kavanagh J., Fu S. Q., Ellerson D., Zu Z., Wang T., Su Y., Kudelka A., Rahman Z., Holmes F., Hortobagyi G., Claxton D., Bachier C., Thall P., Cheng S., Hester J., Ostrove J. M., Bird R. E., Chang A., Korbling M., Seong D., Cote R., Holzmayer T., Deisseroth A. B., et al. Results of mdr-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 15346–15351, [published erratum appears in proc natl acad sci u s a 1997 may 13; 94(10):5495]
  • Emmons R. V., Doren S., Zujewski J., Cottier-Fox M., Carter C. S., Hines K., O'Shaughnessy J. A., Leitman S. F., Greenblatt J. J., Cowan K., Dunbar C. E. Retroviral gene transduction of adult peripheral blood or marrow-derived cd34+ cells for six hours without growth factors or on autologous stroma does not improve marking efficiency assessed in vivo. Blood 1997; 89: 4040–4046
  • Kiem H. P., Darovsky B., Von Kalle C., Goehle S., Graham T., Miller A. D., Storb R., Schuening F. G. Long-term persistence of canine hematopoietic cells genetically marked by retrovirus vectors. Human Gene Therapy 1996; 7: 89–96
  • Van Beusechem V. W., Bart-Baumeister J. A., Bakx T. A., Kaptein L. C., Levinsky R. J., Valerio D. Gene transfer into nonhuman primate cd34+cd11b-bone marrow progenitor cells capable of repopulating lymphoid and myeloid lineages. Human Gene Therapy 1994; 5: 295–305
  • Xu L. C., Karlsson S., Byrne E. R., Kluepfel-Stahl S., Kessler S. W., Agricola B. A., Sellers S., Kirby M., Dunbar C. E., Brady R. O., et al. Long-term in vivo expression of the human glucocerebrosidase gene in nonhuman primates after cd34+ hematopoietic cell transduction with cell-free retroviral vector preparations. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 4372–4376
  • Bienzle D., Abrams-Ogg A. C., Kruth S. A., Ackland-Snow J., Carter R. F., Dick J. E., Jacobs R. M., Kamel-Reid S., Dubé I. D. Gene transfer into hematopoietic stem cells: Long-term maintenance of in vitro activated progenitors without marrow ablation. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 350–354
  • Kaptein L. C., Van Beusechem V. W., Rivière I., Mulligan R. C., Valerio D. Long-term in vivo expression of the mfg-ada retroviral vector in rhesus monkeys transplanted with transduced bone marrow cells. Human Gene Therapy 1997; 8: 1605–1610
  • Anderson W. F. Human gene therapy. Science 1992; 256: 808–813
  • Miller A. D. Human gene therapy comes of age. Nature 1992; 357: 455–460
  • Bank A. Human somatic cell gene therapy. BioEssays 1996; 18: 999–1007
  • Romano G., Micheli P., Pacilio C., Giordano A. Latest developments in gene transfer technology: Achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18: 19–39
  • Donahue R. E., Kessler S. W., Bodine D., McDonagh K., Dunbar C., Goodman S., Agricola B., Byrne E., Raffeld M., Moen R., et al. Helper virus induced t cell lymphoma in nonhuman primates after retroviral mediated gene transfer. Journal of Experimental Medicine 1992; 176: 1125–1135
  • Miller A. D. Retrovirus packaging cells. Human Gene Therapy 1990; 1: 5–14
  • Yang S., Delgado R., King S. R., Woffendin C., Barker C. S., Yang Z. Y., Xu L., Nolan G. P., Nabel G. J. Generation of retroviral vector for clinical studies using transient transfection. Human Gene Therapy 1999; 10: 123–132
  • Orlic D., Girard L. J., Anderson S. M., Do B. K., Seidel N. E., Jordan C. T., Bodine D. M. Transduction efficiency of cell lines and hematopoietic stem cells correlates with retrovirus receptor mrna levels. Stem Cells 1997; 15(Suppl 1)23–28, discussion 28–29
  • Sabatino D. E., Do B. Q., Pyle L. C., Seidel N. E., Girard L. J., Spratt S. K., Orlic D., Bodine D. M. Amphotropic or gibbon ape leukemia virus retrovirus binding and transduction correlates with the level of receptor mrna in human hematopoietic cell lines. Blood Cells, Molecules, And Diseases 1997; 23: 422–433
  • Miller D. G., Adam M. A., Miller A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242
  • Sekhar M., Yu J. M., Soma T., Dunbar C. E. Murine long-term repopulating ability is compromised by ex vivo culture in serum-free medium despite preservation of committed progenitors. Journal Of Hematotherapy 1997; 6: 543–549
  • Challita P. M., Kohn D. B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 2567–2571
  • Leboulch P., Huang G. M., Humphries R. K., Oh Y. H., Eaves C. J., Tuan D. Y., London I. M. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. Embo Journal 1994; 13: 3065–3076
  • Riddell S. R., Elliott M., Lewinsohn D. A., Gilbert M. J., Wilson L., Manley S. A., Lupton S. D., Overall R. W., Reynolds T. C., Corey L., Greenberg P. D. T-cell mediated rejection of gene-modified hiv-specific cytotoxic t lymphocytes in hiv-infected patients. Nature Medicine 1996; 2: 216–223
  • von Kalle C., Kiem H. P., Goehle S., Darovsky B., Heimfeld S., Torok-Storb B., Storb R., Schuening F. G. Increased gene transfer into human hematopoietic progenitor cells by extended in vitro exposure to a pseudo-typed retroviral vector. Blood 1994; 84: 2890–2897
