31
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Interleukin-12 Gene Therapy Vaccines: Directing the Immune System against Minimal Residual Leukemia

&
Pages 483-492 | Received 20 Aug 2000, Published online: 01 Jul 2009

References

  • Blaese R. M., Culver K. W., Miller A. D., Carter C. S., Fleisher T., Clerici M., Shearer G., Chang L., Chiang Y., Tolstoshev P., et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480
  • Anderson W. F. Human gene therapy. Nature April, 1998; 392(supp, 30)25–30
  • Pardoll D. M. Cancer vaccines. Nature Med 1998; 4: 525–531
  • Mulligan R. C. Gene transfer and gene therapy. Etiology of Human Diseases at the DNA level, J. Lindsten, U. Petterson. Raven Press, New York 1991; 143–189
  • Dranoff G., Mulligan R. C. Gene Transfer as Cancer Therapy. Adv Immunol 1995; 58: 417–454
  • Bonini C., Ferrari G., Verzeletti S., Servida P., Zappone E., Ruggieri L., Ponzoni M., Rossini S., Mavilio F., Traversari C., Bordignon C. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia [see comments]. Science 1997; 276: 1719–1724
  • Crooke S. T. Advances in understanding the pharmacological properties of antisense oligonucleotides. Adv Pharmacol 1997; 40: 1–49
  • Irie A., Kijima H., Ohkawa T., Bouffard D. Y., Suzuki T., Curcio L. D., Holm P. S., Sassani A., Scanlon K. J. Anti-oncogene ribozymes for cancer gene therapy. Adv Pharmacol 1997; 40: 207–257
  • Xu H. J. Strategies for approaching retinoblastoma tumor suppressor gene therapy. Adv Pharmacol 1997; 40: 369–397
  • Wills K. N., Maneval D. C., Menzel P., Harris M. P., Sutjipto S., Vaillancourt M. T., Huang W. M., Johnson D. E., Anderson S. C., Wen S. F., et al. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum Gene Ther 1994; 5: 1079–1088
  • Hanania E. G., Fu S., Roninson I., Zu Z., Deisseroth A. B. Resistance to taxol chemotherapy produced in mouse marrow cells by safety-modified retroviruses containing a human MDR-1 transcription unit [see comments] [published erratum appears in Gene Ther 1995 Aug; 2(6):433]. Gene Ther 1995; 2: 279–284
  • Deisseroth A. B., Zu Z., Claxton D., Hanania E. G., Fu S., Ellerson D., Goldberg L., Thomas M., Janicek K., Anderson W. F., Hester J., Korbling M., Durett A., Moen R., Berenson R., Heimfeld S., Hamer J., Calvert L., Tibbits P., Talpaz M., Kantarjian H., Champlin R., Reading C. Genetic marking shows that Ph+ cells present in autologous transplants of chonic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 1994; 83: 3068–3076
  • Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543
  • Chen L., Ashe S., Brady W. A., Hellström I., Hellström K. E., Ledbetter J. A., McGowan P., Linsley P. Costimulation of antitumor immunity by the B7 counter-receptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 1093–1102
  • Anderson W. F. Prospects for human gene therapy. Science 1984; 226: 401–409
  • Verma I. M., Somia M. Gene therapy: promises, problems and prospects. Nature 1997; 389: 239–242
  • Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 1988; 85: 6460–6464
  • Kourilsky P., Claverie J. M. The peptidic self model: a hypothesis on the molecular nature of the immunological self. Ann Inst Pasteur Immunol 1986; 137: 3–21
  • Boon T., De Plaen E., Lurquin C., Van den Eynd B., van der Bruggen P., Traversari C., Amar-Costesec A., Van Pel A. Identification of tumour rejection antigens recognized by T lymphocytes. Cancer Surv 1992; 13: 23–37
  • Germain R. N., Margulies D. H. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993; 11: 403–450
  • Boon T. Toward a genetc analysis of tumor rejection antigens. Adv. Cancer Res 1992; 58: 177–210
  • van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–1647
  • Mandruzzato S., Brasseur F., Andry G., Boon T., van der Bruggen P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997; 186: 785–793
  • Van Pel A., van der Bruggen P., Coulie P. G., Brichard V. G., Lethe B., van den Eynde B., Uyttenhove C., Renauld J. C., Boon T. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev 1995; 145: 229–250
  • Robbins P. F., Kawakami Y. Human tumor antigens recognized by T cells. Curr Opin Immunol 1996; 5: 628–636
  • Topalian S. L., Rivoltini L., Mancini M., Markus N. R., Robbins P. F., Kawakami Y., Rosenberg S. A. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 1994; 91: 9461–9465
  • Roth C., Rochlitz C., Kourilsky P. Immune response against tumors. Adv Immunol 1994; 57: 281–351
  • Schwartz R. H. Models of T cell anergy: Is there a common molecular mechanism?. J. Exp. Med 1996; 184: 1–8
  • Lenschow D. J., Walunas T. L., Bluestone J. A. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233–258
  • Chen L., McGowan P., Ashe S., Johnston J. V., Li Y., Hellström I., Hellström K. E. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 1994; 179: 523–532
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045
  • Forni G., Fujiwara H., Martino F., Hamaoka T., Jemma C., Caretto P., Giovarelli M. Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metastasis Rev 1988; 4: 289–309
