376
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Cell cycle regulatory molecular profiles of pediatric T-cell lymphoblastic leukemia and lymphoma

, &
Pages 557-568 | Received 29 Jun 2011, Accepted 18 Aug 2011, Published online: 27 Apr 2012

References

  • Abbas T, Dutta A. p21 in cancer:intricate networks and multiple activities. Nat Rev Cancer 2009;9:400–414.
  • Canepa ET, Scassa ME, Ceruti JM, . INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007;59:419–426.
  • Derheimer FA, Kastan MB. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 2010;584:3675–3681.
  • Pajalunga D, Mazzola A, Franchitto A, . The logic and regulation of cell cycle exit and reentry. Cell Mol Life Sci 2008;65:8–15.
  • Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer 2009;9:738–748.
  • Schmitt E, Paquet C, Beauchemin M, . DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 2007;8:377–397.
  • Corn PG, Kuerbitz SJ, van Noesel MM, . Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999;59:3352–3356.
  • Chivukula RR, Mendell JT. Circular reasoning:microRNAs and cell-cycle control. Trends Biochem Sci 2008;33:474–481.
  • Cimmino A, Calin GA, Fabbri M, . miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102:13944–13949.
  • Feng H, Stachura DL, White RM, . T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 2010;18:353–366.
  • Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 2009;220:292–296.
  • Liao DJ, Thakur A, Wu J, . Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncol 2007;13:93–158.
  • Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008;14:159–169.
  • Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2010;2:a001057.
  • Reiter A, Schrappe M, Tiemann M, . Successful treatment strategy for Ki-1 anaplastic large-cell lymphoma of childhood: a prospective analysis of 62 patients enrolled in three consecutive Berlin-Frankfurt-Munster group studies. J Clin Oncol 1994;12:899–908.
  • Reiter A, Schrappe M, Parwaresch R, . Non-Hodgkin's lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage—a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol 1995;13:359–372.
  • Raetz EA, Perkins SL, Bhojwani D, . Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2006;47:130–140.
  • Uyttebroeck A, Vanhentenrijk V, Hagemeijer A, . Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma 2007;48:1745–1754.
  • Burkhardt B, Moericke A, Klapper W, . Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 2008;49:451–461.
  • Suzuki R, Kuroda H, Komatsu H, . Selective usage of D-type cyclins in lymphoid malignancies. Leukemia 1999;13:1335–1342.
  • Sicinska E, Aifantis I, Le Cam L, . Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003;4:451–461.
  • Clappier E, Cuccuini W, Cayuela JM, . Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 2006;20:82–86.
  • Karrman K, Andersson A, Bjorgvinsdottir H, . Deregulation of cyclin D2 by juxtaposition with T-cell receptor alpha/delta locus in t(12;14)(p13;q11)-positive childhood T-cell acute lymphoblastic leukemia. Eur J Haematol 2006;77:27–34.
  • Sasaki E, Yatabe Y, Hashimoto M, . Development-dependent expression of cyclin D3 in precursor T-cell lymphoblastic leukemia/lymphoma. Pathol Int 2007;57:53–59.
  • Mekki Y, Catallo R, Bertrand Y, . Enhanced expression of p16ink4a is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Leukemia 1999;13:181–189.
  • Wolowiec D, Mekki Y, Ffrench P, . Differential expression of cell proliferation regulatory proteins in B- and T-lineage acute lymphoblastic leukaemias. Br J Haematol 1996;95:518–523.
  • Nguyen-Khac F, Barin C, Chapiro E, . Cyclin D3 deregulation by juxtaposition with IGH locus in a t(6;14)(p21;q32)-positive T-cell acute lymphoblastic leukemia. Leuk Res 2010;34:e13–e14.
  • Volm M, Koomagi R, Stammler G, . Prognostic implications of cyclins (D1, E, A), cyclin-dependent kinases (CDK2, CDK4) and tumor-suppressor genes (pRB, p16INK4A) in childhood acute lymphoblastic leukemia. Int J Cancer 1997;74:508–512.
  • Chilosi M, Doglioni C, Yan Z, . Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol 1998;152:209–217.
  • Hebert J, Cayuela JM, Berkeley J, . Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 1994;84:4038–4044.
  • Ohnishi H, Kawamura M, Ida K, . Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. Blood 1995;86:1269–1275.
  • Okuda T, Shurtleff SA, Valentine MB, . Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood 1995;85:2321–2330.
  • Otsuki T, Clark HM, Wellmann A, . Involvement of CDKN2 (p16INK4A/MTS1) and p15INK4B/MTS2 in human leukemias and lymphomas. Cancer Res 1995;55:1436–1440.