  • Kiem H. P., Heyward S., Winkler A., Potter J., Allen J. M., Miller A. D., Andrews R. G. Gene transfer into marrow repopulating cells: Comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 1997; 90: 4638–4645
  • Glimm H., Kiem H. P., Darovsky B., Storb R., Wolf J., Diehl V., Mertelsmann R., Von Kalle C. Efficient gene transfer in primitive cd34+/cd381o human bone marrow cells reselected after long-term exposure to galv-pseudotyped retroviral vector. Human Gene Therapy 1997; 8: 2079–2086
  • Bunnell B. A., Kluge K. A., Lee-Lin S. Q., Byrne E. R., Orlic D., Metzger M. E., Agricola B. A., Wersto R. P., Bodine D. M., Morgan R. A., Donahue R. E. Transplantation of transduced nonhuman primate cd34+ cells using a gibbon ape leukemia virus vector: Restricted expression of the gibbon ape leukemia virus receptor to a subset of cd34+ cells. Gene Therapy 1999; 6: 48–56
  • Bunnell B. A., Metzger M., Byrne E., Morgan R. A., Donahue R. E. Efficient in vivo marking of primary cd4+ t lymphocytes in nonhuman primates using a gibbon ape leukemia virus-derived retroviral vector. Blood 1997; 89: 1987–1995
  • Kiem H. P., Andrews R. G., Morris J., Peterson L., Heyward S., Allen J. M., Rasko J. E., Potter J., Miller A. D. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment ch-296 in combination with interleukin-6, stem cell factor, flt-3 ligand, and megakaryocyte growth and development factor. Blood 1998; 92: 1878–1886
  • Robbins P. B., Yu X. J., Skelton D. M., Pepper K. A., Wasserman R. M., Zhu L., Kohn D. B. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. Journal of Virology 1997; 71: 9466–9474
  • Howrey R. P., El-Alfondi N., Phillips K. L., Wilson L., Rooney B., Lan N., Sullenger B., Smith C. An in-vitro system for efficienctly evaluation gene therapy approaches to hemoglobinopathies. Gene Therapy 2000; 7: 215–220
  • Krall W. J., Skelton D. C., Yu X. J., Riviere I., Lehn P., Mulligan R. C., Kohn D. B. Increased levels of spliced rna account for augmented expression from the mfg retroviral vector in hematopoietic cells. Gene Therapy 1996; 3: 37–48
  • Lee N., Howrey R., Lee S., Smith C., Sullenger B. Trans-splicing mediated repair of hemoglobins to hemoglobina. Science 1998; 280: 1593–1596
  • Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [see comments]. Science 1996; 272: 263–267
  • Kafri T., Blomer U., Peterson D. A., Gage F. H., Verma I. M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genetics 1997; 17: 314–317
  • Klimatcheva E., Rosenblatt J. D., Planelles V. Lentiviral vectors and gene therapy, [review] [149 refs]. Frontiers in Bioscience 1999; 4: D481–496
  • Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N. A.A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. A nuclear localization signal within hiv-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365: 666–670
  • Dull T., Zufferey R., Kelly M., Mandel R. J., Nguyen M., Trono D., Naldini L. A third-generation lentivirus vector with a conditional packaging system. Journal of Virology 1998; 72: 8463–8471
  • Kafri T., van Praag H., Ouyang L., Gage F. H., Verma I. M. A packaging cell line for lentivirus vectors. Journal of Virology 1999; 73: 576–584
  • Poeschla E. M., Wong-Staal F., Looney D. J. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Medicine 1998; 4: 354–357
  • Zufferey R., Dull T., Mandel R. J., Bukovsky A., Quiroz D., Naldini L., Trono D. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. Journal of Virology 1998; 72: 9873–9880
  • Case S. S., Price M. A., Jordan C. T., Yu X. J., Wang L., Bauer G., Haas D. L., Xu D., Stripecke R., Naldini L., Kohn D. B., Crooks G. M. Stable transduction of quiescent cd34(+)cd38(-) human hematopoietic cells by hiv-1-based lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 2988–2993
  • Evans J. T., Kelly P. F., O'Neill E., Garcia J. V. Human cord blood cd34+cd38-cell transduction via lentivirus-based gene transfer vectors. Human Gene Therapy 1999; 10: 1479–1489
  • Sutton R., Reitsma M., Uchida N., Brown P. Transduction of human progenitor hematopoietic stem cells by hiv-1 based vectors is cell cycle dependent. J of Virol 1999; 73: 3649–3660
  • Nathwani A., Hanawa H., Vandergriff J., Kelly P. F., Vanin E., Nienhuis A. Efficient gene transfer into human cord cd34+ cells and the cd34+cd38-subset using highly purified aav vector preparations that are free of helper virus and wild type aav. Gene Ther 2000; 7: 183–195
  • Frey B., Hackett N., Begelson J., Finberg R., Crystal R., Moore M., Rafii S. High efficiency gene transfer into ex-vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors. Blood 1998; 91: 2781–2792
  • Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 1989; 339: 27–30
  • Ogawa M. Differentiation and proliferation of hematopoietic stem cellls. Blood 1993; 81: 2844–2853
  • Nash R., Storb R., Neiman P. Polyclonal reconstitution of human marrow after allogeneic bone marrow transplantation. Blood 1988; 72: 2031–2037
