117
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Effect of Immunostimulatory CpG-Oligonucleotides in Chronic Lymphocytic Leukemia B Cells

&
Pages 301-307 | Received 28 Dec 2000, Published online: 01 Jul 2009

References

  • Tokunaga T., Yano O., Kuramoto E., Kimura Y., Yamamoto T., Katoaka T., Yamaoto S. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium, BCG I. Isolation, physicochemical characterization and antitumor activity. Journal of the National Cancer Institute 1984; 72: 955–962
  • Messina J. P., Gilkeson G. S., Pisetsky D S. Stimulation of in vitro murine lymphocyte proliferation by bacterial, DNA. Journal of Immunology 1991; 147: 1759–1764
  • Yamamoto S., Yamamoto T., Shimada S., Kuramato E., Yano O., Kataoka T., Tokunaga T. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiology and Immunology 1992; 36: 983–997
  • Krieg A. M., Yi A. K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., Koretzky D. A., Klinman D M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–549
  • Pisetsky D S. Immune Activation by bacterial DNA: a new genetic code. Immunity 1996; 5: 303–310
  • Fearon D. T., Locksley R M. The instructive role of innate immunity in the aquired immune response. Science 1996; 272: 50–53
  • Anderson K V. Toll signaling pathways in the innate immune response. Current Opinion in Immunology 2000; 12: 13–19
  • Luke A., O'Neill J., Dinarello C A. The IL-1 receptor / toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today 2000; 21: 206–209
  • Hacker H., Vabulas R. M., Takeuchi O., Hoshino K., Akira S., Wagner H. Immune cell activation by bacterial DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. Journal of Experimental Medicine 2000; 192: 595–600
  • Hacker H., Mischak H., Miethke T., Liptay S., Schmid Sparwasser R., Heeg T., Lipford G. B., Wagner H. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non specific endocytosis and endosomal maturation. Embo Journal 1998; 17: 6230–6240
  • Hartmann G., Krieg A M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. Journal of Immunology 2000; 164: 944–953
  • Hacker H., Mischak H., Hacker G., Eser S., Prenzel N., Ullrich A., Wagner H. Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. Embo Journal 1999; 18: 6973–6982
  • Liang H., Reich C. F., Pisetsky D. S., Lipsky P. E. The role of cell surface receptors in the activation of human B cells by phosphorothioate oligonucleotides. Journal of Immunol 2000; 165: 1438–1445
  • Liang H., Nishioka Y., Reich C. F., Pisetsky D. S., Lipsky P. Activation of Human B cells by Phosphorothioate Oligonucleotides. Journal of Clinical Investigation 1996; 98: 1119–1129
  • Hartmann G., Krieg A M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. Journal of Immunology 2000; 164: 944–953
  • Lang R., Hultner L., Lipford G. B., Wagner H., Heeg K. Guanosine-rich oligonucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. European Journal of Immunology 1999; 29: 3496–3506
  • Stacey K. J., Sweet M. J., Hume D A. Macrophages ingest and are activated by bacterial, DNA. Journal of Immunology 1996; 157: 2116–2122
  • Sparwasser T., Koch E. S., Vabulas R. M., Heeg K., Lipford G. B., Ellwart J. W., Wagner H. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendiric cells. European Journal of Immunology 1998; 28: 2045–2054
  • Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol. 1999; 73: 329–368
  • Krieg A M. The role of CpG motifs in innate immunity. Current Opinion in Immunology 2000; 12: 35–43
  • Bauer M., Heeg K., Wagner H., Lipford G B. DNA activates human immune cells through a CpG sequence dependent manner. Immunology 1999; 97: 699–705