  • Rasool O, Heyman M, Brandter LB, . p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. Blood 1995;85:3431–3436.
  • Takeuchi S, Bartram CR, Seriu T, . Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia of childhood. Blood 1995;86:755–760.
  • Heyman M, Rasool O, Borgonovo Brandter L, . Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol 1996;14:1512–1520.
  • Iolascon A, Faienza MF, Coppola B, . Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in childhood T cell lineage acute lymphoblastic leukemias. Leukemia 1996;10:255–260.
  • Cayuela JM, Madani A, Sanhes L, . Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 1996;87:2180–2186.
  • Herman JG, Civin CI, Issa JP, . Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997;57:837–841.
  • Iravani M, Dhat R, Price CM. Methylation of the multi tumor suppressor gene-2 (MTS2, CDKN1, p15INK4B) in childhood acute lymphoblastic leukemia. Oncogene 1997;15:2609–2614.
  • Kees UR, Burton PR, Lu C, . Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clinical outcome. Blood 1997;89:4161–4166.
  • Rubnitz JE, Behm FG, Pui CH, . Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study XII. Leukemia 1997;11:1201–1206.
  • Zhou M, Gu L, Yeager AM, . Incidence and clinical significance of CDKN2/MTS1/P16ink4A and MTS2/P15ink4B gene deletions in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol 1997;14:141–150.
  • Diccianni MB, Batova A, Yu J, . Shortened survival after relapse in T-cell acute lymphoblastic leukemia patients with p16/p15 deletions. Leuk Res 1997;21:549–558.
  • Batova A, Diccianni MB, Yu JC, . Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res 1997;57:832–836.
  • Hayette S, Thomas X, Bertrand Y, . Molecular analysis of cyclin-dependent kinase inhibitors in human leukemias. Leukemia 1997;11:1696–1699.
  • Kawamura M, Ohnishi H, Guo SX, . Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res 1999;23:115–126.
  • Omura-Minamisawa M, Diccianni MB, Batova A, . Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clin Cancer Res 2000;6:1219–1228.
  • M'Soka TJ, Nishioka J, Taga A, . Detection of methylthioadenosine phosphorylase (MTAP) and p16 gene deletion in T cell acute lymphoblastic leukemia by real-time quantitative PCR assay. Leukemia 2000;14:935–940.
  • Calero Moreno TM, Widell S, Czader M, . Inverse correlation between Ink4-locus deletions and ICM-DNA hyperdiploidy in childhood acute lymphoblastic leukaemia, relation to clinical characteristics and outcome. Eur J Haematol 2000;65:390–398.
  • Calero Moreno TM, Gustafsson G, Garwicz S, . Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia 2002;16:2037–2045.
  • Graf Einsiedel H, Taube T, Hartmann R, . Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia. Blood 2002;99:4629–4631.
  • Bertin R, Acquaviva C, Mirebeau D, . CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2003;37:44–57.
  • Lemos JA, Defavery R, Scrideli CA, . Analysis of p16 gene mutations and deletions in childhood acute lymphoblastic leukemias. Sao Paulo Med J 2003;121:58–62.
  • Takeuchi S, Tsukasaki K, Bartram CR, . Long-term study of the clinical significance of loss of heterozygosity in childhood acute lymphoblastic leukemia. Leukemia 2003;17:149–154.
  • Kuiper RP, Schoenmakers EF, van Reijmersdal SV, . High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 2007;21:1258–1266.
  • Novara F, Beri S, Bernardo ME, . Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet 2009;126:511–520.
  • Schraders M, van Reijmersdal SV, Kamping EJ, . High-resolution genomic profiling of pediatric lymphoblastic lymphomas reveals subtle differences with pediatric acute lymphoblastic leukemias in the B-lineage. Cancer Genet Cytogenet 2009;191:27–33.
  • Krieger D, Moericke A, Oschlies I, . Frequency and clinical relevance of DNA microsatellite alterations of the CDKN2A/B, ATM and p53 gene loci: a comparison between pediatric precursor T-cell lymphoblastic lymphoma and T-cell lymphoblastic leukemia. Haematologica 2010;95:158–162.
  • Dalle JH, Fournier M, Nelken B, . p16(INK4a) immunocytochemical analysis is an independent prognostic factor in childhood acute lymphoblastic leukemia. Blood 2002;99:2620–2623.
  • Gutierrez MI, Siraj AK, Bhargava M, . Concurrent methylation of multiple genes in childhood ALL: correlation with phenotype and molecular subgroup. Leukemia 2003;17:1845–1850.