  • Metcalf D. Clonal culture of hemopoietic cells: Techniques and applications. Elsevier, Amsterdam 1984
  • Petzer A. L., Hogge D. E., Landsdorp P. M., Reid D. S., Eaves C. J. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 1470–1474
  • Audet J., Zandstra P. W., Eaves C. J., Piret J. M. Advances in hematopoietic stem cell culture. Current Opinion In Biotechnology 1998; 9: 146–151
  • Eaves C. J., Sutherland H. J., Udomsakdi C., Lansdorp P. M., Szilvassy S. J., Fraser C. C., Humphries R. K., Barnett M. J., Phillips G. L., Eaves A. C. The human hematopoietic stem cell in vitro and in vivo [see comments]. Blood Cells 1992; 18: 301–307
  • Sutherland H. J., Eaves C. J., Lansdorp P. M., Thacker J. D., Hogge D. E. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 1991; 78: 666–672
  • Hao Q. L., Thiemann F. T., Petersen D., Smogorzewska E. M., Crooks G. M. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 1996; 88: 3306–3313
  • Barcena A., Muench M., Galy A., Cupp J., Roncarolo M. G., Phillips J., Spits H. Phenotypic and functional analysis of t-cell precursors in the human fetal liver and thymus: Cd7 expression in the early stages of t-and myeloid-cell development. Blood 1993; 82: 3401–3414
  • Miller J., Alley K., McGlave P. Differentiation of natural killer (nk) cells from human primitive marrow progenitors in a stroma-based long-term culture system: Identification of a cd34+7++ nk progenitor. Blood 1994; 83: 2594–2601
  • Miller J. S., McCullar V., Punzel M., Lemischka I. R., Moore K. A. Single adult human cd34(+)/lin-/cd38(-) progenitors give rise to natural killer cells, b-lineage cells, dendritic cells, and myeloid cells. Blood 1999; 93: 96–106
  • Dick J. E., Bhatia M., Gan O., Kapp U., Wang J. C. Assay of human stem cells by repopulation of nod/scid mice. Stem Cells 1997; 15(Suppl 1)199–203, discussion 204–197
  • Larochelle A., Vormoor H., Hanenberg J., Wang M., Bhatia T., Lapidot T., Moritz B., Murdoch L., Xiao I. Identification of primitive hematopoietic cells capable of repopulating nod/scid mice; implications for gene therapy. Nature Medicine 1996; 2: 1329–1337
  • Larochelle A., Vormoor J., Hanenberg H., Wang J. C., Bhatia M., Lapidot T., Moritz T., Murdoch B., Xiao X. L., Kato I., Williams D. A., Dick J. E. Identification of primitive human hematopoietic cells capable of repopulating nod/scid mouse bone marrow: Implications for gene therapy. Nature Medicine 1996; 2: 1329–1337
  • Bhatia M., Bonnet D., Kapp U., Wang J. C., Murdoch B., Dick J. E. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. Journal of Experimental Medicine 1997; 186: 619–624
  • Conneally E., Cashman J., Petzer A., Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 9836–9841
  • Conneally E., Eaves C. J., Humphries R. K. Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood 1998; 91: 3487–3493
  • Hennemann B., Conneally E., Pawliuk R., Leboulch P., Rose-John S., Reid D., Chuo J. Y., Humphries R. K., Eaves C. J. Optimization of retroviral-mediated gene transfer to human nod/scid mouse repopulating cord blood cells through a systematic analysis of protocol variables. Experimental Hematology 1999; 27: 817–825
  • Miyoshi H., Smith K. A., Mosier D. E., Verma I. M., Torbett B. E. Transduction of human cd34+ cells that mediate long-term engraftment of nod/scid mice by hiv vectors. Science 1999; 283: 682–686
  • Ramirez M., Tottman G., Shultz L., Civin C. I. Mature human hematopoietic cells in donor bone marrow complicate interpretation of stem/progenitor cell assays in xenogeneic hematopoietic chimeras. Exp Hem 1998; 26: 332–344
  • Dunbar C. E., Tisdale J., Yu J. M., Soma T., Zujewski J., Bodine D., Sellers S., Cowan K., Donahue R., Emmons R. Transduction of hematopoietic stem cells in humans and in nonhuman primates. Stem Cells 1997; 15(Suppl 1)135–139, discussion 139–140
  • Dunbar C. E., Seidel N. E., Doren S., Sellers S., Cline A. P., Metzger M. E., Agricola B. A., Donahue R. E., Bodine D. M. Improved retroviral gene transfer into murine and rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 11871–11876
  • Whitwam T., Haskins M. E., Henthorn P. S., Kraszewski J. N., Kleiman S. E., Seidel N. E., Bodine D. M., Puck J. M. Retroviral marking of canine bone marrow: Long-term, high-level expression of human interleukin-2 receptor common gamma chain in canine lymphocytes. Blood 1998; 92: 1565–1575
  • Donahue R. E., Byrne E. R., Thomas T. E., Kirby M. R., Agricola B. A., Sellers S. E., Gaudernack G., Karisson S., Lansdorp P. M. Transplantation and gene transfer of the human glucocerebrosidase gene into immunoselected primate cd34+thy-1+ cells. Blood 1996; 88: 4166–4172
  • Bernstein J., Boyle D. W., Srour E. F., Cooper R., Jacobs C., Freie B., Liechty E., Clapp D. W. Variation in long-term engraftment of a large consecutive series of lambs transplanted in utero with human hematopoietic cells. Biology Of Blood And Marrow Transplantation 1997; 3: 247–254
