641
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Molecular pathogenesis and histologic and clinical features of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue type

&
Pages 1032-1045 | Received 09 Jun 2011, Accepted 05 Oct 2011, Published online: 03 Jan 2012

References

  • Campo E, Swerdlow SH, Harris NL, . The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011;117:5019–5032.
  • Luminari S, Cesaretti M, Marcheselli L, . Decreasing incidence of gastric MALT lymphomas in the era of anti-Helicobacter pylori interventions: results from a population-based study on extranodal marginal zone lymphomas. Ann Oncol 2010;21:855–859.
  • Luminari S, Cesaretti M, Rashid I, . Incidence, clinical characteristics and survival of malignant lymphomas: a population-based study from a cancer registry in northern Italy. Hematol Oncol 2007;25:189–197.
  • Thieblemont C. Clinical presentation and management of marginal zone lymphomas. Hematology Am Soc Hematol Educ Program:307–313.
  • A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood 1997;89:3909–3918.
  • Mazloom A, Medeiros LJ, McLaughlin PW, . Marginal zone lymphomas: factors that affect the final outcome. Cancer 2010;116:4291–4298.
  • Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer 1983;52:1410–1416.
  • Spencer J, Finn T, Isaacson PG. Human Peyer's patches: an immunohistochemical study. Gut 1986;27:405–410.
  • Morse HC III, Kearney JF, Isaacson PG, . Cells of the marginal zone—origins, function and neoplasia. Leuk Res 2001;25:169–178.
  • Spencer J, Finn T, Isaacson PG. Gut associated lymphoid tissue: a morphological and immunocytochemical study of the human appendix. Gut 1985;26:672–679.
  • Morente M, Piris MA, Orradre JL, . Human tonsil intraepithelial B cells: a marginal zone-related subpopulation. J Clin Pathol 1992;45:668–672.
  • Maes B, De Wolf-Peeters C. Marginal zone cell lymphoma—an update on recent advances. Histopathology 2002;40:117–126.
  • van den Oord JJ, De Wolf-Peeters C, De VR, . Immature sinus histiocytosis. Light- and electron-microscopic features, immunologic phenotype, and relationship with marginal zone lymphocytes. Am J Pathol 1985;118:266–277.
  • Isaacson PG. Extranodal lymphomas: the MALT concept. Verh Dtsch Ges Pathol 1992;76:14–23.
  • Isaacson PG. Lymphomas of mucosa-associated lymphoid tissue (MALT). Histopathology 1990;16:617–619.
  • Burke JS. Are there site-specific differences among the MALT lymphomas—morphologic, clinical? Am J Clin Pathol 1999;111: S133–S143.
  • Harris NL. Lymphoid proliferations of the salivary glands. Am J Clin Pathol 1999;111:S94–S103.
  • Hyjek E, Smith WJ, Isaacson PG. Primary B-cell lymphoma of salivary glands and its relationship to myoepithelial sialadenitis. Hum Pathol 1988;19:766–776.
  • van Krieken JH, Langerak AW, Macintyre EA, . Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007;21:201–206.
  • Langerak AW, Molina TJ, Lavender FL, . Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2007;21:222–229.
  • Suarez F, Lortholary O, Hermine O, . Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 2006;107:3034–3044.
  • Frieder D, Larijani M, Tang E, . Antibody diversification: mutational mechanisms and oncogenesis. Immunol Res 2006;35: 75–88.
  • Wotherspoon AC, Doglioni C, Diss TC, . Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 1993;342:575–577.
  • Enno A, O’Rourke J, Braye S, . Antigen-dependent progression of mucosa-associated lymphoid tissue (MALT)-type lymphoma in the stomach. Effects of antimicrobial therapy on gastric MALT lymphoma in mice. Am J Pathol 1998;152:1625–1632.
  • Mueller A, O’Rourke J, Chu P, . The role of antigenic drive and tumor-infiltrating accessory cells in the pathogenesis of helicobacter-induced mucosa-associated lymphoid tissue lymphoma. Am J Pathol 2005;167:797–812.
