90
Views
13
CrossRef citations to date
0
Altmetric
Original Article

CD40 Ligand Immunotherapy in Cancer: An Efficient Approach

, , &
Pages 1367-1377 | Published online: 01 Jul 2009

References

  • Atkins M B, Lotze M T, Dutcher J P, Fisher R I, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg S A. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17: 2105–16
  • Rosenberg S A, Yang J C, Schwartzentruber D J, Hwu P, Marincola F M, Topalian S L, Seipp C A, Einhorn J H, White D E, Steinberg S M. Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b. J Clin Oncol 1999; 17: 968–75
  • Wagner J R, Walther M M, Linehan W M, White D E, Rosenberg S A, Yang J C. Interleukin-2 based immunotherapy for metastatic renal cell carcinoma with the kidney in place. J Urol 1999; 162: 43–5
  • Rosenberg S A, Yang J C, Schwartzentruber D J, Hwu P, Marincola F M, Topalian S L, Restifo N P, Dudley M E, Schwarz S L, Spiess P J, Wunderlich J R, Parkhurst M R, Kawakami Y, Seipp C A, Einhom J H, White D E. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma 1997; 3: 558–61
  • Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson Y, Hamada H, Pardoll D, Mulligan R C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 95: 3539–43
  • Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger J C, Hodi F S, Liebster L, Lam P, Mentzer S, Singer S, Tanabe K K, Cosimi A B, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Dranoff G, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95: 13141–6
  • Townsend S E, Allison J P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259: 368–70
  • Dunussi-Joannopoulos K, Dranoff G, Weinstein H J, Ferrara J L, Bierer B E, Croop J M. Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 1998; 91: 222–30
  • Chiodoni C, Paglia P, Stoppacciro A, Rodolfo M, Parenza M, Colombo M P. Dendritic cells infiltrating tumors contradicted with Granulocyte/Macrophage Colony-stimulating Factor (GM-CSF) and CD40 ligation genes take up and present endogenous tumor-associated antigens for a cytotoxic T lymphocyte response. J Exp Med. 1999; 190: 125–133
  • Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nature Med 1997; 3: 558–61
  • Nestle F O, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 1988; 4: 328–32
  • Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller C A, Becker V, Gross A J, Hemmerlein B, Kanz L, Muller G A, Ringert R H. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med 2000; 6: 332–6
  • Panelli M C, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg S A, Marincola F M. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 2000; 23: 487–98
  • Fernandez N C, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med 1999; 5: 405–11
  • Mackey M F, Gunn J R, Maliszewsky C, Kikutani H, Noelle R J, Barth RJ, Jr. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161: 2094–8
  • Schoenberger S P, Toes R E, van der Voort E I, Offringa R, Melief C J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393: 480–3
  • Mackey M F, Gunn J R, Ting P P, Kikutani H, Dranoff G, Noelle R J, Barth RJ, Jr. Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154. Cancer Res 1997; 57: 2569–74
  • Diehl L, Den Boer A T, Schenberger S P, van der Voort E IH, Schumacher T NM, Melief C JM, Offringa R, Toes R EM. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med. 1999; 5: 774–779
  • Clark E A, Ledbetter J A. How B and T cells talk to each other. Nature 1994; 367: 425–30
  • van Looten C, Banchereau J. Function of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 1997; 9: 330–338
  • Mauri C, Mars L T, Londei M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nature Med 2000; 6: 673–9