  • Kiem H. P., Darovsky B., von Kalle C., Goehle S., Stewart D., Graham T., Hackman R., Appelbaum F. R., Deeg H. J., Miller A. D., et al. Retrovirus-mediated gene transduction into canine peripheral blood repopulating cells. Blood 1994; 83: 1467–1473
  • Eglitis M. A., Kantoff P. W., McLachlin J. R., Gillio A., Flake A. W., Bordignon C., Moen R. C., Karson E. M., Zwiebel J. A., Kohn D. B., et al. Gene therapy: Efforts at developing large animal models for autologous bone marrow transplant and gene transfer with retroviral vectors. Ciba Foundation Symposium 1987; 130: 229–246
  • Van Beusechem V. W., Bakx T. A., Kaptein L. C., Bart-Baumeister J. A., Kukler A., Braakman E., Valerio D. Retrovirus-mediated gene transfer into rhesus monkey hematopoietic stem cells: The effect of viral titers on transduction efficiency. Human Gene Therapy 1993; 4: 239–247
  • Carter R. F., Abrams-Ogg A. C., Dick J. E., Kruth S. A., Valli V. E., Kamel-Reid S., Dubé I. D. Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 1992; 79: 356–364
  • Schuening F., Storb R., Nash R., Stead R. B., Kwok W. W., Miller A. D. Retroviral transfer of genes into canine hematopoietic progenitor cells. Advances In Experimental Medicine And Biology 1988; 241: 9–18
  • Huhn R. D., Tisdale J. F., Agricola B., Metzger M. E., Donahue R. E., Dunbar C. E. Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Human Gene Therapy 1999; 10: 1783–1790
  • Rosenzweig M., MacVittie T. J., Harper D., Hempel D., Glickman R. L., Johnson R. P., Farese A. M., Whiting-Theobald N., Linton G. F., Yamasaki G., Jordon C. T., Malech H. L. Efficient and durable gene marking of hematopoietic progenitor cells in nonhuman primates after nonablative conditioning. Blood 1999; 94: 2271–2286
  • Civin C. I., Strauss L. C., Brovall C., Fackler M. J., Schwartz J. F., Shaper J. H. Antigenic analysis of hematopoiesis. Iii. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against kg-la cells. Journal Of Immunology 1984; 133: 157–165
  • Krause D. S., Fackler M. J., Civin C. I., May W. S. Cd34: Structure, biology, and clinical utility [see comments]. Blood 1996; 87: 1–13
  • Baurn C. M., Weissman I. L., Tsukamoto A. S., Buckle A. M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 2804–2808
  • Andrews R. G., Bryant E. M., Bartelmez S. H., Muirhead D. Y., Knitter G. H., Bensinger W., Strong D. M., Bernstein I. D. Cd34+ marrow cells, devoid of t and b lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood 1992; 80: 1693–1701
  • Terstappen L. W., Huang S., Safford M., Lansdorp P. M., Loken M. R. Sequential generations of hematopoietic colonies derived from single nonlineage-committed cd34+cd38-progenitor cells. Blood 1991; 77: 1218–1227
  • Hao Q. L., Shah A. J., Thiemann F. T., Smogorzewska E. M., Crooks G. M. A functional comparison of cd34+cd38-cells in cord blood and bone marrow. Blood 1995; 86: 3745–3753
  • Conneally E., Bardy P., Eaves C. J., Thomas T., Chappel S., Shpall E. J., Humphries R. K. Rapid and efficient selection of human hematopoietic cells expressing murine heat-stable antigen as an indicator of retroviral-mediated gene transfer. Blood 1996; 87: 456–464
  • Gentry T., Smith C. Retroviral vector-mediated gene transfer into umbilical cord blood cd34brcd38-cd33-cells. Experimental Hematology 1999; 27: 1244–1254
  • McCowage G. B., Phillips K. L., Gentry T. L., Hull S., Kurtzberg J., Gilboa E., Smith C. Multiparameter-fluorescence activated cell sorting analysis of retroviral vector gene transfer into primitive umbilical cord blood cells. Experimental Hematology 1998; 26: 288–298
  • Dao M. A., Shah A. J., Crooks G. M., Nolta J. A. Engraftment and retroviral marking of cd34+ and cd34+cd38-human hematopoietic progenitors assessed in immune-deficient mice. Blood 1998; 91: 1243–1255
  • Ziegler B. L., Valtieri M., Porada G. A., De Maria R., Müller R., Masella B., Gabbianelli M., Casella I., Pelosi E., Bock T., Zanjani E. D., Peschle C. Kdr receptor: A key marker defining hematopoietic stem cells. Science 1999; 285: 1553–1558
  • Gallacher L., Murdoch B., Wu D. M., Karanu F. N., Keeney M., Bhatia M. Isolation and characterization of human cd34-lin-and cd34+lin-hematopoietic stem cells using cell surface markers ac133 and cd7. Blood 2000; 95: 2813–2820
  • Watt S. M., Bühring H. J., Rappold I., Chan J. Y., Lee-Prudhoe J., Jones T., Zannettino A. C., Simmons P. J., Doyonnas R., Sheer D., Butler L. H. Cd164, a novel sialomucin on cd34(+) and erythroid subsets, is located on human chromosome 6q21. Blood 1998; 92: 849–866
  • Yin A. H., Miraglia S., Zanjani E. D., Almeida-Porada G., Ogawa M., Leary A. G., Olweus J., Kearney J., Buck D. W. Ac133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012
  • Goodell M. A., Rosenzweig M., Kim H., Marks D. F., DeMaria M., Paradis G., Grupp S. A., Sieff C. A., Mulligan R. C., Johnson R. P. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of cd34 antigen exist in multiple species. Nature Medicine 1997; 3: 1337–1345