  • Decker Schneller T., Sparwasser F., Tretter T. T, Lipford G. B., Wagner H., Peschel C. Immunstimulatory CpG-Oligonucleotides cause proliferation, cytokine secretion and an immunogenic phenotype in B-CLL patients. Blood 2000; 95: 999–1006
  • Bancherau J., Steinman R M. Dendritic cells and the control of immunity. Nature 1998; 392: 245–252
  • Hartmann G. CpG DNA as a signal for growth, activation and maturation of human dendritic cells. Proceedings of the National Academy of Science of the United States of America 1999; 96: 9305–9310
  • Chu R. S., Targoni O. S., Krieg A. M., Lehmann P. V., Harding C V. CpG-Oligonucleotides act as adjuvants that switch on T Helper 1 immunity. Journal of Experimental Medicine 1997; 186: 1623–1631
  • Walker P. S., Scharton-Kersten T., Krieg A. M., Love-Homan L., Rowton E. D., Udey M. C., Vogel J C. Immunostimolatory oligonucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12 and IFN-γ dependent mechanisms. Proceedings of the National Academy of Science of the United States of America 1999; 96: 6970–6975
  • Bendigs S., Salzer U., Lipford G. B., Wagner H., Heeg K. CpG-oligonucleotides costimulate primary T cells in the absence of antigen presenting cells. European Journal of Immunology 1999
  • Iho S., Yamamoto T., Takahashi T., Yamamoto S. Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. Journal of Immunology 1999; 163: 3642–52
  • Lipford G. B., Sparwasser T., Zimmermann S., Heeg K., Wagner H. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. Journal of Immunology 2000; 165: 1228–35
  • Sun S., Zhang X., Tough D. F., Sprent J. Type I Interferon-mediated stimulation of T cells by CpG DNA. Journal of Experimental Medicine 1998; 188: 2335–2442
  • Cowdery J. S., Chace J. H., Yi A. K., Krieg A M. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. Journal of Immunology 1996; 156: 4570–4575
  • Halpern M. D., Kurlander R. J., Pisetsky D S. Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cellular Immunology 1996; 167: 72–78
  • Lipford G. B., Heeg K., Wagner H. Bacterial DNA as immune cell activator. Trends in Microbiology 1998; 6: 496
  • McCluskie M. J., Weeretna R. D., Davis H L. The role of CpG-DNA in vaccines. Springer Seminars in Immunopathology 2000; 22: 125–132
  • Sparwasser T., Miethke T., Lipford G. B., Borschert K., Hacker H., Heeg K., Wagner H. Bacterial DNA causes septic shock. Nature 1997; 386: 336–337
  • Segal B. M., Chanf J. T., Shevach E M. CpG oligonucleotides are potent adjuvants for the activation of auto-reactive encephalitogenic T cells in vivo. Journal of Immunology 2000; 164: 5683–5688
  • Segal B. M., Klinman D. M., Shevach E M. Microbial products induce autoimmune disease by an IL-12 dependent pathway. Journal of Immunology 1997; 158: 5087–5090
  • Lipford G. B., Bauer T., Zimmermann S., Koch E. S., Heeg K., Wagner H. Immunostimulatory DNA: Sequence-dependent production of potentially harmful or useful cytokines. European Journal of Immunology 1997; 27: 2340–2344
  • Fong L., Engelman E G. Dendritic cells in cancer immunotherapy. Annual Rev Immunol 2000; 18: 245–273
  • Forni G., Lollini P. L., Musiani P., Colombo M P. Immunoprevention of cancer: is the time ripe. Cancer Research 2000; 60: 2571–2575
  • Weiner G J. CpG DNA in cancer immunoterapy. Current Topics in Microbiology and Immunology 2000; 247: 157–170
  • Davila E., Celis E. Repeated administration of cytosine-phosphorothiolated gunanine-containing Oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with anti-tumor activity. Journal of Imunology 2000; 165: 539–547
