1,719
Views
51
CrossRef citations to date
0
Altmetric
Review Article

The role of natural killer cells in immunity against multiple myeloma

&
Pages 1666-1676 | Received 23 Jan 2012, Accepted 10 Mar 2012, Published online: 19 Apr 2012

References

  • Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008;111:2962–2972.
  • Langren O, Kyle RA, Rajkumar SV. From myeloma precursor disease to multiple myeloma: new diagnostic concepts and opportunities for early intervention. Clin Cancer Res 2011;17:1243–1252.
  • Kumar SK, Rajkukmar SV, Dispenzieri A, . Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111:2516–2520.
  • Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 2007;138:563–569.
  • Caligiuri MA. Human natural killer cells. Blood 2008;112:461–469.
  • Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactiving of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1985:16; 216–229.
  • Kiessling R, Klien E, Wigzell G. Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975:5;112–117.
  • Vivier E, Raulet DH, Moretta A, . Innate or adaptive immunity? The example of natural killer cells. Science 2011;331:44–49.
  • Bryceson YT, March ME, Ljunggren HG, . Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006;214:73–91.
  • Farag SS, Fehniger TA, Ruggeri L, . Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002;100:1935–1947.
  • Valiante NM, Uhrberg M, Shilling HG, . Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997;7:739–751.
  • Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005;5:201–214.
  • Anfossi N, Andre P, Guia S, . Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006;25:331–342.
  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science 2004;306:1517–1519.
  • Bauer S, Groh V, Wu J, . Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727–729.
  • Bottino C, Castriconi R, Pende D, . Identification of PVR (CD155) and Nectin-2 (Cd112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003;198:557–567.
  • Joyce MG, Tran P, Zhuravleva MA, . Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site. Proc Natl Acad Sci USA 2011;108:6223–6228.
  • Mandelboim O, Lieberman N, Lev M, . Recognition of hemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001;409:1055–1059.
  • Smyth MJ, Cretney E, Kelly JM, . Activation of NK cell cytotoxicity. Mol Immunol 2005;42:501–510.
  • Frohn C, Hoppner M, Schlenke P, . Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002;119:660–664.
  • Osterborg A, Nilsson B, Bjorkholm M, . Natural killer cell activity in monoclonal gammopathies: relation to disease activity. Eur J Haematol 1990;45:153–157.
  • Famularo G, D'Ambrosio A, Quintieri F, . Natural killer cell frequency and function in patients with monoclonal gammopathies. J Clin Lab Immunol 1992;37:99–109.
  • Sawanobori M, Suzuki K, Nakagawa Y, . Natural killer cell frequency and serum cytokine levels in monoclonal gammopathies: correlation of bone marrow granular lymphocytes to prognosis. Acta Haematol 1997;98:150–154.
  • Jurisic V, Srdic T, Konjevic G, . Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 2007;24:312–317.
  • Gonzalez M, San Miguel JF, Gascon A, . Increased expression of natural-killer-associated and activation antigens in multiple myeloma. Am J Hematol 1992;39:84–89.
  • De Rossi G, De Sanctis G, Bottari V, . Surface markers and cytotoxic activities of lymphocytes in monoclonal gammopathy of undetermined significance and untreated multiple myeloma. Increased phytohemagglutinin-induced cellular cytotoxicity and inverted helper/suppressor cell ratio are features common to both diseases. Cancer Immunol Immunother 1987;25:133–136.
  • Uchida A, Yagita M, Sugiyama H, . Strong natural killer (NK) cell activity in bone marrow of myeloma patients: accelerated maturation of bone marrow NK cells and their interaction with other bone marrow cells. Int J Cancer 1984;35:375–381.
  • Ogmundsdottir HM. Natural killer cell activity in patients with multiple myeloma. Cancer Detect Prev 1988;12:133–143.
  • Garcia-Sanz R, Gonzalez M, Orfao A, . Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol 1996;93:81–88.
  • King MA, Radicchi-Mastroianni MA. Natural killer cells and CD56 + T cells in the blood of multiple myeloma patients: ananlysis by 4-colour flow cytometry. Cytometry 1996;26:121–124.
  • Ege H, Gertz MA, Markovic SN, . Prediction of survival using absolute lymphocyte count for newly diagnosed patients with multiple myeloma: a retrospective study. Br J Haematol 2008;141:792–798.
  • Lu ZY, Bataille R, Poubelle P, . An interleukin-1 receptor antagonist blocks the IL-1 induced IL-6 paracrine production through a prostaglandin E2-related mechanism in multiple myeloma. Stem Cells 1995;13(Suppl. 2):28–34.