  • Jones R. J., Barber J. P., Vala M. S., Collector M. I., Kaufmann S. H., Ludeman S. M., Colvin O. M., Hilton J. Assessment of aldehyde dehydrogenase in viable cells. Blood 1995; 85: 2742–2746
  • Jones R. J., Collector M. I., Barber J. P., Vala M. S., Fackler M. J., May W. S., Griffin C. A., Hawkins A. L., Zehnbauer B. A., Hilton J., Colvin O. M., Sharkis S. J. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 1996; 88: 487–491
  • Storms R. W., Trujillo A. P., Springer J. B., Shah L., Colvin O. M., Ludeman S. M., Smith C. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 9118–9123
  • Morel F., Galy A., Chen B., Szilvassy S. J. Equal distribution of competitive long-term repopulating stem cells in the cd34+ and cd34-fractions of thy-1lowlin-/lowsca-1+ bone marrow cells. Experimental Hematology 1998; 26: 440–448
  • Zanjani E. D., Almeida-Porada G., Livingston A. G., Flake A. W., Ogawa M. Human bone marrow cd34-cells engraft in vivo and undergo multilineage expression that includes giving rise to cd34+ cells [see comments]. Experimental Hematology 1998; 26: 353–360
  • Bhatia M., Bonnet D., Murdoch B., Gan O. I., Dick J. E. A newly discovered class of human hematopoietic cells with scid-repopulating activity [see comments]. Nature Medicine 1998; 4: 1038–1045
  • Bhatia M., Wang J. C. Y., Kapp U., Bonnet D., Dick J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 5320–5325
  • Sato T., Laver J. H., Ogawa M. Reversible expression of cd34 by murine hematopoietic stem cells [see comments]. Blood 1999; 94: 2548–2554
  • Cheng J., Baumhueter S., Cacalano G., Carver-Moore K., Thibodeaux H., Thomas R., Broxmeyer H. E., Cooper S., Hague N., Moore M., Lasky L. A. Hematopoietic defects in mice lacking the sialomucin cd34. Blood 1996; 87: 479–490
  • Brandt J. E., Galy A. H., Luens K. M., Travis M., Young J., Tong J., Chen S., Davis T. A., Lee K. P., Chen B. P., Tushinski R., Hoffman R. Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line. Experimental Hematology 1998; 26: 950–961
  • Rebel V. I., Dragowska W., Eaves C. J., Humphries R. K., Lansdorp P. M. Amplification of sca-1+ linwga+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 1994; 83: 128–136
  • Spangrude G. J., Brooks D. M., Tumas D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: In vivo expansion of stem cell phenotype but not function. Blood 1995; 85: 1006–1016
  • Dorrell C., Gan O. I., Pereira D. S., Hawley R. G., Dick J. E. Expansion of human cord blood cd34+cd38-cells in ex vivo culture during retroviral transduction without a corresponding increase in scid repopulating cell (src) frequency: Dissociation of src phenotype and function. Blood 2000; 95: 102–110
  • Nilsson S., Dooner M. P. J. Q. Synchronized cell cycle induction of engrafting long term repopulating stem cells. Blood 1997; 90: 4646–4650
  • Peters S. O., Kittler E. L., Ramshaw H. S., Quesenberry P. J. Murine marrow cells expanded in culture with il-3, il-6, il-11, and scf acquire an engraftment defect in normal hosts [published erratum appears in exp hematol 1995 jun; 23(6): 568]. Experimental Hematology 1995; 23: 461–469
  • Traycoff C. M., Orazi A., Ladd A. C., Rice S., McMahel J., Srour E. F. Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded cd34+ cells. Experimental Hematology 1998; 26: 53–62
  • Gothot A., van der Loo J. C., Clapp D. W., Srour E. F. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood cd34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998; 92: 2641–2649
  • Elwood N. J., Zogos H., Willson T., Begley C. G. Retroviral transduction of human progenitor cells: Use of granulocyte colony-stimulating factor plus stem cell factor to mobilize progenitor cells in vivo and stimulation by flt3/flk-2 ligand in vitro. Blood 1996; 88: 4452–4462
  • Dao M. A., Hannum C. H., Kohn D. B., Nolta J. A. Flt3 ligand preserves the ability of human cd34+ progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex vivo retroviral-mediated transduction. Blood 1997; 89: 446–456
  • Haylock D. N., Horsfall M. J., Dowse T. L., Ramshaw H. S., Niutta S., Protopsaltis S., Peng L., Burrell C., Rappold I., Buhring H. J., Simmons P. J. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of flt3 ligand. Blood 1997; 90: 2260–2272
  • Shah A. J., Smogorzewska E. M., Hannum C., Crooks G. M. Flt3 ligand induces proliferation of quiescent human bone marrow cd34+cd38-cells and maintains progenitor cells in vitro. Blood 1996; 87: 3563–3570
  • Yu J., Soma T., Hanazono Y., Dunbar C. E. Abrogation of tgf-beta activity during retroviral transduction improves murine hematopoietic progenitor and repopulating cell gene transfer efficiency. Gene Therapy 1998; 5: 1265–1271
  • Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. Journal Of Cellular Physiology 1977; 91: 335–344
  • Moore K. A., Deisseroth A. B., Reading C. L., Williams D. E., Belmont J. W. Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture-initiating cells. Blood 1992; 79: 1393–1399