  • Craig VJ, Arnold I, Gerke C, . Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 2010;115:581–591.
  • Nardini E, Aiello A, Giardini R, . Detection of aberrant isotype switch recombination in low-grade and high-grade gastric MALT lymphomas. Blood 2000;95:1032–1038.
  • Deutsch AJ, Aigelsreiter A, Staber PB, . MALT lymphoma and extranodal diffuse large B-cell lymphoma are targeted by aberrant somatic hypermutation. Blood 2007;109:3500–3504.
  • Miklos JA, Swerdlow SH, Bahler DW. Salivary gland mucosa-associated lymphoid tissue lymphoma immunoglobulin V(H) genes show frequent use of V1-69 with distinctive CDR3 features. Blood 2000;95:3878–3884.
  • Perez M, Pacchiarotti A, Frontani M, . Primary cutaneous B-cell lymphoma is associated with somatically hypermutated immunoglobulin variable genes and frequent use of VH1-69 and VH4-59 segments. Br J Dermatol 2010;162:611–618.
  • Silverman GJ, Goni F, Fernandez J, . Distinct patterns of heavy chain variable region subgroup use by human monoclonal autoantibodies of different specificity. J Exp Med 1988;168:2361–2366.
  • Bende RJ, Aarts WM, Riedl RG, . Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med 2005;201: 1229–1241.
  • Herve M, Xu K, Ng YS, . Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005;115:1636–1643.
  • Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 2007;109:2700–2707.
  • Farinha P, Gascoyne RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 2005;23: 6370–6378.
  • Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, . Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991;338:1175–1176.
  • Zucca E, Bertoni F, Roggero E, . Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 1998;338:804–810.
  • Lecuit M, Abachin E, Martin A, . Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 2004;350:239–248.
  • Cerroni L, Zochling N, Putz B, . Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J Cutan Pathol 1997; 24:457–461.
  • Chanudet E, Zhou Y, Bacon CM, . Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions. J Pathol 2006;209:344–351.
  • Ferreri AJ, Guidoboni M, Ponzoni M, . Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 2004;96:586–594.
  • Parsonnet J, Friedman GD, Vandersteen DP, . Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991;325:1127–1131.
  • Parsonnet J, Hansen S, Rodriguez L, . Helicobacter pylori infection and gastric lymphoma. N Engl J Med 1994;330:1267–1271.
  • Wotherspoon AC. Gastric lymphoma, carcinoma and Helicobacter pylori. J R Soc Med 1995;88:302–303.
  • Wotherspoon AC. Gastric MALT lymphoma and Helicobacter pylori. Yale J Biol Med 1996;69:61–68.
  • Spencer J, Wotherspoon AC. Gastric MALT lymphoma and Helicobacter pylori. Cancer Surv 1997;30:213–231.
  • Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Invest 2004;113:321–333.
  • Wotherspoon AC, Doglioni C, de Boni M, . Antibiotic treatment for low-grade gastric MALT lymphoma. Lancet 1994;343:1503.
  • Roggero E, Zucca E, Pinotti G, . Eradication of Helicobacter pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue. Ann Intern Med 1995;122:767–769.
  • Bayerdorffer E, Neubauer A, Rudolph B, . Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet 1995;345:1591–1594.
  • D’Elios MM, Appelmelk BJ, Amedei A, . Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry. Trends Mol Med 2004;10:316–323.
  • D’Elios MM, Bergman MP, Amedei A, . Helicobacter pylori and gastric autoimmunity. Microbes Infect 2004;6:1395–1401.
  • Al-Saleem T, Al-Mondhiry H. Immunoproliferative small intestinal disease (IPSID): a model for mature B-cell neoplasms. Blood 2005;105:2274–2280.
  • Al-Bahrani Z, Al-Saleem T, Al-Mondhiry H, . Alpha heavy chain disease (report of 18 cases from Iraq). Gut 1978;19:627–631.
