106
Views
1
CrossRef citations to date
0
Altmetric
Original Article: Research

Vaccination with immunoglobulin frame region-derived nonapeptide elicits cellular immune response against lymphoma in human leukocyte antigen-A2.1 transgenic mice

, , , , &
Pages 1795-1802 | Received 18 Dec 2010, Accepted 28 Mar 2011, Published online: 10 Jun 2011

References

  • Hsu FJ, Caspar CB, Czerwinski D, et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma--long-term results of a clinical trial. Blood 1997;89:3129–3135.
  • Inogès S, Rodrìguez-Calvillo M, Zabalegui N, et al. Clinical benefit associated with idiotypic vaccination in patients withfollicular lymphoma. J Natl Cancer Inst 2006;98:1292–1301.
  • Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 1999;5:1171–1177.
  • Chen TT, Tao MH, Levy R. Idiotype-cytokine fusion proteins as cancer vaccines. Relative efficacy of IL-2, IL-4, and granulocyte-macrophage colony-stimulating factor. J Immunol 1994;153:4775–4787.
  • Timmerman JM, Czerwinski DK, Davis TA, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002;99:1517–1526.
  • Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52–58.
  • Lee ST, Jiang YF, Park KU, et al. BiovaxID: a personalized therapeutic cancer vaccine for non-Hodgkin’s lymphoma. Expert Opin Biol Ther 2007;7:113–122.
  • Bendandi M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 2009;9:675–681.
  • Trojan A, Schultze JL, Witzens M, et al. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat Med 2000;6:667–672.
  • Xiaoling G, Ying L, Jing L, et al. Induction of anti B-cell malignance CTL response by subfamily-shared peptides derived from variable domain of immunoglobulin heavy chain. Cancer Immunol Immunother 2005;54:1106–1114.
  • Liu Y, Zhu P, Hu YM. Generation of cytotoxic T lymphocytes specific for B-cell acute lymphoblastic leukemia family-shared peptides derived from immunoglobulin heavy chain framework region. Chin Med J (Engl) 2007;120:652–657.
  • Alexander J, Sidney J, Southwood S, et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1994;1:751–761.
  • Alexander J, Fikes J, Hoffman S, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunol Res 1998;18:79–92.
  • Sheehy ME, McDermott AB, Furlan SN, et al. A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 2001;249:99–110.
  • Yang R, Rescorla FJ, Reilly CR, et al. A reproducible rat liver cancer model for experimental therapy: introducing a technique of intrahepatic tumor implantation. J Surg Res 1992;52:193–198.
  • Bendandi M. Role of anti-idiotype vaccines in the modern treatment of human follicular lymphoma. Expert Rev Anticancer Ther 2001;1:65–72.
  • Baskar S, Kobrin CB, Kwak LW. Autologous lymphoma vaccines induce human T cell responses against multiple, unique epitopes. J Clin Invest 2004;113:1498–1510.
  • Hansson L, Rabbani H, Fagerberg J, et al. T-cell epitopes within the complementarity-determining and framework regions of the tumor-derived immunoglobulin heavy chain in multiple myeloma. Blood 2003;101:4930–4936.
  • Pallarès N, Lefebvre S, Contet V, et al. The human immunoglobulin heavy variable genes. Exp Clin Immunogenet 1999;16:36–60.
  • Le AX, Bernhard EJ, Holterman MJ, et al. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J Immunol 1989;142:1366–1371.
  • Wu Y, Wan T, Zhou X, et al. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 2005;65:4947–4954.
  • Engler OB, Schwendener RA, Dai WJ, et al. A liposomal peptide vaccine inducing CD8+ T cells in HLA-A2.1 transgenic mice, which recognise human cells encoding hepatitis C virus (HCV) proteins. Vaccine 2004;23:58–68.
  • Vissers JL, De Vries IJ, Schreurs MW, et al. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res 1999;59:5554–5559.
  • Firat H, Garcia-Pons F, Tourdot S, et al. H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 1999;29:3112–3121.
  • Mateo L, Gardner J, Chen Q, et al. An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J Immunol 1999;163:4058–4063.
  • Wang B, Chen H, Jiang X, et al. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood 2004;104:200–206.
  • Ramage JM, Metheringham R, Conn A, et al. Identification of an HLA-A*0201 cytotoxic T lymphocyte epitope specific to the endothelial antigen Tie-2. Int J Cancer 2004;110:245–250.
  • Ramage JM, Spendlove I, Rees R, et al. The use of reverse immunology to identify HLA-A2 binding epitopes in Tie-2. Cancer Immunol Immunother 2006;55:1004–1010.
  • Decroix N, Quan CP, Pamonsinlapatham P, et al. Mucosal immunity induced by intramuscular administration of free peptides in-line with PADRE: IgA antibodies to the ELDKWA epitope of HIV gp41. Scand J Immunol 2002;56:59–65.
  • Wei WZ, Ratner S, Shibuya T, et al. Foreign antigenic peptides delivered to the tumor as targets of cytotoxic T cells. J Immunol Methods 2001;258:141–150.
  • Cunha MG, Rodrigues MM, Soares IS. Comparison of the immunogenic properties of recombinant proteins representing the Plasmodium vivax vaccine candidate MSP1 (19) expressed in distinct bacterial vectors. Vaccine 2001;20:385–396.
  • Voss RH, Kuball J, Theobald M. Designing TCR for Cancer Immunotherapy. In: Ludewig B, Hoffman MW, editors. Adoptive immunotherapy: methods and protocols, Vol. 17. Totowa, NJ: Humana; 2005. pp 229–257.
  • Wang Q, Liu H, Zhang X, et al. High doses of mother’s lymphocyte infusion to treat EBV-positive T-cell lymphoproliferative disorders in childhood. Blood 2010;116:5941–5947.
  • Brody J, Levy R. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant. Immunotherapy 2009;1:809–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.