482
Views
30
CrossRef citations to date
0
Altmetric
Review

The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma

&
Pages 1857-1866 | Received 17 Mar 2011, Accepted 30 Mar 2011, Published online: 23 May 2011

References

  • Vezina C, Kudelski A, Sehgal SN. Rapamycin, a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 1975;28:721–726.
  • Heitman J, Movva N, Hall H. Target for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905–909.
  • Alessi D, Pearce L, Garcia-Martinez J. New insight into mTOR signaling: TORC2 and beyond. Sci Signal 2009;2:pe27.
  • Guertin D, Sabatini D. The pharmacology of mTOR inhibition. Sci Signal 2009;2:pe24.
  • Sarbassov D, Ali S, Kim D, et al. Rictor, a novel partnet of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296–1302.
  • Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004;6:1122–1128.
  • Sarbassov D, Guertin D, Ali S, et al. Phosporylation and regulation of AKT/PKB by the rictor-mTOR complex. Science 2005;307:1098–1101.
  • Garcia-Martinez J, Alessi D. mTOR complex 2 (mTORC 2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008;416:375–385.
  • Zhang Y, Gao X, Saucedo L, et al. Rheb is a direct target of the tuberous sclerosis tumor suppressor proteins. Nat Cell Biol 2003;5:578–581.
  • Gwinn D, Shackelford D, Egan D, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214–226.
  • Sancak Y, Thoreen C, Peterson T, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903–915.
  • Edinger A, Thompson C. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002;13:2276–2288.
  • Frias M, Thoreen C, Jaffe J, et al. mSIN1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006;16:1865–1870.
  • Tato I, Bartrons R, Ventura F, et al. Amino acids activate mTOR complex 2 via PI3K/AKT signaling. J Biol Chem 2011;286:6128–6142.
  • DeBenedetti A, Harris A. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999;31:59–72.
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926–1945.
  • Shi Y, Sharma A, Wu H, et al. Cyclin D1 and c-myc IRES-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK and ERK-dependent pathway. J Biol Chem 2005;280:10964–10973.
  • Huang S, Bjornsti M, Houghton P. Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2003;2:222–232.
  • Djouder N, Metzler S, Schmidt A, et al. S6K1-mediated disassembly of mitochondrial UR1/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 2007;28:28–40.
  • Harada H, Andersen J, Mann M, et al. p70S6 kinase signals call survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001;98:9666–9670.
  • Huang S, Shu L, Easton J, et al. Inhibition of mTOR activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J Biol Chem 2004;279:36490–36496.
  • Hsieh AC, Costa M, Zollo O, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010;17:249–261.
  • Hudson C, Liu M, Chiang G, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002;22:7004–7014.
  • Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000;60:6763–6770.
  • Hsu J, Shi Y, Krajewski S, et al. The AKT kinase is activated in multiple myeloma tumor cells. Blood 2001;98:2853–2855.
  • Hyun T, Yam A, Pece S, et al. Loss of PTEN expression leading to high AKT activation in human multiple myelomas. Blood 2000;96:3560–3568.
  • Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000;96:2856–2861.
  • Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 1997;15:837–843.
  • Shi Y, Hsu J, Hu L, et al. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to IL-6. J Biol Chem 2002;277:15712–15720.
  • Shi Y, Gera J, Hu L, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002;62:5027–5034.
  • Guglielmelli T, Cappia S, Giugliano E, et al. The AKT/mTOR/P70S6K/4EB-P1 signaling pathway is activated in a subset of multiple myeloma patients and correlates with high serum levels of beta 2 microglobulin. Blood 2008;112(Suppl. 1): Abstract 2716.
  • Chang H, Xy Q, Claudio J, et al. Analysis of PTEN deletions and mutations in multiple myeloma. Leuk Res 2006;30:262–265.
  • Hu L, Shi Y, Hsu J, et al. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003;101:3126–3135.
  • Hoang B, Frost P, Shi Y, et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 2010;116:4560–4568.
  • Zollinger A, Stuhmer T, Chatterjee M, et al. Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: AKT-dependent and AKT-independent multiple myeloma. Blood 2008;112:3403–3411.
  • Frost P, Shi Y, Hoang B, et al. AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 2007;26:2255–2262.