  • Moscow J. A., Huang H., Carter C., Hines K., Zujewski J., Cusack G., Chow C., Venzon D., Sorrentino B., Chiang Y., Goldspiel B., Leitman S., Read E. J., Abati A., Gottesman M. M., Pastan I., Sellers S., Dunbar C., Cowan K. H. Engraftment of mdr1 and neor gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999; 94: 52–61
  • Gupta P., Oegema T. R. J., Brazil J. J., Dudek A. Z., Slungaard A., Verfaillie C. M. Human Itc-ic can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with o-sulfated heparan sulfates: Requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins. Blood 2000; 95: 147–155
  • Simmons P. J., Levesque J. P., Zannettino A. C. Adhesion molecules in haemopoiesis. Baillieres Clinical Haematology 1997; 10: 485–505
  • Gupta P., McCarthy J. B., Verfaillie C. M. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood 1996; 87: 3229–3236
  • Lataillade J. -J., Clay D., Dupuy C., Rigal S., Jasmin C., Bourin P., Le Bousse-Kerdiles M. -C. Chemokine sdf-1 enhances circulating cd34+ cell proliferation in synergy with cytokines: Possible role in progenitor survival. Blood 2000; 95: 756–768
  • Shih C. -C., Hu M. C.-T., Hu J., Weng Y., Yazaki P. J., Medeiros J., Forman S. J. A secreted and lif-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood 2000; 95: 1957–1966
  • Yokota T., Oritani K., Mitsui H., Aoyama K., Ishikawa J., Sugahara H., Matsumura I., Tsai S., Tomiyama Y., Kanakura Y., Matsuzawa Y. Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: Structural requirement for fibronectin activities of cs1 and cell-binding domains. Blood 1998; 91: 3263–3272
  • Moritz T., Patel V. P., Williams D. A. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. Journal Of Clinical Investigation 1994; 93: 1451–1457
  • Traycoff C. M., Srour E. F., Dutt P., Fan Y., Cornetta K. The 30/35 kda chymotryptic fragment of fibronectin enhances retroviral-mediated gene transfer in purified chronic myelogenous leukemia bone marrow progenitors. Leukemia 1997; 11: 159–167
  • Murray L., Luens K., Tushinski R., Jin L., Burton M., Chen J., Forestell S., Hill B. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, flt3, and kit ligands and retronectin culture. Human Gene Therapy 1999; 10: 1743–1752
  • Dardalhon V., Noraz N., Pollok K., Rebouissou C., Boyer M., Bakker A. Q., Spits H., Taylor N. Green fluorescent protein as a selectable marker of fibronectin-facilitated retroviral gene transfer in primary human t lymphocytes. Human Gene Therapy 1999; 10: 5–14
  • Dao M. A., Hashino K., Kato I., Nolta J. A. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 1998; 92: 4612–4621
  • Moore K. A., Ema H., Lemischka I. R. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997; 89: 4337–4347
  • Carlesso N., Aster J. C., Sklar J., Scadden D. T. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848
  • Han W., Ye Q., Moore M. A. S. A soluble form of human delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 2000; 95: 1616–1625
  • Cheng T., Rodrigues N., Shen H., Yang Y., Dombrowski D., Sykes M., Scadden D. T. Hematopoietic stem cell quiescence is maintained by p21. Science 2000; 287: 1804–1808
  • Engelhardt M., Kumar R., Albanell J., Pettengell R., Han W., Moore M. A. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193
  • Nevins J. Towards an understanding of the functional complexity of the e2f and retinoblastoma families. Cell Growth and Differentiation 1998; 9: 585–593
  • Roller M., Emerson S. G., Palsson B. O. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 1993; 82: 378–384
  • Emerson S. Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: The next generation of cellular therapeutics. Blood 1996; 87: 3082–3088
  • Purton L. E., Bernstein I. D., Collins S. J. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000; 95: 470–477
  • Bahnson A. B., Dunigan J. T., Baysal B. E., Mohney T., Atchison R. W., Nimgaonkar M. T., Ball E. D., Barranger J. A. Centrifugal enhancement of retroviral mediated gene transfer. Journal Of Virological Methods 1995; 54: 131–143
  • Bunnell B. A., Muul L. M., Donahue R. E., Blaese R. M., Morgan R. A. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 7739–7743
  • Crooks G. M., Kohn D. B. Growth factors increase amphotropic retrovirus binding to human cd34+ bone marrow progenitor cells. Blood 1993; 82: 3290–3297
  • Valera A., Perales J. C., Hatzoglou M., Bosch F. Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Human Gene Therapy 1994; 5: 449–456
  • Phillips K., Gentry T., McCowage G., Gilboa E., Smith C. Cell-surface markers for assessing gene transfer into human hematopoietic cells [see comments]. Nature Medicine 1996; 2: 1154–1156
  • Persons D. A., Allay J. A., Allay E. R., Smeyne R. J., Ashmun R. A., Sorrentino B. P., Nienhuis A. W. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 1997; 90: 1777–1786
  • Marx J. C., Allay J. A., Persons D. A., Nooner S. A., Hargrove P. W., Kelly P. F., Vanin E. F., Horwitz E. M. High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Human Gene Therapy 1999; 10: 1163–1173