  • Goodlad JR, Davidson MM, Hollowood K, . Primary cutaneous B-cell lymphoma and Borrelia burgdorferi infection in patients from the Highlands of Scotland. Am J Surg Pathol 2000;24:1279–1285.
  • Garbe C, Stein H, Dienemann D, . Borrelia burgdorferi-associated cutaneous B cell lymphoma: clinical and immunohistologic characterization of four cases. J Am Acad Dermatol 1991;24:584–590.
  • Cho-Vega JH, Vega F, Rassidakis G, . Primary cutaneous marginal zone B-cell lymphoma. Am J Clin Pathol 2006;125(Suppl.): S38–S49.
  • Kutting B, Bonsmann G, Metze D, . Borrelia burgdorferi-associated primary cutaneous B cell lymphoma: complete clearing of skin lesions after antibiotic pulse therapy or intralesional injection of interferon alfa-2a. J Am Acad Dermatol 1997;36:311–314.
  • Colli C, Leinweber B, Mullegger R, . Borrelia burgdorferi-associated lymphocytoma cutis: clinicopathologic, immunophenotypic, and molecular study of 106 cases. J Cutan Pathol 2004;31:232–240.
  • Roggero E, Zucca E, Mainetti C, . Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin. Hum Pathol 2000;31:263–268.
  • Goodlad JR, Davidson MM, Hollowood K, . Borrelia burgdorferi-associated cutaneous marginal zone lymphoma: a clinicopathological study of two cases illustrating the temporal progression of B. burgdorferi-associated B-cell proliferation in the skin. Histopathology 2000;37:501–508.
  • Slater DN. Borrelia burgdorferi-associated primary cutaneous B-cell lymphoma. Histopathology 2001;38:73–77.
  • Wood GS, Kamath NV, Guitart J, . Absence of Borrelia burgdorferi DNA in cutaneous B-cell lymphomas from the United States. J Cutan Pathol 2001;28:502–507.
  • Li C, Inagaki H, Kuo TT, . Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathologic study of 24 Asian cases. Am J Surg Pathol 2003;27:1061–1069.
  • Hoefnagel JJ, Vermeer MH, Jansen PM, . Primary cutaneous marginal zone B-cell lymphoma: clinical and therapeutic features in 50 cases. Arch Dermatol 2005;141:1139–1145.
  • Picken RN, Strle F, Ruzic-Sabljic E, . Molecular subtyping of Borrelia burgdorferi sensu lato isolates from five patients with solitary lymphocytoma. J Invest Dermatol 1997;108:92–97.
  • Breier FH, Aberer E, Stanek G, . Isolation of Borrelia afzelii from circumscribed scleroderma. Br J Dermatol 1999;140:925–930.
  • Ozkan S, Atabey N, Fetil E, . Evidence for Borrelia burgdorferi in morphea and lichen sclerosus. Int J Dermatol 2000;39:278–283.
  • Liang FT, Nelson FK, Fikrig E. Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 2002;196:275–280.
  • Wooten RM, Modur VR, McIntyre TM, . Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells. J Immunol 1996;157:4584–4590.
  • Wooten RM, Ma Y, Yoder RA, . Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol 2002;168:348–355.
  • Yeung L, Tsao YP, Chen PY, . Combination of adult inclusion conjunctivitis and mucosa-associated lymphoid tissue (MALT) lymphoma in a young adult. Cornea 2004;23:71–75.
  • Ferreri AJ, Ponzoni M, Guidoboni M, . Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst 2006;98:1375–1382.
  • Lamb DJ, El-Sankary W, Ferns GA. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis 2003;167:177–185.
  • Abbondanzo SL. Extranodal marginal-zone B-cell lymphoma of the salivary gland. Ann Diagn Pathol 2001;5:246–254.
  • Chehata S, Laatiri MA, Bouaouina N, . [Gougerot-Sjogren syndrome disclosed by MALT lymphoma of the salivary glands. Report of 3 cases]. Ann Med Interne (Paris) 2000;151:93–96.