  • Vabulas R. M., Pircher H., Lipford G. B., Hacker H., Wagner H. CpG-DNA activates in vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. Journal of Immunology 2000; 164: 2372–2378
  • Carpentier A. F., Chen L., Maltoni F., Delattre J Y. Oligonucleotides containing CpG motifs can induce rejection of neuroblastoma in mice. Cancer Research 1999; 59: 5429–5432
  • Weiner G. J., Liu H. M., Woolridge J. E., Dahle C. E., Krieg A M. Immunostimulatory Oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proceedings of the National Academy of Science of the United States of America 1997; 94: 10833–10837
  • Liu H. M., Newbrough S. E., Bhatia S. K., Dahle C. E., Krieg A. M., Weiner G J. Immunostimulatory CpG Oligonucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 1998; 92: 3730–3736
  • Woolridge J. E., Ballas Z., Krieg A. M., Weiner G J. Immunostimulatory Oligonucleotides containing CpG motifs enhance the efficiacy of monoclonal antibody therapy of lymphoma. Blood 1997; 89: 2994–2998
  • Glennie M. J., Johnson P W. Clinical trials of antibody therapy. Immunology Today 2000; 21: 403–410
  • Lokhorst H. M., Liebowitz D. Adoptive T-cell therapy. Seminars in Hematology 1999; 36: 26–29
  • Egeter O., Mocikat R., Ghoreschi K., Dieckmann A., Rocken M. Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from non-transgenic mice. Cancer Research 2000; 60: 1515–1520
  • O'Brien S., Del Giglio A., Keating M. Advances in the biology and treatment of B-cell chronic lymphocytic leukemia. Blood 1995; 85: 307–318
  • Wendtner C. M., Schmitt B., Wilhelm M., Dreger P., Montserrat E., Emmerich B., Hallek M. Redefining the therapeutic goals in chronic lymphocytic leukemia: towards an evidence-based, risk adapted therapy. Annals of Oncology 1999; 10: 505–509
  • Michallet M., Thiebaut A., Dreger P., Remes K., Milpied N., Santini G., Hamon M., Bjorkstrand B., Kimby E., Belhabri A., Tanguy M X, Appen J F. Peripheral blood stem cell (PBSC) mobilization and transplantation after fludarabine therapy in chronic lymphocytic leukemia (CLL): a report of the European Blood and Marrow Transplantation (EBMT) CLL subcomittee on behalf of the EBMT Chronic Leukemias Working Party (CLWP). British Journal of Haematology 2000; 108: 595–601
  • Hainsworth J. D., Bums H. A., Morrissey L. H., Litchy S., Scullin D. C., Bearden J. D., Richards P., Greco F A. Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non-Hodgkin lymphoma. Blood 2000; 95: 3052–3056
  • Osterborg A., Dyer M. J., Bunjes D., Pangalis G. A., Catovsky Y., Mellstedt H. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology 1997; 15: 1567–1574
  • Johnson T. A., Rassenti L. Z., Kipps T J. Ig VH1 genes expressed in B-cell chronic lymphocytic leukemia exhibit distinctive molecular features. Journal of Immunology 1997; 158: 235–246
  • Decker Flohr T., Trautmann T., Aman M. J., Holter W., Majdic O., Huber C., Peschel C. Role of accessory cells in cytokine production by T cells in Chronic B-cell lymphocytic leukemia. Blood 1995; 86: 1115–1123
  • Dazzi F., D'Andrea E., Biasi G., De Silvestro G., Gaidano G., Schena M., Tison T., Vianello F., Girolami A., Caligaris-Cappio F. Failure of B cells of chronic lymphocytic leukemia in presenting soluble and alloantigens. Clin. Immunol Immunopathol 1995; 75: 26–32
  • Ranheim E. A., Kipps T J. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. Journal of Experimental Medicine 1993; 177: 925–935