  • Verhasselt B., De Smedt M., Verhelst R., Naessens E., Plum J. Retrovirally transduced cd34++ human cord blood cells generate t cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro. Blood 1998; 91: 431–440
  • Hanazono Y., Yu J. M., Dunbar C. E., Emmons R. V. Green fluorescent protein retroviral vectors: Low titer and high recombination frequency suggest a selective disadvantage. Human Gene Therapy 1997; 8: 1313–1319
  • Siena S., Bregni M., Brando B., Ravagnani F., Bonadonna G., Gianni A. M. Circulation of cd34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: Enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1989; 74: 1905–1914
  • Sheridan W. P., Begley C. G., To L. B., Grigg A., Szer J., Maher D., Green M. D., Rowlings P. A., McGrath K. M., Cebon J., et al. Phase ii study of autologous filgrastim (g-csf)-mobilized peripheral blood progenitor cells to restore hemopoiesis after high-dose chemotherapy for lymphoid malignancies [published erratum appears in bone marrow transplant 1995 apr; 15(4): 654]. Bone Marrow Transplantation 1994; 14: 105–111
  • DeLuca E., Sheridan W. P., Watson D., Szer J., Begley C. G. Prior chemotherapy does not prevent effective mobilisation by g-csf of peripheral blood progenitor cells. British Journal Of Cancer 1992; 66: 893–899
  • Grigg A. P., Roberts A. W., Raunow H., Houghton S., Layton J. E., Boyd A. W., McGrath K. M., Maher D. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers [see comments]. Blood 1995; 86: 4437–4445
  • Socinski M. A., Cannistra S. A., Elias A., Antman K. H., Schnipper L., Griffin J. D. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1: 1194–1198
  • Gianni A. M., Siena S., Bregni M., Tarella C., Stern A. C., Pileri A., Bonadonna G. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 1989; 2: 580–585
  • Villeval J. L., Dührsen U., Morstyn G., Metcalf D. Effect of recombinant human granulocyte-macrophage colony stimulating factor on progenitor cells in patients with advanced malignancies. British Journal Of Haematology 1990; 74: 36–44
  • Basser R. L., Rasko J. E., Clarke K., Cebon J., Green M. D., Grigg A. P., Zalcberg J., Cohen B., O'Byrne J., Menchaca D. M., Fox R. M., Begley C. G. Randomized, blinded, placebo-controlled phase i trial of pegylated recombinant human megakaryocyte growth and development factor with filgrastim after dose-intensive chemotherapy in patients with advanced cancer [published erratum appears in blood 1997 sep 15; 90(6): 2513]. Blood 1997; 89: 3118–3128
  • Rasko J. E., Basser R. L., Boyd J., Mansfield R., O'Malley C. J., Hussein S., Berndt M. C., Clarke K., O'Byrne J., Sheridan W. P., Grigg A. P., Begley C. G. Multilineage mobilization of peripheral blood progenitor cells in humans following administration of peg-rhumgdf. British Journal Of Haematology 1997; 97: 871–880
  • Begley C. G., Basser R., Mansfield R., Thomson B., Parker W. R., Layton J., To B., Cebon J., Sheridan W. P., Fox R. M., Green M. D. Enhanced levels and enhanced clonogenic capacity of blood progenitor cells following administration of stem cell factor plus granulocyte colony-stimulating factor to humans. Blood 1997; 90: 3378–3389
  • Papayannopoulou T., Nakamoto B., Andrews R. G., Lyman S. D., Lee M. Y. In vivo effects of flt3/flk2 ligand on mobilization of hematopoietic progenitors in primates and potent synergistic enhancement with granulocyte colony-stimulating factor. Blood 1997; 90: 620–629
  • Bodine D. M., Seidel N. E., Gale M. S., Nienhuis A. W., Orlic D. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor. Blood 1994; 84: 1482–1491
  • Bregni M., Magni M., Siena S., Di Nicola M., Bonadonna G., Gianni A. M. Human peripheral blood hematopoietic progenitors are optimal targets of retroviral-mediated gene transfer. Blood 1992; 80: 1418–1422
  • Cassel A., Cottier-Fox M., Doren S., Dunbar C. E. Retroviral-mediated gene transfer into cd34-enriched human peripheral blood stem cells. Experimental Hematology 1993; 21: 585–591
  • Lu M., Maruyama M., Zhang N., Levine F., Friedmann T., Ho A. D. High efficiency retroviral-mediated gene transduction into cd34+ cells purified from peripheral blood of breast cancer patients primed with chemotherapy and granulocyte-macrophage colony-stimulating factor. Human Gene Therapy 1994; 5: 203–208
  • Bregni M., Di Nicola M., Siena S., Belli N., Milanesi M., Shammah S., Ravagnani F., Gianni A. M. Mobilized peripheral blood cd34+ cells express more amphotropic retrovirus receptor than bone marrow cd34+ cells. Haematologica 1998; 83: 204–208
  • Gluckman E., Broxmeyer H. A., Auerbach A. D., Friedman H. S., Douglas G. W., Devergie A., Esperou H., Thierry D., Socie G., Lehn P., et al. Hematopoietic reconstitution in a patient with fanconi's anemia by means of umbilical-cord blood from an hla-identical sibling. New England Journal Of Medicine 1989; 321: 1174–1178