  • Pedersen RK, Pedersen NT. Primary non-Hodgkin's lymphoma of the thyroid gland: a population based study. Histopathology 1996; 28:25–32.
  • Aozasa K. Hashimoto's thyroiditis as a risk factor of thyroid lymphoma. Acta Pathol Jpn 1990;40:459–468.
  • Hyjek E, Isaacson PG. Primary B cell lymphoma of the thyroid and its relationship to Hashimoto's thyroiditis. Hum Pathol 1988; 19:1315–1326.
  • Anscombe AM, Wright DH. Primary malignant lymphoma of the thyroid—a tumor of mucosa-associated lymphoid tissue: review of seventy-six cases. Histopathology 1985;9:81–97.
  • Royer B, Cazals-Hatem D, Sibilia J, . Lymphomas in patients with Sjogren's syndrome are marginal zone B-cell neoplasms, arise in diverse extranodal and nodal sites, and are not associated with viruses. Blood 1997;90:766–775.
  • Holm LE, Blomgren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med 1985;312:601–604.
  • Kovacs L, Szodoray P, Kiss E. Secondary tumors in Sjogren's syndrome. Autoimmun Rev 2010;9:203–206.
  • Addis BJ, Hyjek E, Isaacson PG. Primary pulmonary lymphoma: a re-appraisal of its histogenesis and its relationship to pseudolymphoma and lymphoid interstitial pneumonia. Histopathology 1988;13:1–17.
  • Schwartz IS, Strauchen JA. Lymphocytic mastopathy. An autoimmune disease of the breast? Am J Clin Pathol 1990;93:725–730.
  • Lammie GA, Bobrow LG, Staunton MD, . Sclerosing lymphocytic lobulitis of the breast—evidence for an autoimmune pathogenesis. Histopathology 1991;19:13–20.
  • Aozasa K, Ohsawa M, Saeki K, . Malignant lymphoma of the breast. Immunologic type and association with lymphocytic mastopathy. Am J Clin Pathol 1992;97:699–704.
  • Du MQ. MALT lymphoma: many roads lead to nuclear factor-kappab activation. Histopathology 2011;58:26–38.
  • Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 2004;4:348–359.
  • Moreno-Garcia ME, Sommer KM, Bandaranayake AD, . Proximal signals controlling B-cell antigen receptor (BCR) mediated NF-kappaB activation. Adv Exp Med Biol 2006;584:89–106.
  • Rawlings DJ, Sommer K, Moreno-Garcia ME. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 2006;6:799–812.
  • Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;25:280–288.
  • Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity. J Biol Chem 2009;284:8217–8221.
  • Wotherspoon AC, Finn TM, Isaacson PG. Trisomy 3 in low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Blood 1995;85:2000–2004.
  • Murga Penas EM, Hinz K, Roser K, . Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia 2003;17:2225–2229.
  • Streubel B, Lamprecht A, Dierlamm J, . t(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003;101:2335–2339.
  • Streubel B, Simonitsch-Klupp I, Mullauer L, . Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004;18:1722–1726.
  • Streubel B, Vinatzer U, Lamprecht A, . t(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005;19:652–658.
  • Ye H, Gong L, Liu H, . MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol 2005;205:293–301.
  • Sagaert X, Laurent M, Baens M, . MALT1 and BCL10 aberrations in MALT lymphomas and their effect on the expression of BCL10 in the tumor cells. Mod Pathol 2006;19:225–232.
  • Remstein ED, James CD, Kurtin PJ. Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 2000;156:1183–1188.
  • Ye H, Liu H, Attygalle A, . Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood 2003;102:1012–1018.
  • Levine EG, Arthur DC, Machnicki J, . Four new recurring translocations in non-Hodgkin lymphoma. Blood 1989;74:1796–1800.
  • Streubel B, Ye H, Du MQ, . Translocation t(11;18)(q21;q21) is not predictive of response to chemotherapy with 2CdA in patients with gastric MALT lymphoma. Oncology 2004;66:476–480.
