645
Views
62
CrossRef citations to date
0
Altmetric
Original Articles: Research

Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models

, , , , , , , & show all
Pages 1293-1304 | Received 24 Nov 2009, Accepted 12 Mar 2010, Published online: 08 Apr 2010

References

  • Hale G, Xia MQ, Tighe HP, Dyer MJ, Waldmann H. The CAMPATH-1 antigen (CDw52). Tissue Antigens 1990;35:118–127.
  • Hale G. CD52 (Campath-1). J Biol Regul Homeost Agents 2001;15:386–391.
  • Huh Y, Kantarjian H, Pierce SM, et al Expression of human CD52 in human hematopoietic malignancies. Blood 1998;92(Suppl. 1): (Abstract 4199).
  • Elsner J, Hochstetter R, Spiekermann K, Kapp A. Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood 1996;88:4684–4693.
  • Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993;82:807–812.
  • Rodig SJ, Abramson JS, Pinkus GS, et al Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 2006;12:7174–7179.
  • Ginaldi L, De Martinis M, Matutes E, et al Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res 1998;22:185–191.
  • Domagala A, Kurpisz M. CD52 antigen – a review. Med Sci Monit 2001;7:325–331.
  • Rowan WC, Hale G, Tite JP, Brett SJ. Cross-linking of the Campath-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int Immunol 1995;7:69–77.
  • Masuyama J-I, Yoshio T, Suzuki K, et al Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med 1999;189:979–989.
  • Watanabe T, Masuyama J-I, Sohma Y et al CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol 2006;120:247–259.
  • Golay J, Manganini M, Rambaldi A, Introna M. Effect of alemtuzumab on neoplastic B cells. Haematologica 2004;89:1476–1483.
  • Rossmann ED, Lundin J, Lenkei R, Mellstedt H, Osterborg A. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J 2001;2:300–306.
  • Hale G, Dyer MJ, Clark MR, et al Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 1988;17:1394–1399.
  • Pawson R, Dyer MJ, Barge R, et al Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol 1997;15:2667–2672.
  • Dearden CE, Matutes E, Cazin B, et al High remission rate in T-cell prolymphocytic leukemia with CAMPATH- 1H. Blood 2001;98:1721–1726.
  • Lundin J, Hagberg H, Repp R, et al Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 2003;101:4267–4272.
  • Enblad G, Hagberg H, Erlanson M, et al A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood 2004;103:2920–2924.
  • Uppenkamp M, Engert A, Diehl V, Bunjes D, Huhn D, Brittinger G. Monoclonal antibody therapy with CAMPATH-1H in patients with relapsed high- and low-grade non-Hodgkin's lymphomas: a multicenter phase I/II study. Ann Hematol 2002;81:26–32.
  • Khorana A, Bunn P, McLaughlin P, Vose J, Stewart C, Czuczman MS. A phase II multicenter study of CAMPATH-1H antibody in previously treated patients with nonbulky non-Hodgkin's lymphoma. Leuk Lymphoma 2001;41:77–87.
  • Lundin J, Osterborg A, Brittinger G, et al CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin's lymphoma: a phase II multicenter study. European Study Group of CAMPATH-1H treatment in Low-Grade Non-Hodgkin's Lymphoma. J Clin Oncol 1998;16:3257–3263.
  • Reiff A. A review of Campath in autoimmune disease: biologic therapy in the gray zone between immunosuppression and immunoablation. Hematology 2005;10:79–93.
  • Brett S, Baxter G, Cooper H, Johnston JM, Tite J, Rapson N. Repopulation of blood lymphocyte sub-populations in rheumatoid arthritis patients treated with the depleting humanized monoclonal antibody, CAMPATH-1H. Immunology 1996;88:13–19.
  • Coles AJ, Cox A, Le Page E, et al The window of therapeutic opportunity in multiple sclerosis. Evidence from monoclonal antibody therapy. J Neurol 2006;253:98–108.
  • Cox AL, Thompson SA, Jones JL, et al Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005;35:3332–3342.
  • Coles AJ, Compston DAS, Selmaj KW, et al Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008;359:1786–1801.
  • Zent CS, Secreto CR, LaPlant BR, et al Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res 2008;32:1849–1856.
  • Cruz RI, Hernandez-Ilizaliturri FJ, Olejniczak S, et al CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity (CMC) but not antibody-dependent cellular cytotoxicity (ADCC): Pre-clinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin's lymphoma (NHL). Leuk Lymphoma 2007;48:2424–2436.
  • Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 1998;95:427–436.
  • Smolewski P, Szmigielska-Kaplon A, Cebula B, et al Proapoptotic activity of alemtuzumab alone and in combination with rituximab or purine nucleoside analogues in chronic lymphocytic leukemia cells. Leuk Lymphoma 2005;46:87–100.
  • Mone AP, Cheney C, Banks AL, et al Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia 2006;20:272–279.
  • Nuckel H, Frey UH, Roth A, Duhrsen U, Siffert W. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. Eur J Pharmacol 2005;14:217–224.
  • Hernandez-Ilizaliturri FJ, Jupudy V, Reising S, Repasky E, Czuczman MS. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma 2005;46:1775–1784.
  • Lapalombella R, Zhao X, Triantafillou G, et al A novel Raji-Burkitt's lymphoma model for preclinical and mechanistic evaluation of CD52-targeted immunotherapeutic agents. Clin Cancer Res 2008;14:569–578.
  • Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, et al Neutrophils contribute to the biological antitumor activity of Rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 2003;9:5866–5873.
  • de Kroon JFEM, de Paus RA, Kluin-Nelemans HC, et al Anti-CD45 and anti-CD52 (Campath) monoclonal antibodies effectively eliminate systemically disseminated human non-Hodgkin's lymphoma B cells in Scid mice. Exp Hematol 1996;24:919–926.
  • Carlo-Stella C, Guidetti A, Di Nicola M, et al CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice. Exp Hematol 2006;34:721–727.
  • Van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002;12:81–94.
  • Cortelezzi A, Pasquini MC, Sarina B, et al A pilot study of low-dose subcutaneous alemtuzumab therapy for patients with chemotherapy-refractory chronic lymphocytic leukemia. Haematologica 2005;90:410–412.
  • Lundin J, Kimby E, Bjorkholm M, et al Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002;100:768–773.
  • Lin TS, Flinn IW, Lucas MS, et al Filgrastim and alemtuzumab (Campath-1H) for refractory chronic lymphocytic leukemia. Leukemia 2005;19:1207–1210.
  • Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev 1998;163:59–76.
  • Weiner LM. Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nature Rev Cancer 2007;7:701–706.
  • Ginaldi L, De Martinis M, Matutes E, et al Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res 1998;22:185–191.
  • Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005;24:4462–4471.
  • Burger M, Hartmann T, Krome M, et al Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005;106:1824–1830.
  • Zeng Z, Samudio IJ, Munsell M, et al Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 2006;5:3113–3121.
  • Zhang Z, Zhang M, Goldman CK, Ravetch JV, Waldmann TA. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res 2003;63:6453–6457.
  • Cartron G, Zhao-Yang L, Baudard M, et al Granulocyte-macrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a Phase II study. J Clin Oncol 2008;26:2725–2731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.