  • Tepper R. I., Pattengale P. K., Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989; 57: 503–512
  • Simons J. W., Mikhak B. Ex-vivo gene therapy using cytokine-transduced tumor vaccines: molecular and clinical pharmacology. Semin Oncol 1998; 25: 661–676
  • Lowenberg B., Downing J. R., Burnett A. Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062
  • Burnett A. K., Eden O. B. The treatment of acute leukemia. Lancet 1997; 349: 270–275
  • Dunussi-Joannopoulos K., Weinstein H. J., Nickerson P. W., Strom T. B., Burakoff S. J., Croop J. M., Arceci R. J. Irradiated B7–1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 1996; 87: 2938–2946
  • Dunussi-Joannopoulos K., Dranoff G., Weinstein H. J., Ferrara J. L., Bierer B. E., Croop J. M. Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 1998; 91: 222–230
  • Matulonis U. A., Dosiou C., Lamont C., Freeman G. J., Mauch P., Nadler L. M., Griffin J. D. Role of B7–1 in mediating an immune response to myeloid leukemia cells. Blood 1995; 85: 2507–2515
  • Hirano N., Takahashi T., Azuma M., Yazaki Y., Yagita H., Hirai H. Protective and therapeutic immunity against leukemia induced by irradiated B7–1 (CD80)-transduced leukemic cells. Leukemia 1997; 11(Suppl 3)577–581
  • Nakazaki Y., Tani K., Lin Z. T., Sumimoto H., Hibino H., Tanabe T., Wu M. S., Izawa K., Hase H., Takahashi S., Tojo A., Azuma M., Hamada H., Mori S., Asano S. Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 1998; 5: 1355–1362
  • Dunussi-Joannopoulos K., Weinstein H. J., Arced R. J., Croop J. M. Gene therapy with B7.1 and GM-CSF vaccines in a murine AML model. Journal of Pediatric Hematology/Oncology 1997; 19: 536–540
  • Dunussi-Joannopoulos K., Runyon K., Erikson J., Schaub R. G., Hawley R. G., Leonard J. P. Vaccines with interleukin-12 (IL-12) transduced acute myeloid leukemia (AML) cells elicit very potent therapeutic and long-lasting protective immunity. Blood 1999; 94: 4263–4273
  • Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med 1989; 170: 827–845
  • Brunda M. J. Interleukin-12. J Leukoc Biol 1994; 55: 280–288
  • Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 1998; 70: 83–243
  • Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 1994; 84: 4008–4027
  • Nastala C. L., Edington H. D., McKinney T. G., Tahara H., Nalesnik M. A., Brunda M. J., Gately M. K., Wolf S. F., Schreiber R. D., Storkus W. J., et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 1994; 153: 1697–1706
  • Mu J., Zou J. P., Yamamoto N., Tsutsui T., Tai X. G., Kobayashi M., Herrmann S., Fujiwara H., Hamaoka T. Administration of recombinant interleukin 12 prevents outgrowth of tumor cells metastasizing spontaneously to lung and lymph nodes. Cancer Res 1995; 55: 4404–4408
  • Hunter S. E., Waldburger K. E., Thibodeaux D. K., Schaub R. G., Goldman S. J., Leonard J. P. Immunoregulation by interleukin-12 in MB49.1 tumor-bearing mice: cellular and cytokine-mediated effector mechanisms. Eur J Immunol 1997; 27: 3438–3446
  • Car B. D., Eng V. M., Schnyder B., LeHir M., Shakhov A. N., Woerly G., Huang S., Aguet M., Anderson T. D., Ryffel B. Role of interferon-gamma in interleukin 12-induced pathology in mice [see comments]. Am J Pathol 1995; 147: 1693–1707
  • Coughlin C. M., Wysocka M., Trinchieri G., Lee W. M. The effect of interleukin 12 desensitization on the antitumor efficacy of recombinant interleukin 12. Cancer Res 1997; 57: 2460–2467
  • Tahara H., Zitvogel L., Storkus W. J., Zeh H. J., 3rd, McKinney T. G., Schreiber R. D., Gubler U., Robbins P. D., Lotze M. T. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. Journal of Immunology 1995; 154: 6466–6474
  • Chen L., Chen D., Block E., O'Donnell M., Kufe D. W., Clinton S. K. Eradication of murine bladder carcinoma by intratumor injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer. Journal of Immunology 1997; 159: 351–359
  • Brunda M. J., Luistro L., Hendrzak J. A., Fountoulakis M., Garotta G., Gately M. K. Role of interferon-gamma in mediating the antitumor efficacy of interleukin-12. J Immunother Emphasis Tumor Immunol 1995; 17: 71–77
  • Yu W. G., Ogawa M., Mu J., Umehara K., Tsujimura T., Fujiwara H., Hamaoka T. IL-12-induced tumor regression correlates with in situ activity of IFN-gamma produced by tumor-infiltrating cells and its secondary induction of anti-tumor pathways. Journal of Leukocyte Biology 1997; 62: 450–457
  • Koblish H. K., Hunter C. A., Wysocka M., Trinchieri G., Lee W. M. Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 1998; 188: 1603–1610
  • Tannenbaum C. S., Tubbs R., Armstrong D., Finke J. H., Bukowski R. M., Hamilton T. A. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 1998; 161: 927–932
  • Pardoll D. M. Cancer vaccines. Immunol Today 1993; 14: 310–316
  • Dunussi-Joannopoulos K., Krenger W., Weinstein H. J., Ferrara J. L. M., Croop J. M. CD8+ T-cells activated during the course of murine AML elicit therapeutic responses to late B7 vaccines after cytoreductive treatment. Blood 1997; 89: 2915–2924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.