  • Schreuder MI, Hoeve MA, Hebeda KM, . Mutual exclusion of t(11;18)(q21;q21) and numerical chromosomal aberrations in the development of different types of primary gastric lymphomas. Br J Haematol 2003;123:590–599.
  • Liu H, Ye H, Dogan A, . t(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 2001;98:1182–1187.
  • Baens M, Maes B, Steyls A, . The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 2000;156:1433–1439.
  • Maes B, Baens M, Marynen P, . The product of the t(11;18), an API2-MLT fusion, is an almost exclusive finding in marginal zone cell lymphoma of extranodal MALT-type. Ann Oncol 2000;11:521–526.
  • Dierlamm J, Baens M, Stefanova-Ouzounova M, . Detection of t(11;18)(q21;q21) by interphase fluorescence in situ hybridization using API2 and MLT specific probes. Blood 2000;96:2215–2218.
  • Motegi M, Yonezumi M, Suzuki H, . API2-MALT1 chimeric transcripts involved in mucosa-associated lymphoid tissue type lymphoma predict heterogeneous products. Am J Pathol 2000;156: 807–812.
  • Auer IA, Gascoyne RD, Connors JM, . t(11;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol 1997;8:979–985.
  • Okabe M, Inagaki H, Ohshima K, . API2-MALT1 fusion defines a distinctive clinicopathologic subtype in pulmonary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Am J Pathol 2003;162:1113–1122.
  • Huang X, Zhang Z, Liu H, . t(11;18)(q21;q21) in gastric MALT lymphoma and diffuse large B-cell lymphoma of Chinese patients. Hematol J 2003;4:342–345.
  • Toracchio S, Ota H, de Jong D, . Translocation t(11;18)(q21;q21) in gastric B-cell lymphomas. Cancer Sci 2009;100:881–887.
  • Rosenwald A, Ott G, Stilgenbauer S, . Exclusive detection of the t(11;18)(q21;q21) in extranodal marginal zone B cell lymphomas (MZBL) of MALT type in contrast to other MZBL and extranodal large B cell lymphomas. Am J Pathol 1999;155:1817–1821.
  • Remstein ED, Kurtin PJ, James CD, . Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol 2002;161:63–71.
  • Remstein ED, Kurtin PJ, Einerson RR, . Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia 2004;18:156–160.
  • Liu H, Ye H, Ruskone-Fourmestraux A, . t(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002;122:1286–1294.
  • Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, . Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 2001;357:39–40.
  • Martinelli G, Laszlo D, Ferreri AJ, . Clinical activity of rituximab in gastric marginal zone non-Hodgkin's lymphoma resistant to or not eligible for anti-Helicobacter pylori therapy. J Clin Oncol 2005;23:1979–1983.
  • Roy N, Deveraux QL, Takahashi R, . The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16:6914–6925.
  • Hu S, Du MQ, Park SM, . cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. J Clin Invest 2006;116:174–181.
  • Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 1999;13:239–252.
  • Garrison JB, Samuel T, Reed JC. TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 2009;28:1584–1593.
  • Noels H, van Loo G, Hagens S, . A novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions. J Biol Chem 2007;282:10180–10189.
  • Wotherspoon AC, Soosay GN, Diss TC, . Low-grade primary B-cell lymphoma of the lung. An immunohistochemical, molecular, and cytogenetic study of a single case. Am J Clin Pathol 1990;94: 655–660.
  • Du MQ, Peng H, Liu H, . BCL10 gene mutation in lymphoma. Blood 2000;95:3885–3890.
  • Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004;4:644–653.
  • Lucas PC, Yonezumi M, Inohara N, . Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 2001;276:19012–19019.
  • Bhattacharyya S, Borthakur A, Dudeja PK, . Lipopolysaccharide-induced activation of NF-kappaB non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations. Exp Cell Res 2010;316:3317–3327.