  • Li Y, Li X C, Zheng X X, Wells A D, Turka L A, Strom T B. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med 1999; 5: 1298–302
  • Kirk A D, Burkly L C, Batty D S, Baumgartner R E, Berning J D, Buchanan K, Fechner JH, Jr, Germond R L, Kampen R L, Patterson N B, Swanson S J, Tadaki D K, Ten Hoor C N, White L, Knechtle S J, Harlan D M. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med 1999; 5: 686–93
  • Chiodoni C, Paglia P, Stoppacciro A, Rodolfo M, Parenza M, Colombo M P. Dendritic cells infiltrating tumors contradicted with Granulocyte/Macrophage Colony-stimulating Factor (GM-CSF) and CD40 ligation genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med. 1999; 190: 125–133
  • Costello R T, Gastaut J A, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol. Today 20, 488–493. Schultze J, Johnson P. (1999) A stimulating new target for cancer immunotherapy. Lancet 1999; 354: 1225–1227
  • Yang Y, Wilson J M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 1996; 273: 1862–4
  • Brown M P, Topham D J, Sangster M Y, Zhao J, Flynn K J, Surman S L, Woodland D L, Doherty P C, Farr A G, Pattengale P K, Brenner M K. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 1998; 4: 1253–60
  • Chen L, Ashe S, Brady W A, Hellstrom I, Hellstrom K E, Ledbetter J A, McGowan P, Linsley P S. Co stimulation of antitumor immunity by the B7 counter receptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 1093–102
  • Teoh G, Urashima M, Greenfield E A, Nguyen K A, Lee J F, Chauhan D, Ogata A, Treon S P, Anderson K C. The 86-kD subunit of Ku autoantigen mediates homotypic and heterotypic adhesion of multiple myeloma cells. J Clin Invest 1998; 101: 1379–88
  • Teoh G, Tai Y T, Urashima M, Shirahama S, Matsuzaki M, Chauhan D, Treon S P, Raje N, Hideshima T, Shima Y, Anderson K C. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000; 95: 1039–46
  • Urashima M, Chauhan D, Uchiyama H, Freeman G J, Anderson K C. CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995; 85: 1903–12
  • Schattner E J. CD40 ligand in CLL pathogenesis and therapy. Leukemia and Lymphoma 2000; 37: 461–472
  • Kato K, Cantwell M J, Sharma S, Kipps T. Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocyte leukemia B cells. J Clin Invest 1998; 101: 1133–1141
  • Wierda W, Cantwell M J, Woods S J, Rssenti L Z, Prussak C E, Kipps T J. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924
  • French R R, Chan H T, Tutt A L, Glennie M J. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nature Med 1999; 5: 548–53
  • Schultze J L, Michalak S, Seamon M J, Dranoff G, Jung K, Daley J, Delgado J C, Gribben J G, Nadler L M. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757–65
  • Sotomayor E M, Borrello I, Tubb E, Rattis F M, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky H I. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med 1999; 5: 774–9
  • Diehl L, den Boer A T, Schoenberger S P, van der Voort E I, Schumacher T N, Melief C J, Offringa R, Toes R E. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med 1999; 5: 780–7
  • Dilloo D, Brown M, Roskrow M, Zhong W, Holladay M, Holden W, Brenner M. CD40 ligand induces an anti-leukemia immune response in vivo. Blood 1997; 90: 1927–33
  • Schattner E J, Elkon K B, Yoo D H, Tumang J, Krammer P H, Crow M K, Friedman S M. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med 1995; 182: 1557–65
  • Schattner E J, Mascarenhas J, Bishop J, Yoo D H, Chadburn A, Crow M K, Friedman S M. CD4+ T-cell induction of Fas-mediated apoptosis in Burkitt's lymphoma B cells. Blood 1996; 88: 1375–82