  • Cayuela JM, Gardie B, Sigaux F. Disruption of the multiple tumor suppressor gene MTS1/p16(INK4a)/CDKN2 by illegitimate V(D)J recombinase activity in T-cell acute lymphoblastic leukemias. Blood 1997;90:3720–3726.
  • Herman JG, Jen J, Merlo A, . Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 1996;56:722–727.
  • Tsellou E, Troungos C, Moschovi M, . Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 2005;41:584–589.
  • Kawamata N, Ogawa S, Zimmermann M, . Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 2008;111:776–784.
  • Ramakers-van Woerden NL, Pieters R, Slater RM, . In vitro drug resistance and prognostic impact of p16INK4A/P15INK4B deletions in childhood T-cell acute lymphoblastic leukaemia. Br J Haematol 2001;112:680–690.
  • Heerema NA, Sather HN, Sensel MG, . Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999;94:1537–1544.
  • Ausserlechner MJ, Obexer P, Wiegers GJ, . The cell cycle inhibitor p16(INK4A) sensitizes lymphoblastic leukemia cells to apoptosis by physiologic glucocorticoid levels. J Biol Chem 2001;276:10984–10989.
  • Obexer P, Hagenbuchner J, Rupp M, . p16INK4A sensitizes human leukemia cells to FAS- and glucocorticoid-induced apoptosis via induction of BBC3/Puma and repression of MCL1 and BCL2. J Biol Chem 2009;284:30933–30940.
  • Chebel A, Chien WW, Gerland LM, . Does p16ink4a expression increase with the number of cell doublings in normal and malignant lymphocytes? Leuk Res 2007;31:1649–1658.
  • Erickson S, Sangfelt O, Heyman M, . Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene 1998;17:595–602.
  • Schoppmeyer K, Norris PS, Haas M. Inhibition of T-cell acute lymphoblastic leukemia proliferation in vivo by re-expression of the p16INK4a tumor suppressor gene. Neoplasia 1999;1:128–137.
  • Roman-Gomez J, Castillejo JA, Jimenez A, . 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002;99:2291–2296.
  • Komuro H, Valentine MB, Rubnitz JE, . p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1999;1:253–261.
  • Takeuchi S, Bartram CR, Miller CW, . Acute lymphoblastic leukemia of childhood: identification of two distinct regions of deletion on the short arm of chromosome 12 in the region of TEL and KIP1. Blood 1996;87:3368–3374.
  • Markaki EA, Stiakaki E, Zafiropoulos A, . Mutational analysis of the cell cycle inhibitor Kip1/p27 in childhood leukemia. Pediatr Blood Cancer 2006;47:14–21.
  • Barata JT, Cardoso AA, Nadler LM, . Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 2001;98:1524–1531.
  • Roman J, Castillejo JA, Jimenez A, . Hypermethylation of the calcitonin gene in acute lymphoblastic leukaemia is associated with unfavourable clinical outcome. Br J Haematol 2001;113:329–338.
  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, . Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol 2005;23:7043–7049.
  • Gutierrez MI, Siraj AK, Ibrahim MM, . Childhood and adult ALL: differences in epigenetic lesions associated with cell cycle genes. Am J Hematol 2005;80:158–160.
  • Li Y, Nagai H, Ohno T, . Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood 2002;100:2572–2577.
  • Shen L, Toyota M, Kondo Y, . Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood 2003;101:4131–4136.
  • Lones MA, Heerema NA, Le Beau MM, . Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet 2007;172:1–11.
  • Wada M, Bartram CR, Nakamura H, . Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood 1993;82:3163–3169.
  • Naresh KN, Banavali SD, Bhatia KG, . Expression of P53 and bcl-2 proteins in T-cell lymphoblastic lymphoma: prognostic implications. Leuk Lymphoma 2002;43:333–337.
  • Hsiao M, Low J, Dorn E, . Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol 1994;145:702–714.
  • Cheng J, Yee JK, Yeargin J, . Suppression of acute lymphoblastic leukemia by the human wild-type p53 gene. Cancer Res 1992;52:222–226.
  • Seo J, Chung YS, Sharma GG, . Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 2005;24:8176–8186.
  • Hsiao MH, Yu AL, Yeargin J, . Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood 1994;83:2922–2930.
  • Diccianni MB, Yu J, Hsiao M, . Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood 1994;84:3105–3112.
  • Marks DI, Kurz BW, Link MP, . Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol 1997;15: 1158–1162.
  • Addeo R, Caraglia M, Baldi A, . Prognostic role of bcl-xL and p53 in childhood acute lymphoblastic leukemia (ALL). Cancer Biol Ther 2005;4:32–38.