  • Kuo SH, Yeh PY, Chen LT, . Overexpression of B cell-activating factor of TNF family (BAFF) is associated with Helicobacter pylori-independent growth of gastric diffuse large B-cell lymphoma with histologic evidence of MALT lymphoma. Blood 2008;112:2927–2934.
  • Li Z, Wang H, Xue L, . Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158–4168.
  • Achuthan R, Bell SM, Leek JP, . Novel translocation of the BCL10 gene in a case of mucosa associated lymphoid tissue lymphoma. Genes Chromosomes Cancer 2000;29:347–349.
  • Sanchez-Izquierdo D, Buchonnet G, Siebert R, . MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 2003;101:4539–4546.
  • Tusche MW, Ward LA, Vu F, . Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671–2683.
  • Nakagawa M, Hosokawa Y, Yonezumi M, . MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 2005;106:4210–4216.
  • Barrans SL, Fenton JA, Banham A, . Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 2004;104:2933–2935.
  • Banham AH, Connors JM, Brown PJ, . Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res 2005;11:1065–1072.
  • Fenton JA, Schuuring E, Barrans SL, . t(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2006;45:164–168.
  • Ye H, Remstein ED, Bacon CM, . Chromosomal translocations involving BCL6 in MALT lymphoma. Haematologica 2008;93:145–146.
  • Chen YW, Hu XT, Liang AC, . High BCL6 expression predicts better prognosis, independent of BCL6 translocation status, translocation partner, or BCL6-deregulating mutations, in gastric lymphoma. Blood 2006;108:2373–2383.
  • Chanudet E, Ye H, Ferry J, . A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol 2009;217:420–430.
  • Chanudet E, Huang Y, Ichimura K, . A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010;24:483–487.
  • Novak U, Rinaldi A, Kwee I, . The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 2009;113: 4918–4921.
  • Kato M, Sanada M, Kato I, . Frequent inactivation of A20 in B-cell lymphomas. Nature 2009;459:712–716.
  • Compagno M, Lim WK, Grunn A, . Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009;459:717–721.
  • Honma K, Tsuzuki S, Nakagawa M, . TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009;114:2467–2475.
  • Schmitz R, Hansmann ML, Bohle V, . TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009;206:981–989.
  • Graham RR, Cotsapas C, Davies L, . Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008;40:1059–1061.
  • Musone SL, Taylor KE, Lu TT, . Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008;40:1062–1064.
  • Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, . Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res Ther 2009;11:R42.
  • Plenge RM, Cotsapas C, Davies L, . Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007;39:1477–1482.
  • Musone SL, Taylor KE, Nititham J, . Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun 2011;12:176–182.
  • Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009;30:383–391.
  • Kiss E, Kovacs L, Szodoray P. Malignancies in systemic lupus erythematosus. Autoimmun Rev 2010;9:195–199.
  • Brynes RK, Almaguer PD, Leathery KE, . Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol 1996;9:995–1000.
  • Dierlamm J, Pittaluga S, Wlodarska I, . Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood 1996;87:299–307.
  • Vinatzer U, Gollinger M, Mullauer L, . Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res 2008;14:6426–6431.
  • Novak A, Akasaka T, Manske M, . Elevated expression of GPR34 and its association with a novel translocation t(X;14)(p11;q32) involving IgHS and GPR34 in MALT lymphoma. Blood 2008:112(Suppl. 1): Abstract 2251.
  • Baens M, Fevery S, Sagaert X, . Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res 2006;66:5270–5277.
  • Hamoudi RA, Appert A, Ye H, . Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia 2010;24:1487–1497.
  • Ye H, Gong L, Liu H, . Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut 2006;55:137–138.
  • Zucca E, Conconi A, Pedrinis E, . Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Blood 2003;101:2489–2495.
  • Thieblemont C, Bastion Y, Berger F, . Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: analysis of 108 patients. J Clin Oncol 1997;15:1624–1630.
  • Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 1998;16:2780–2795.
  • Thieblemont C, Berger F, Dumontet C, . Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood 2000;95:802–806.
