231
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Abnormalities of DNA repair mechanisms in common hematological malignancies

, , , &
Pages 567-582 | Received 22 Sep 2010, Accepted 22 Dec 2010, Published online: 25 Mar 2011

References

  • Spry M, Pierce H. DNA repair pathways and hereditary cancer susceptibility syndromes. Front Biosci 2007;12:4191–4207.
  • Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005;31:603–617.
  • Cline SD, Hanawalt PC. Who's on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003; 4:361–372.
  • Hwang BJ, Ford JM, Hanawalt PC. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 1999; 96:424–428.
  • Willmore E, Elliott SL, Mainou-Flower T. DNA-dependent protein kinase is a therapeutic target and an indicator of poor prognosis in B–cell chronic lymphocytic leukemia. Clin Cancer Res 2008;14:3984–3992.
  • Hakem R. DNA-damage repair; the good the bad and the ugly. EMBO J 2008;27:589–605.
  • Mishina Y, Duguid EM, He C. Direct reversal of DNA alkylation damage. Chem Rev 2006;106:215–232.
  • Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008;43:239–276.
  • Fortini P, Parlanti E, Sidorkina OM. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem 1999;274:15230–15236.
  • Fortini P, Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 2007; 6:398–409.
  • Scharer OD. Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 2003;42:2946–2974.
  • Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 2002;3:21–29.
  • Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006;7:335–346.
  • Velangi MR, Matheson EC, Morgan GJ. DNA mismatch repair pathway defects in the pathogenesis and evolution of myeloma. Carcinogenesis 2004;25:1795–1803.
  • Weterings E, van Gent DC. The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst) 2004;3:1425–1435.
  • Karagiannis TC, El-Osta A. Double-strand breaks: signaling pathways and repair mechanisms. Cell Mol Life Sci 2004; 61:2137–2147.
  • Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003;85:1161–1173.
  • Helleday T, Lo J, van Gent DC. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 2007;6:923–935.
  • Kanaar R, Wyman C, Rothstein R. Quality control of DNA break metabolism: in the ‘end’ it's a good thing. EMBO J 2008;27:581–588.
  • Monzo M, Brunet S, Urbano-Ispizua A. Genomic polymorphisms provide prognostic information in intermediate-risk acute myeloblastic leukemia. Blood 2006;107:4871–4879.
  • Seedhouse C, Faulkner R, Ashraf N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 2004;10:2675–2680.
  • Voso MT, Fabiani E, D'Alo F. Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol 2007;18:1523–1528.
  • Rollinson S, Smith AG, Allan J. RAD51 homologous recombination repair gene haplotypes and risk of acute myeloid leukaemia. Leuk Res 2007;31:169–174.
  • Kuschel B, Auranen A, McBride S. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 2002;11:1399–1407.
  • Goode EL, Dunning AM, Kuschel B. Effect of germ-line genetic variation on breast cancer survival in a population-based study. Cancer Res 2002;62:3052–3057.
  • Jakubowska A, Narod SA, Goldgar DE. Breast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland. Cancer Epidemiol Biomarkers Prev 2003;12:457–459.
  • Bullinger L, Dohner K, Bair E. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350:1605–1616.
  • Kuptsova N, Kopecky KJ, Godwin J. Polymorphisms in DNA repair genes and therapeutic outcomes of AML patients from SWOG clinical trials. Blood 2007;109:3936–3944.
  • Strom SS, Estey E, Outschoorn UM. Acute myeloid leukemia outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients. Leuk Lymphoma 2010;51:598–605.
  • Bosken CH, Wei Q, Amos CI. An analysis of DNA repair as a determinant of survival in patients with non-small-cell lung cancer. J Natl Cancer Inst 2002;94:1091–1099.
  • Seedhouse C, Bainton R, Lewis M. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 2002;100:3761–3766.
  • Rassool FV. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 2003;193:1–9.
  • Gaymes TJ, Mufti GJ, Rassool FV. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res 2002;62:2791–2797.
  • Liddiard K, Hills R, Burnett AK. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 2010;29:2005–2012.
  • Mufti GJ. Pathobiology classification and diagnosis of myelodysplastic syndrome. Best Pract Res Clin Haematol 2004;17:543–557.
  • Economopoulos T, Stathakis N, Foudoulakis A. Myelodysplastic syndromes: analysis of 131 cases according to the FAB classification. Eur J Haematol 1987;38:338–344.
  • Fabiani E, D'Alo F, Scardocci A. Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res 2009;33:1068–1071.
  • Baumann Kreuziger LM, nd Steensma DP. RAD51 and XRCC3 polymorphism frequency and risk of myelodysplastic syndromes. Am J Hematol 2008;83:822–823.