  • Frost P, Shi Y, Hoang B, et al. Regulation of D-cyclin translation inhibition in myeloma cells treated with mTOR inhibitors: rationale for combined treatment with ERK kinase inhibitors and rapamycin. Mol Cancer Ther 2009;8:83–93.
  • Hoang B, Benavides A, Shi Y, et al. Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther 2009;8:1974–1984.
  • Yan H, Frost P, Shi Y, et al. Mechanism by which mTOR inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 2006;66:2305–2313.
  • Stromberg T, Dimberg A, Hammarberg A. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 2004;103:3138–3147.
  • Raje N, Kumar S, Hideshima T, et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004;104:4188–4193.
  • Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001;98:10314–10319.
  • Podsypanina K, Lee RT, Politis C, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70S6 kinase activity in PTEN +/− mice. Proc Natl Acad Sci USA 2001;98:10320–10325.
  • Alsayed F, Leleu X, Jia X, et al. Combination mTOR inhibitor rapamycin and HSP90 inhibitor 17 allylamino 17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 2006;12:6826–6835.
  • Shi Y, Yan H, Frost P, et al. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005;4:1533–1540.
  • Cirstea D, Hideshima T, Rodig S, et al. Dual inhibition of AKT/mTOR pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther 2010;9:963–975.
  • Frost P, Moatamed F, Hoang B, et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004;104:4181–4187.
  • O’Reilly K, Rojo F, She Q, et al. MTOR inhibition induces upstream receptor tyrosine 48 signaling and activates AKT. Cancer Res 2006; 66:1500–1508.
  • McMillin DW, Ooi M, Delmore J, et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mTOR inhibitor NVP-BEZ235. Cancer Res 2009;69:5835–5842.
  • Guertin D, Stevens D, Thoreen C, et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 revelas that mTORC2 is required for signaling to AKT-FOXO but not S6K1. Dev Cell 2006;11:859–871.
  • Cirstea D, Hideshima T, Santo L, et al. Disruption of DEPTOR/TORC1/TORC2 signaling cascade using a novel selective mTOR inhibitor AZD8055 results in growth arrest and apoptosis of multiple myeloma cells. Blood 2010;116(Suppl. 1): Abstract 791.
  • Maiso P, Azab A, Liu Y, et al. Dual targeting of TORC1 and TORC2 as a new strategy in the treatment of multiple myeloma. Blood 2010;116(Suppl. 1): Abstract 133.
  • Murray J, Campbell D, Morrice N, et al. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem J 2004;384:477–488.
  • Janes MR, Limon JJ, So L, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010;16:205–213.
  • Ogata A, Chauhan D, Teoh G, et al. IL-6 triggers cell growth via the RAS-dependent MAP kinase cascade. J Immunol 1997;159:2212–2221.
  • Peterson TR, Laplante M, Thoreen C, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:1–14.
  • Sawyers C. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 2003;4:343–348.
  • Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal cell carcinoma. N Engl J Med 2007;356:2271–2281.
  • Hainsworth J, Spigel D, Burris H, et al. Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol 2010;28:2131–2136.
  • Witzig T, Geter S, Ghobrial I, et al. Phase II trial of single agent temsirolimus for relapsed mantle cell lymphoma. J Clin Oncol 2005;23:5347–5356.
  • Farag SS, Zhang S, Jansak B, et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res 2009;33:1475–1480.
  • Guenther A, Baumann P, Burger R, et al. Phase I/II study with single agent everolimus in patients with relapsed or refractory multiple myeloma. Blood 2009;114(Suppl. 1): Abstract 3850.
  • Ghobrial IM, Gertz M, LaPlant B, et al. Phase II trial of the oral mTOR inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol 2010;28:1408–1414.
  • Roccaro A, Sacco A, Husu E, et al. Dual targeting of the PI3K/AKT/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 2010;115:559–569.
  • Ghobrial IM, Weller E, Ravi V, et al. Final results of the phase I/II trial of weekly bortezomib in combination with temsirolimus in relapsed or refractory multiple myeloma specifically in patients refractory to bortezomib. Blood 2010;116(Suppl. 1): Abstract 990.
  • Mahindra A, Richardson P, Hari P, et al. Updated results of a phase I study of RAD001 in combination with lenalidomide in patients with relapsed or refractory multiple myeloma with pharmacodynamic and pharmacokinetic analysis. Blood 2010;116(Suppl. 1): Abstract 3051.
  • Hofmeister C, Benson D, Efebera Y, et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma. Blood 2009;114(Suppl. 1): Abstract 2884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.