  • Sheibani K, Burke JS, Swartz WG, . Monocytoid B-cell lymphoma. Clinicopathologic study of 21 cases of a unique type of low-grade lymphoma. Cancer 1988;62:1531–1538.
  • Du M, Peng H, Singh N, . The accumulation of p53 abnormalities is associated with progression of mucosa-associated lymphoid tissue lymphoma. Blood 1995;86:4587–4593.
  • Martinez-Delgado B, Robledo M, Arranz E, . Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin's lymphomas. Leukemia 1998;12:937–941.
  • Martinez-Delgado B, Fernandez-Piqueras J, Garcia MJ, . Hypermethylation of a 5’ CpG island of p16 is a frequent event in non-Hodgkin's lymphoma. Leukemia 1997;11:425–428.
  • Neumeister P, Hoefler G, Beham-Schmid C, . Deletion analysis of the p16 tumor suppressor gene in gastrointestinal mucosa-associated lymphoid tissue lymphomas. Gastroenterology 1997;112:1871–1875.
  • Stolte M, Bayerdorffer E, Morgner A, . Helicobacter and gastric MALT lymphoma. Gut 2002;50(Suppl. 3):III19–III24.
  • Zucca E, Dreyling M. Gastric marginal zone lymphoma of MALT type: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 2009;20(Suppl. 4):113–114.
  • Zucca E, Bertoni F, Roggero E, . The gastric marginal zone B-cell lymphoma of MALT type. Blood 2000;96:410–419.
  • Hancock BW, Qian W, Linch D, . Chlorambucil versus observation after anti-Helicobacter therapy in gastric MALT lymphomas: results of the international randomised LY03 trial. Br J Haematol 2009;144:367–375.
  • Zenahlik P, Fink-Puches R, Kapp KS, . [Therapy of primary cutaneous B-cell lymphomas]. Hautarzt 2000;51:19–24.
  • Bogle MA, Riddle CC, Triana EM, . Primary cutaneous B-cell lymphoma. J Am Acad Dermatol 2005;53:479–484.
  • Ferreri AJ, Ponzoni M, Guidoboni M, . Regression of ocular adnexal lymphoma after Chlamydia psittaci-eradicating antibiotic therapy. J Clin Oncol 2005;23:5067–5073.
  • Senff NJ, Noordijk EM, Kim YH, . European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood 2008;112:1600–1609.
  • Tsang RW, Gospodarowicz MK, Pintilie M, . Stage I and II MALT lymphoma: results of treatment with radiotherapy. Int J Radiat Oncol Biol Phys 2001;50:1258–1264.
  • Schechter NR, Portlock CS, Yahalom J. Treatment of mucosa-associated lymphoid tissue lymphoma of the stomach with radiation alone. J Clin Oncol 1998;16:1916–1921.
  • Cozzio A, Kempf W, Schmid-Meyer R, . Intra-lesional low-dose interferon alpha2a therapy for primary cutaneous marginal zone B-cell lymphoma. Leuk Lymphoma 2006;47:865–869.
  • Fink-Puches R, Wolf IH, Zalaudek I, . Treatment of primary cutaneous B-cell lymphoma with rituximab. J Am Acad Dermatol 2005;52:847–853.
  • Kerl K, Prins C, Saurat JH, . Intralesional and intravenous treatment of cutaneous B-cell lymphomas with the monoclonal anti-CD20 antibody rituximab: report and follow-up of eight cases. Br J Dermatol 2006;155:1197–1200.
  • Kyrtsonis MC, Siakantaris MP, Kalpadakis C, . Favorable outcome of primary cutaneous marginal zone lymphoma treated with intralesional rituximab. Eur J Haematol 2006;77:300–303.
  • Hammel P, Haioun C, Chaumette MT, . Efficacy of single-agent chemotherapy in low-grade B-cell mucosa-associated lymphoid tissue lymphoma with prominent gastric expression. J Clin Oncol 1995;13:2524–2529.