  • Economopoulou P, Pappa V, Kontsioti F. Expression analysis of proteins involved in the non homologous end joining DNA repair mechanism in the bone marrow of adult de novo myelodysplastic syndromes. Ann Hematol 20010;89:233–239.
  • Nowicki MO, Falinski R, Koptyra M. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004;104:3746–3753.
  • Deutsch E, Dugray A, AbdulKarim B. BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 2001;97:2084–2090.
  • Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA 1999;96:203–207.
  • Joseph T, Kusumakumary P, Chacko DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 2005; 217:17–24.
  • Zhu R, Lu FJ, Zhang ZB. [Association of genetic polymorphism of XRCC1 with susceptibility to acute childhood leukemia]. Wei Sheng Yan Jiu 2005;34:300–302.
  • Pakakasama S, Sirirat T, Kanchanachumpol S. Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2007;48:16–20.
  • Meza-Espinoza JP, Peralta-Leal V, Gutierrez-Angulo M. XRCC1 polymorphisms and haplotypes in Mexican patients with acute lymphoblastic leukemia. Genet Mol Res 2009;8:1451–1458.
  • da Silva Silveira V, Canalle R, Scrideli CA. Polymorphisms of xenobiotic metabolizing enzymes and DNA repair genes and outcome in childhood acute lymphoblastic leukemia. Leuk Res 2009;33:898–901.
  • Batar B, Guven M, Baris S. DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia. Leuk Res 2009;33:759–763.
  • Gu L, Cline-Brown B, Zhang F. Mismatch repair deficiency in hematological malignancies with microsatellite instability. Oncogene 2002; 21:5758–5764.
  • Hangaishi A, Ogawa S, Mitani K. Mutations and loss of expression of a mismatch repair gene hMLH1 in leukemia and lymphoma cell lines. Blood 1997;89:1740–1747.
  • Matheson EC, Hall AG. Assessment of mismatch repair function in leukaemic cell lines and blasts from children with acute lymphoblastic leukaemia. Carcinogenesis 2003; 24:31–38.
  • Molenaar JJ, Gerard B, Chambon-Pautas C. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998;92:230–233.
  • Takeuchi S, Seriu T, Tasaka T. Microsatellite instability and other molecular abnormalities in childhood acute lymphoblastic leukaemia. Br J Haematol 1997;98:134–139.
  • Mathonnet G, Krajinovic M, Labuda D. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol 2003;123:45–48.
  • Best A, Matheson E, Minto L. Mismatch repair and the downstream target genes PAX5 and Ikaros in childhood acute lymphoblastic leukemia. Leuk Res 2010;34:1098–1102.
  • Irving JA, Hall AG. Mismatch repair defects as a cause of resistance to cytotoxic drugs. Expert Rev Anticancer Ther 2001;1:149–158.
  • Wang SL, Zhao H, Zhou B. Polymorphisms in ERCC1 and susceptibility to childhood acute lymphoblastic leukemia in a Chinese population. Leuk Res 2006;30:1341–1345.
  • Ganster C, Neesen J, Zehetmayer S. DNA repair polymorphisms associated with cytogenetic subgroups in B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 2009;48:760–767.
  • Stilgenbauer S, Sander S, Bullinger L. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH resistance to therapy and short survival. Haematologica 2007;92: 1242–1245.
  • Enjuanes A, Benavente Y, Bosch F. Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of chronic lymphocytic leukemia. Cancer Res 2008; 68:10178–10186.
  • Sellick GS, Wade R, Richards S. Scan of 977 nonsynonymous SNPs in CLL4 trial patients for the identification of genetic variants influencing prognosis. Blood 2008;111: 1625–1633.
  • Sampath D, Plunkett W. The role of DNA repair in chronic lymphocytic leukemia pathogenesis and chemotherapy resistance. Curr Oncol Rep 2007;9:361–367.
  • Christodoulopoulos G, Malapetsa A, Schipper H. Chlorambucil induction of HsRad51 in B-cell chronic lymphocytic leukemia. Clin Cancer Res 1999;5:2178–2184.
  • Xu ZY, Loignon M, Han FY. Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair S-phase checkpoint activation and reduced apoptosis. J Pharmacol Exp Ther 2005;314:495–505.
  • Aloyz R, Grzywacz K, Xu ZY. Imatinib sensitizes CLL lymphocytes to chlorambucil. Leukemia 2004;18:409–414.
  • Bello VE, Aloyz RS, Christodoulopoulos G. Homologous recombinational repair vis-a-vis chlorambucil resistance in chronic lymphocytic leukemia. Biochem Pharmacol 2002;63: 1585–1588.
  • Amrein L, Loignon M, Goulet AC. Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA-dependent protein kinase. J Pharmacol Exp Ther 2007;321:848–855.