  • Blau O, Avigad S, Stark B, . Exon 5 mutations in the p53 gene in relapsed childhood acute lymphoblastic leukemia. Leuk Res 1997;21:721–729.
  • Kawano S, Miller CW, Gombart AF, . Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999;94:1113–1120.
  • Liu M, Taketani T, Li R, . Loss of p73 gene expression in lymphoid leukemia cell lines is associated with hypermethylation. Leuk Res 2001;25:441–447.
  • Liu M, Li R, Hayashi Y, . [Study on abnormal expression of the p73 gene in childhood acute lymphoblastic leukemia]. Zhonghua Xue Ye Xue Za Zhi 2002;23:239–242.
  • Ausserlechner MJ, Obexer P, Geley S, . G1 arrest by p16INK4A uncouples growth from cell cycle progression in leukemia cells with deregulated cyclin E and c-Myc expression. Leukemia 2005;19:1051–1057.
  • Gombart AF, Yang R, Campbell MJ, . Inhibition of growth of human leukemia cell lines by retrovirally expressed wild-type p16INK4A. Leukemia 1997;11:1673–1680.
  • Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 2002;21:3475–3495.
  • Cheng J, Scully P, Shew JY, . Homozygous deletion of the retinoblastoma gene in an acute lymphoblastic leukemia (T) cell line. Blood 1990;75:730–735.
  • Ginsberg AM, Raffeld M, Cossman J. Inactivation of the retinoblastoma gene in human lymphoid neoplasms. Blood 1991;77:833–840.
  • Ahuja HG, Jat PS, Foti A, . Abnormalities of the retinoblastoma gene in the pathogenesis of acute leukemia. Blood 1991;78:3259–3268.
  • Heyman M, Calero Moreno T, Liu Y, . Inverse correlation between loss of heterozygosity of the short arm of chromosome 12 and p15ink4B/p16ink4 gene inactivation in childhood acute lymphoblastic leukaemia. Br J Haematol 1997;98:147–150.
  • Addeo R, Casale F, Caraglia M, . Glucocorticoids induce G1 arrest of lymphoblastic cells through retinoblastoma protein Rb1 dephosphorylation in childhood acute lymphoblastic leukemia in vivo. Cancer Biol Ther 2004;3:470–476.
  • Sauerbrey A, Stammler G, Zintl F, . Expression and prognostic value of the retinoblastoma tumour suppressor gene (RB-1) in childhood acute lymphoblastic leukaemia. Br J Haematol 1996;94:99–104.
  • Gumy Pause F, Wacker P, Maillet P, . ATM gene alterations in childhood acute lymphoblastic leukemias. Hum Mutat 2003;21:554.
  • Gumy-Pause F, Wacker P, Maillet P, . ATM variants and predisposition to childhood T-lineage acute lymphoblastic leukaemia. Leukemia 2006;20:526–527;author reply 527.
  • Liberzon E, Avigad S, Stark B, . Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 2004;39:161–166.
  • Meier M, den Boer ML, Hall AG, . Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia. Leukemia 2005;19:1887–1895.
  • Luo L, Lu FM, Hart S, . Ataxia-telangiectasia and T-cell leukemias: no evidence for somatic ATM mutation in sporadic T-ALL or for hypermethylation of the ATM-NPAT/E14 bidirectional promoter in T-PLL. Cancer Res 1998;58:2293–2297.
  • Takeuchi S, Koike M, Park S, . The ATM gene and susceptibility to childhood T-cell acute lymphoblastic leukaemia. Br J Haematol 1998;103:536–538.
  • Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998;12:845–859.
  • Gumy-Pause F, Wacker P, Maillet P, . ATM promoter analysis in childhood lymphoid malignancies: a brief communication. Leuk Res 2006;30:335–337.
  • Barlow C, Hirotsune S, Paylor R, . Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996;86:159–171.
  • Liyanage M, Weaver Z, Barlow C, . Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 2000;96:1940–1946.
  • Zha S, Bassing CH, Sanda T, . ATM-deficient thymic lymphoma is associated with aberrant tcrd rearrangement and gene amplification. J Exp Med 2010;207:1369–1380.
  • Bradshaw PS, Condie A, Matutes E, . Breakpoints in the ataxia telangiectasia gene arise at the RGYW somatic hypermutation motif. Oncogene 2002;21:483–487.
  • Haidar MA, Kantarjian H, Manshouri T, . ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 2000;88:1057–1062.
  • Gardie B, Cayuela JM, Martini S, . Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood 1998;91:1016–1020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.