  • Jager G, Neumeister P, Brezinschek R, . Treatment of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type with cladribine: a phase II study. J Clin Oncol 2002;20:3872–3877.
  • Conconi A, Martinelli G, Thieblemont C, . Clinical activity of rituximab in extranodal marginal zone B-cell lymphoma of MALT type. Blood 2003;102:2741–2745.
  • Zucca E, Conconi E, Martelli M, . Interim analysis of the IELSG-19 randomised study of chlorambucil plus rituximab versus rituximab alone in extranodal marginal zone lymphomas of mucosa-associated tissue (MALT lymphoma). Blood 2009;114(Suppl. 1): Abstract 21716.
  • Zinzani PL. Clinical experience with fludarabine in indolent non-Hodgkin's lymphoma. Hematol J 2004;5(Suppl. 1):S38–S49.
  • Klasa RJ, Meyer RM, Shustik C, . Randomized phase III study of fludarabine phosphate versus cyclophosphamide, vincristine, and prednisone in patients with recurrent low-grade non-Hodgkin's lymphoma previously treated with an alkylating agent or alkylator-containing regimen. J Clin Oncol 2002;20:4649–4654.
  • Hagenbeek A, Eghbali H, Monfardini S, . Phase III intergroup study of fludarabine phosphate compared with cyclophosphamide, vincristine, and prednisone chemotherapy in newly diagnosed patients with stage III and IV low-grade malignant Non-Hodgkin's lymphoma. J Clin Oncol 2006;24:1590–1596.
  • Zinzani PL, Magagnoli M, Moretti L, . Randomized trial of fludarabine versus fludarabine and idarubicin as frontline treatment in patients with indolent or mantle-cell lymphoma. J Clin Oncol 2000;18:773–779.
  • Lazzarino M, Orlandi E, Montillo M, . Fludarabine, cyclophosphamide, and dexamethasone (FluCyD) combination is effective in pretreated low-grade non-Hodgkin's lymphoma. Ann Oncol 1999;10:59–64.
  • Santini G, Nati S, Spriano M, . Fludarabine in combination with cyclophosphamide or with cyclophosphamide plus mitoxantrone for relapsed or refractory low-grade non-Hodgkin's lymphoma. Haematologica 2001;86:282–286.
  • Tsimberidou AM, McLaughlin P, Younes A, . Fludarabine, mitoxantrone, dexamethasone (FND) compared with an alternating triple therapy (ATT) regimen in patients with stage IV indolent lymphoma. Blood 2002;100:4351–4357.
  • Adkins JC, Peters DH, Markham A. Fludarabine. An update of its pharmacology and use in the treatment of haematological malignancies. Drugs 1997;53:1005–1037.
  • McLaughlin P, Hagemeister FB, Romaguera JE, . Fludarabine, mitoxantrone, and dexamethasone: an effective new regimen for indolent lymphoma. J Clin Oncol 1996;14:1262–1268.
  • Anderson VR, Perry CM. Fludarabine: a review of its use in non-Hodgkin's lymphoma. Drugs 2007;67:1633–1655.
  • Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004;4:349–360.
  • Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004;100:1578–1589.
  • Rajkumar SV, Richardson PG, Hideshima T, . Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005;23:630–639.
  • Troch M, Jonak C, Mullauer L, . A phase II study of bortezomib in patients with MALT lymphoma. Haematologica 2009; 94:738–742.
  • Conconi A, Martinelli G, Lopez-Guillermo A, . Clinical activity of bortezomib in relapsed/refractory MALT lymphomas: results of a phase II study of the International Extranodal Lymphoma Study Group (IELSG). Ann Oncol 2011;22:689–695.
  • Tilly H, Dreyling M. Diffuse large B-cell non-Hodgkin's lymphoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 2009;20(Suppl. 4):110–112.
  • Zinzani PL, Magagnoli M, Galieni P, . Nongastrointestinal low-grade mucosa-associated lymphoid tissue lymphoma: analysis of 75 patients. J Clin Oncol 1999;17:1254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.