  • Wang D, Freeman G J, Levine H, Ritz J, Robertson M J. Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br J Haematol 1997; 97: 409–17
  • Lane P, Brocker T, Hubele S, Padovan E, Lanavecchia A, McConnell F. Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med 1993; 177: 1209–13
  • Donnelly J J, Ulmer J B, Shiver J W, Liu M A. DNA vaccines. Annu Rev Immunol 1997; 15: 617–23
  • Darji A, Guzman C A, Gerstel B, Wachholz P, Timmis K N, Wehland J, Chakraborty T, Weiss S. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997; 91: 765–75
  • Jones B D, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of Peyer's patches. J Exp Med 1994; 180: 15–20
  • Hoiseth S K, Stocker B A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 1981; 291: 238–9
  • Urashima M, Suzuki H, Yuza Y, Akiyama M, Ohno N, Eto Y. An oral CD40 ligand gene therapy against lymphoma using attenuated salmonella typhimurium. Blood 2000; 95: 1258–1263
  • Levine M M, Galen J, Barry E. Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors. J Biotech 1996; 44: 193–9
  • van Cott J L, Chatfield S N, Roberts M, Hone D M, Hofmann E L, Pascual D W, Yamamoto M, Kiyono H, McGhee J R. Regulation of host immune responses by modification of Salmonella virulence genes. Nat Med 1998; 4: 1247–52
  • Bao S, Beagley K W, France M P, Shen J, Husband A J. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 2000; 99: 464–72
  • Hohmann E L, Oletta C A, Loomis W P, Miller S I. Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Natl Acad Sci U S A 1995; 92: 2904–8
  • Hohmann E L, Oletta C A, Killeen K P, Miller S I. phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 1996; 173: 1408–14
  • Sirard J C, Niedergang F, Kraehenbuhl J P. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol Rev 1999; 171: 5–26
  • Xiang R, Lode H N, Chao T H, Ruehlmann J M, Dolman C S, Rodriguez F, Whitton J L, Overwijk W W, Restifo N P, Reisfeld R A. An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 2000; 97: 5492–7
  • Pawelek J M, Low K B, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 1997; 57: 4537–44
  • Cowen D, Salem N, Ashoori F, Meyn R, Meistrich M L, Roth J A, Pollack A. Prostate cancer radiosensitization in vivo with adenovirus-mediated p53 gene therapy. Clin Cancer Res 2000; 6: 4402–8
  • Swisher S G, Roth J A, Nemunaitis J, Lawrence D D, Kemp B L, Carrasco C H, Connors D G, El-Naggar A K, Fossella F, Glisson B S, Hong W K, Khuri F R, Kurie J M, Lee J J, Lee J S, Mack M, Merritt J A, Nguyen D M, Nesbitt J C, Perez-Soler R, Pisters K M, Putnam JB, Jr, Richli W R, Savin M, Waugh M K, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999; 91: 763–71
  • Roth J A, Nguyen D, Lawrence D D, Kemp B L, Carrasco C H, Ferson D Z, Hong W K, Komaki R, Lee J J, Nesbitt J C, Pisters K M, Putnam J B, Schea R, Shin D M, Walsh G L, Dolormente M M, Han C I, Martin F D, Yen N, Xu K, Stephens L C, McDonnell T J, Mukhopadhyay T, Cai D. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med 1996; 2: 985–91
  • Young L S, Eliopoulos A G, Gallagher N J, Dawson CW. CD40 and epithelial cells: across the great divide. Immunol. Today 1998; 19: 502–506
  • Schultze J, Johnson P. A stimulating new target for cancer immunotherapy. Lancet 1999; 354: 1225–1227
  • Cooke P W, James N D, Ganesan R, Wallace M, Burton A, Young L S. CD40 expression in bladder cancer. J Pathol 1999; 188: 38–43
  • Posner M R, Cavacini L A, Upoton M P, Tillman K C, Gornstein E R, Norris CM., Jr. Surface membrane-expressed CD40 is present on tumor cells from squamous cell cancer of the head and neck in vitro and in vivo and regulates cell growth in tumor cell lines. Clin Cancer Res 1999; 5: 2261–2270