  • Austen B, Powell JE, Alvi A. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005;106:3175–3182.
  • Sancar A. DNA excision repair. Annu Rev Biochem 1996;65:43–81.
  • Neilson JR, Auer R, White D. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997;11: 1929–1932.
  • Stankovic T, Weber P, Stewart G. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 1999;353:26–29.
  • Shen M, Zheng T, Lan Q. Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma among women in Connecticut. Hum Genet 2006;119:659–668.
  • Smedby KE, Lindgren CM, Hjalgrim H. Variation in DNA repair genes ERCC2 XRCC1 and XRCC3 and risk of follicular lymphoma. Cancer Epidemiol Biomarkers Prev 2006;15:258–265.
  • Skibola CF, Curry JD, Nieters A. Genetic susceptibility to lymphoma. Haematologica 2007;92:960–969.
  • Hill DA, Wang SS, Cerhan JR. Risk of non-Hodgkin lymphoma (NHL) in relation to germline variation in DNA repair and related genes. Blood 2006;108:3161–3167.
  • Roddam PL, Rollinson S, O'Driscoll M. Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma a tumour characterised by aberrant class switch recombination. J Med Genet 2002;39:900–905.
  • Worrillow L, Roman E, Adamson PJ. Polymorphisms in the nucleotide excision repair gene ERCC2/XPD and risk of non-Hodgkin lymphoma. Cancer Epidemiol 2009;33:257–260.
  • Grimm SA, Pulido JS, Jahnke K. Primary intraocular lymphoma: an International Primary Central Nervous System Lymphoma Collaborative Group Report. Ann Oncol 2007;18:1851–1855.
  • Shen M, Purdue MP, Kricker A. Polymorphisms in DNA repair genes and risk of non-Hodgkin's lymphoma in New South Wales Australia. Haematologica 2007;92:1180–1185.
  • Kim IS, Kim DC, Kim HG. DNA repair gene XRCC1 polymorphisms and haplotypes in diffuse large B-cell lymphoma in a Korean population. Cancer Genet Cytogenet 2010;196:31–37.
  • Liu J, Song B, Wang Z. DNA repair gene XRCC1 polymorphisms and non-Hodgkin lymphoma risk in a Chinese population. Cancer Genet Cytogenet 2009;191:67–72.
  • Matsuo K, Hamajima N, Suzuki R. Lack of association between DNA base excision repair gene XRCC1 Gln399Arg polymorphism and risk of malignant lymphoma in Japan. Cancer Genet Cytogenet 2004;149:77–80.
  • Rollinson S, Kesby H, Morgan GJ. Haplotypic variation in MRE11 RAD50 and NBS1 and risk of non-Hodgkin's lymphoma. Leuk Lymphoma 2006;47:2567–2583.
  • Schuetz JM, MaCarthur AC, Leach S. Genetic variation in the NBS1 MRE11 RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC Med Genet 2009;10:117.
  • Schaffner C, Idler I, Stilgenbauer S. Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000;97:2773–2778.
  • Taylor AM, Metcalfe JA, Thick J. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87:423–438.
  • Fang NY, Greiner TC, Weisenburger DD. Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc Natl Acad Sci USA 2003;100:5372–5377.
  • Liu A, Takakuwa T, Fujita S. ATR alterations in Hodgkin's lymphoma. Oncol Rep 2008;19:999–1005.
  • El-Zein R, Monroy CM, Etzel CJ. Genetic polymorphisms in DNA repair genes as modulators of Hodgkin disease risk. Cancer 2009;115:1651–1659.
  • Takagi M, Tsuchida R, Oguchi K. Identification and characterization of polymorphic variations of the ataxia telangiectasia mutated (ATM) gene in childhood Hodgkin disease. Blood 2004;103:283–290.
  • Liberzon E, Avigad S, Yaniv I. Molecular variants of the ATM gene in Hodgkin's disease in children. Br J Cancer 2004;90:522–525.
  • Calasanz MJ, Cigudosa JC, Odero MD. Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations. Genes Chromosomes Cancer 1997;18:84–93.
  • Rajkumar S, Fonseca R, Lacy M. Abnormal cytogenetics predict poor survival after high-dose therapy and autologous blood cell transplantation in multiple myeloma. Bone Marrow Transplant 1999;24:497–503.
  • Smadja NV, Bastard C, Brigaudeau C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98:2229–2238.
  • Fonseca R, Barlogie B, Bataille R. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64:1546–1558.
  • Ho PJ, Brown RD, Pelka GJ. Illegitimate switch recombinations are present in approximately half of primary myeloma tumors but do not relate to known prognostic indicators or survival. Blood 2001;97:490–495.
  • Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005;23:6333–6338.
  • Liebisch P, Dohner H. Cytogenetics and molecular cytogenetics in multiple myeloma. Eur J Cancer 2006;42:1520–1529.
  • Fenton JA, Pratt G, Rawstron AC. Isotype class switching and the pathogenesis of multiple myeloma. Hematol Oncol 2002; 20:75–85.
  • Hayden PJ, Tewari P, Morris DW. Variation in DNA repair genes XRCC3, XRCC4, XRCC5, and susceptibility to myeloma. Hum Mol Genet 2007;16(24):3117–3127.
  • Roddam PL, Allan JM, Dring AM. Non-homologous end-joining gene profiling reveals distinct expression patterns associated with lymphoma and multiple myeloma. Br J Haematol 2010;149: 258–262.
  • Tai YT, Podar K, Kraeft SK. Translocation of Ku86/Ku70 to the multiple myeloma cell membrane: functional implications. Exp Hematol 2002;30:212–220.
  • Yang C, Betti C, Singh S. Impaired NHEJ function in multiple myeloma. Mutat Res 2009;660:66–73.
  • Shammas MA, Shmookler Reis RJ. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood 2009;113:2290–2297.
  • Timuragaoglu A, Demircin S, Dizlek S. Microsatellite instability is a common finding in multiple myeloma. Clin Lymphoma Myeloma 2009;9:371–374.
  • Martin P, Santon A, Garcia-Cosio M. hMLH1 and MGMT inactivation as a mechanism of tumorigenesis in monoclonal gammopathies. Mod Pathol 2006;19:914–921.
  • Peng B, Hodge DR, Thomas SB. Epigenetic silencing of the human nucleotide excision repair gene hHR23B in interleukin-6-responsive multiple myeloma KAS-6/1 cells. J Biol Chem 2005; 280:4182–4187.
  • Vangsted A, Gimsing P, Klausen TW. Polymorphisms in the genes ERCC2 XRCC3 and CD3EAP influence treatment outcome in multiple myeloma patients undergoing autologous bone marrow transplantation. Int J Cancer 2007;120:1036–1045.
  • Hakme A, Wong HK, Dantzer F. The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep 2008;9:1094–1100.
  • Schreiber V, Dantzer F, Ame JC. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006;7:517–528.
  • Veuger SJ, Curtin NJ, Smith GC. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 2004;23:7322–7329.
  • Tomoda T, Kurashige T, Moriki T. Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol 1991;37:223–227.
  • Shiobara M, Miyazaki M, Ito H. Enhanced polyadenosine diphosphate-ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 2001;16:338–344.
  • Fukushima M, Kuzuya K, Ota K. Poly(ADP-ribose) synthesis in human cervical cancer cell-diagnostic cytological usefulness. Cancer Lett 1981;14:227–236.
  • Wielckens K, Garbrecht M, Kittler M. ADP-ribosylation of nuclear proteins in normal lymphocytes and in low-grade malignant non-Hodgkin lymphoma cells. Eur J Biochem 1980;104: 279–287.
  • Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007;13:1383–1388.
  • Albert JM, Cao C, Kim KW. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 2007; 13:3033–3042.
  • Clarke MJ, Mulligan EA, Grogan PT. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol Cancer Ther 2009;8:407–414.
  • Donawho CK, Luo Y, Penning TD. ABT-888 an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 2007;13:2728–2737.
  • Plummer R, Jones C, Middleton M. Phase I study of the poly(ADP-ribose) polymerase inhibitor AG014699 in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 2008;14:7917–7923.
  • Mendeleyev J, Kirsten E, Hakam A. Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem Pharmacol 1995;50:705–714.
  • Dungey FA, Loser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 2008;72:1188–1197.
  • Miknyoczki S, Chang H, Grobelny J. The selective poly(ADP-ribose) polymerase-1(2) inhibitor CEP-8983 increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther 2007;6:2290–2302.
  • Horton TM, Jenkins G, Pati D. Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol Cancer Ther 2009;8:2232–2242.
  • Palma JP, Wang YC, Rodriguez LE. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 2009;15:7277–7290.
  • Yang SX, Kummar S, Steinberg SM. Immunohistochemical detection of poly(ADP-ribose) polymerase inhibition by ABT-888 in patients with refractory solid tumors and lymphomas. Cancer Biol Ther 2009;8:2004–2009.
  • Kummar S, Kinders R, Gutierrez ME. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 2009;27:2705–2711.
  • Pettitt AR, Sherrington PD, Cawley JC. Role of poly(ADP-ribosyl)ation in the killing of chronic lymphocytic leukemia cells by purine analogues. Cancer Res 2000; 60:4187–4193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.