  • Broxmeyer H. E., Gluckman E., Auerbach A., Douglas G. W., Friedman H., Cooper S., Hangoc G., Kurtzberg J., Bard J., Boyse E. A. Human umbilical cord blood: A clinically useful source of transplantable hematopoietic stem/progenitor cells. International Journal Of Cell Cloning 1990; 8(Suppl 1)76–89, discussion 89–91
  • Wang J. C., Doedens M., Dick J. E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo scid-repopulating cell assay. Blood 1997; 89: 3919–3924
  • Thierry D., Hervatin F., Traineau R., Brossard Y., Stark R., Benbunan M., Gluckman E. Hematopoietic progenitors cells in cord blood. Bone Marrow Transplantation 1992; 9(Suppl 1)101–104
  • Traycoff C. M., Kosak S. T., Grigsby S., Srour E. F. Evaluation of ex vivo expansion potential of cord blood and bone marrow hematopoietic progenitor cells using cell tracking and limiting dilution analysis. Blood 1995; 85: 2059–2068
  • Hows J. M., Bradley B. A., Marsh J. C., Luft T., Coutinho L., Testa N. G., Dexter T. M. Growth of human umbilical-cord blood in longterm haemopoietic cultures [see comments]. Lancet 1992; 340: 73–76
  • Medin J. A., Karlsson S. Selection of retrovirally transduced cells to enhance the efficiency of gene therapy. Proceedings Of The Association Of American Physicians 1997; 109: 111–119
  • Bunting K. D., Galipeau J., Topham D., Benaim E., Sorrentino B. P. Transduction of murine bone marrow cells with an mdrl vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 1998; 92: 2269–2279
  • Deisseroth A. B., Pizzorno G. The use of chemotherapy resistance in cancer treatment. Cancer Journal From Scientific American 1997; 3: 60–69
  • Hanania E. G., Deisseroth A. B. Serial transplantation shows that early hematopoietic precursor cells are transduced by mdr-1 retroviral vector in a mouse gene therapy model. Cancer Gene Therapy 1994; 1: 21–25
  • Hanania E. G., Fu S., Roninson I., Zu Z., Deisseroth A. B. Resistance to taxol chemotherapy produced in mouse marrow cells by safety-modified retroviruses containing a human mdr-1 transcription unit [see comments] [published erratum appears in gene ther 1995 aug; 2(6):433]. Gene Therapy 1995; 2: 279–284
  • Hegewisch-Becker S., Hanania E. G., Fu S., Körbling M., Deisseroth A. B., Andreeff M. Transduction of mdrl into human and mouse haemopoietic progenitor cells: Use of rhodamine (rh123) to determine transduction frequency and in vivo selection. British Journal Of Haematology 1995; 90: 876–883
  • O'Shaughnessy J. A., Cowan K. H., Nienhuis A. W., McDonagh K. T., Sorrentino B. P., Dunbar C. E., Chiang Y., Wilson W., Goldspiel B., Kohler D., et al. Retroviral mediated transfer of the human multidrug resistance gene (mdr-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer. Human Gene Therapy 1994; 5: 891–911
  • Havenga M., Valerio D., Hoogerbrugge P. M., Es H. In vivo methotrexate selection of murine hematopoietic cells transduced with a retroviral vector for gaucher's disease. Gene Therapy 1999; 6: 1661–1669
  • Patel D., Allay J., Belt J., Sorrentino B. Retroviral transfer of hent2 nucleoside transporter cdna confers broad spectrum anti-folate resistance in murine bone marrow cells. Blood 2000; 95: 2356–2363
  • Jin L., Siritanaratkul N., Emery D. W., Richard R. E., Kaushansky K., Papayannopoulou T., Blau C. A. Targeted expansion of genetically modified bone marrow cells. Proceedings of the National Academy of Sciences of the United States of America 1998; 95: 8093–8097
  • Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Nusbaum P., Yvon E., Casanova J. L., Le Deist F., Fischer A. Correction of scid-x1 disease phenotype following γc gene transfer by a retroviral vector into cd34+ cells in two children. Science 1999; 288: 669–672
  • Kohn D. B., Hershfield M. S., Carbonaro D., Shigeoka A., Brooks J., Smogorzewska E. M., Barsky L. W., Chan R., Burotto F., Annett G., Nolta J. A., Crooks G., Kapoor N., Elder M., Wara D., Bowen T., Madsen E., Snyder F. F., Bastian J., Muul L., Blaese R. M., Weinberg K., Parkman R. T lymphocytes with a normal ada gene accumulate after transplantation of transduced autologous umbilical cord blood cd34+ cells in ada-deficient scid neonates. Nature Medicine 1998; 4: 775–780
  • Quesenberry P. J., Ramshaw H., Crittenden R. B., Stewart F. M., Rao S., Peters S., Becker P., Lowry P., Blomberg M., Reilly J., et al. Engraftment of normal murine marrow into nonmyeloablated host mice. Blood Cells 1994; 20: 348–350
  • Rao S. S., Peters S. O., Crittenden R. B., Stewart F. M., Ramshaw H. S., Quesenberry P. J. Stem cell transplantation in the normal nonmyeloablated host: Relationship between cell dose, schedule, and engraftment. Experimental Hematology 1997; 25: 114–121
  • Stewart F. M., Crittenden R. B., Lowry P. A., Pearson-White S., Quesenberry P. J. Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice [see comments]. Blood 1993; 81: 2566–2571
  • Tisdale J. F., Hanazono Y., Sellers S. E., Agricola B. A., Metzger M. E., Donahue R. E., Dunbar C. E. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998; 92: 1131–1141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.