  • Eliopoulos A G, Davies C, Knox P G, Gllagher N J, Afford S C, Adams D H, Young L S. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligand of the tumor necrosis factor superfamily. Mol. Cell. Biol. 2000; 20: 5503–5515
  • Van den Oord J, Maes A, Stas M, Nuyts J, Battocchio S, Kasran A, Garmyn M, Wever I D, De Wolf-Peeters C. CD40 is a prognostic marker in primary cutaneous malignant melanoma. Am J Patol 1996; 149: 1953–1961
  • Funakoshi S, Longo D L, Beckwith M, Conley D K, Tsarfy G, Tsarfy I, Armitage R J, Fanslow W C, Springgs M K, Murphy W J. Inhibition of human B-cell lymphoma by CD40 stimulation. Blood 1994; 83: 2787–2794
  • Ghosh M, Crocker J, Morris A G. CD40 and Bcl2 expression in squamous cell carcinoma of the lung: correlation with apoptosis, survival, and other clinicopathlogical factors. J Pathol 1999; 189: 363–367
  • Kluth B, Hess S, Engelmann H, Schafnitzel S, Riethmuller G, Feuchet H E. Endothelial expression of CD40 in renal cell carcinoma. Cancer Res 1997; 57: 891–899
  • Amo Y, Ohta Y, Hamada H, Tatsuta M, Katsuoka K. Expression of CD40 and CD40 ligand in Bowen's disease and squamous cell carcinoma. Eur J Dermatol 2000; 10: 439–442
  • Lollini P L, Landuzzi L, Frabetti F, Rossi I, Nicoletti G, Scotlandi K, Serra M, Baldini N, Giovanni C, Nanni P. Expression of functional CD40 on human osteosarcoma and Ewing's sarcoma cells. Clin Cancer Res 1998; 4: 1843–1849
  • Altenburg A, Baldus S E, Smola H, Pfister H, Hess S. CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-γ. J Immunol 1999; 162: 4140–4147
  • Sugimoto K, Shiraki K, Ito T, Fujikawa K, Takase K, Tameda Y, Moriyama M, Nakano T. Expression of functional CD40 in human hepatocellular carcinoma. Hepatology 1999; 30: 920–926
  • Hess S, Engelmann H. A new function of CD40: Induction of cell death in transformed cells. J. Exp. Med. 1996; 183: 159–167
  • Francisco J A, Donaldson K L, Chace D, Siegall C B, Wahl A F. Agonistic properties and in vivo antitumor activity of the anti-CD40 antibody SGN-14. Cancer Res 2000; 60: 3225–3231
  • Borges L., Miller R E, Jones J, Ariail K, Whitmore J, Fanslow W, Lynch D H. Synergistic action of fins-like tyrosine kines 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol. 1999; 163: 1290–1297
  • Eliopoulos A G, Davies C, Knox P G, Gllagher N J, Afford S C, Adams D H, Young L S. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligand of the tumor necrosis factor superfamily. Mol. Cell. Biol. 2000; 20: 5503–5515
  • Grossmann M E, Brown M P, Brenner M K. Antitumor responses induced by transgenic expression of CD40 ligand. Human Gene Ther 1997; 8: 1935–1943
  • Couderc B, Zitvogel L, Douin-Echinard V., Djennane L, Tahara H, Favre G, Lotze M T, Robbins P D. Enhancement of antitumor immunity by expression of CD70 (CCD27 ligand) or CD154 (CD40 ligand) costimulatory moleclues in tumor. Cancer Gene Ther 1997; 5: 163–175
  • Tillman B W, Hayes T, de Gruiji T D, Douglas J T, Curiel D T. Adenoviral vector target to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in s murine model. Cancer Res 2000; 60: 5456–5463
  • Eliopoulos A G, Dawson C W, Mosialos G, Floettmann J E, Rowe M, Armitage R J, Dawson J, Zapaka J M, Kerr D J, Wakelam M JO, Reed J C, Kieff E, Young L S. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMPI: involvement of TRAF3 as a common mediator. Oncogene 1996; 13: 2243–2254
  • Sun Y, Peng D, Lecanda J, Schmitz V, Barajas M, Qian C, Prieto J. In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity. Gene Ther 2000; 7: 1467–1476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.