  • Buhmann R., Nolle A., Westhaus D., Emmerich B., Hallek M. CD40-activated B-Cell chronic lymphocytic leukemia cells for Tumor Immunotherapy: Stimulation of allogeneic versus autologous T cells generate different types of effector cells. Blood 1999; 93: 1992–2002
  • Kato K., Cantwell M. J., Sharma S., Kipps T J. Gene Transfer of CD40-Ligand Induces Autologous Immune Recognition of Chronic Lymphocytic Leukemia B Cells. Journal of Clinical Investigation 1998; 101: 1133–1141
  • Wierda G. W., Cantwel I M. J., Woods S. J., Rassenti L. Z., Prussak C. E., Kipps T J. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924
  • Hivroz C., Grillot-Courvallin C., Brouet J. C., Seligman M. Heterogeneity of responsiveness of chronic lymphocytic leukemic B cells to B cell growth factor IL-2. European Journal of Immunology 1986; 16: 1001–1004
  • Nelson B. H., Willerford D M. Biology of the Interleukin-2 Receptor. Advances in Immunology 1998; 70: 1–81
  • Decker Schneller T., Kronschnabl E., Dechow T., Lipford G. B., Wagner H., Peschel C. Immunostimulatory CpG-Oligonukleotides induce the expression of functional IL-2 receptors on B-CLL cells: Costimulation with IL-2 results in a highly immunogenic phenotype. Experimental Hematology 2000; 28: 558–568
  • Lenschow D. J., Walunas T. L., Bluestofne J A. CD28/B7 system of T cell costimulation. Annual Revue in Immunology 1996; 14: 233–258
  • Fiels P. E., Finch R. J., Gray G. S., Zollner R., Sturmhoefel K., Lee K., Wolf S., Gajewski T. F., Fitch F W. B7.1 is a quantitatively stronger costimulus than B7.2 in activation of naive TCR-transgenic T cells. Journal of 1998; 161: 5268–5275
  • Ginaldi L., De Martinis M., Matutes E., Farahat N., Morilla R., Catovsky M. Levels of expression of CD19 and CD20 in chronic B cell leukemias. Journal of Clinical Pathology 1998; 51: 364–369
  • Ginaldi L., Martinis M., Matutes E., Farahat N., Morilla R., Dyer M., Catovsky D. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leukemia Research 1998; 22: 185–191
  • Reiter Y., Kreitman R. J., Brinkmann U., Pastan I. Cytotoxic and antitumor activity of a recombinant immunotoxin composed of disulfide-stabilized anti-Tac Fv fragment and truncated pseudomonas exotoxin. International Journal of Cancer 1994; 58: 142–149
  • Kreitman R. J., Wilson W. H., Robbins D., Margulies I., Stetler-Stevenson M., Waldmann T. A., Pastan I. Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 2000; 10: 3340–3348
  • Kreitman R. J., Wilson W. H., White J. D., Stetler-Stevenson M., Jaffe E. S., Giardina S., Waldmann T. A., Pastan I. Phase I Trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology 2000; 18: 1622–1636
  • Francisco J. A., Schreiber G. J., Comereski C. R., Mezza L. E., Warner G. L., Davidson T. J., Ledbetter J. A., Siegall C B. In vivo efficacy and toxicity of a single-chain immunotoxin targeted to CD40. Blood 1997; 89: 4493–500
  • Meinhardt G., Wendtner C. M., Hallek M. Molecular pathogenesis of chronic lymphocytic leukemia: factors and signaling pathways regulating cell growth and survival. Journal of Molecular Medicine 1999; 77: 282–293
  • Goodman M. G., Wormsley S. B., Spinosa J. C., Piro L D. Loxoribine induces chronic lymphocytic leukemia B cells to traverse the cell cycle. Blood 1994; 84: 3457–3464
  • Qintanilla-Martinez L., Thieblemont C., Kumar F., Pinyol M., Campo E., Jaffe E. S., Raffeld M. Mantle cell lymphoma lack expression of p27kipl, a cyclin-dependent kinase inhibitor. American Journal of Pathology 1998; 153: 175–182
  • Shapiro G. I., Harper J W. Anticancer drug targets: Cell cycle checkpoint control. Journal of Clinical Investigation 1999; 104: 1645–1653

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.