  • Wang T, Niu G, Kortylewski M, . Regulation of the innate and adaptive immune responses by STAT-3 signaling in tumor cells. Nat Med 2004;10:48–54.
  • Kortylewski M, Kujawski M, Wang T, . Inhibiting STAT3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005;11:1314–1321.
  • Ghiringhelli F, Menard C, Terme M, . CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-b-dependent manner. J Exp Med 2005;202:1075–1085.
  • Beyer M, Kochanek M, Giese T, . In vivo peripheral expansion of naïve CD4 + Cd25high FoxP-3 + regulatory T cells in patients with multiple myeloma. Blood 2006;107:3940–3949.
  • Trotta R, Col JD, Ciarlariello D, . TGF-beta utilizes SMAD3 to inhibit CD-16 mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 2008; 181:3784–3792.
  • Yu J, Wei M, Becknell B, . Pro- and anti-inflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 2006;24:575–590.
  • Tanner J, Tosato G. Impairment of natural killer functions by interleukin 6 increases lymphoblastoid cell tumorigenicity in athymic mice. J Clin Invest 1991;88:239–247.
  • Tripp CS, Wolf SF, Unanue ER. Interleukin 12 and tumor necrosis factor a are costimulators of interferon gamma production by natural killer cells in severe combined immune deficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci USA 1993;90:3725–3729.
  • D'Andrea A, Aste-Amezaga, Valiante N, . Interleukin-10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 1993;178:1041–1048.
  • Ladetto M, Vallet S, Trojan A, . Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 2005;105:4784–4791.
  • Cetin M, Buyukberber S, Demir M, . Overexpression of cyclooxygenase-2 in multiple myeloma: association with reduced survival. Am J Hematol 2005;80:169–173.
  • Hoang B, Zhu L, Shi Y, . Oncogenic RAS mutations in myeloma cells selectively induce COX-2 expression, which participates in enhanced adhesion to fibronectin and chemoresistance. Blood 2006;107:4484–4490.
  • Holt D, Ma X, Kundu N, . Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol Immunother 2001;60:1577–1586.
  • Stefanidakis M, Koivunen E. Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 2006;108: 1441–1450.
  • Prabhala RH, Pelluru D, Fulciniti M, . Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 2010;115:5385–5392.
  • Feyler S, von Lilienfeld-Toal M, Jarmin S, . CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 2009;144:686–695.
  • Li L, Benson DM Jr, DeAngelis S, . A small molecule, LLL12, inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer 2012;130:1459–1469.
  • Catlett-Falcone R, Londowski TH, Oshiro MM, . Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10:105–115.
  • Bedel R, Thiery-Vuillemin A, Grandclement C, . Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res 2011;71:1615–1626.
  • Matsuzaki H, Kagimoto T, Oda T, . Natural killer activity and antibody-dependent cell-mediated cytotoxicity in multiple myeloma. Jpn J Clin Oncol 1985;15:611–617.
  • Komiyama K, Crago SS, Itoh K, . Inhibition of natural killer cell activity by IgA. Cell Immunol 1986;101:143–155.
  • Gherman M, Manciulea M, Bancu AC, . Regulation of human natural cytotoxicity by IgG—I. Characterization of the structural site on monomeric IgG responsible for inhibiting natural killer cell activity. Int Immunol 1987;24:743–750.
  • Frassinito MA, Silvestris F, Cafforio P, . IgG M-components in active myeloma patients induce a down-regulation of natural killer cell activity. Int J Clin Lab Res 1997;27:48–54.
  • Mota G, Galatiuc C, Popescu I, . IgA monoclonal and polyclonal proteins as regulatory factors of the NK cytotoxic activity. Rom J Virol 1999;50:17–31.
  • Benson DM Jr, Yu J, Becknell B, . Stem cell factor and IL-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells. Blood 2009;113:2706–2714.
  • Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005;86:209–239.
  • Neilsen H, Neilsen HJ, Tyede N, . Immune dysfunction in multiple myeloma. Reduced natural killer cell activity and increased levels of soluble interleukin-2 receptors. APMIS 1991;99:340–346.
  • Carson WE, Fehniger TA, Haldar S, . A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997;99:937–943.
  • Koka R, Burkett PR, Chien M, . Interleukin (IL)-15Ra deficient natural killer cells survive in normal but not IL-15Ra-deficient mice. J Exp Med 2003;197:977–984.
  • Tinofer I, Marschitz I, Henn T, . Expression of a functional interleukin-15 receptor and autocrine production of interleukin-15 as mechanisms of tumor propagation in multiple myeloma. Blood 2000;95:610–618.
  • Dimartis A, Bernassola F, Savino R, . Interleukin 6 receptor superantagonists are potent inducers of human multiple myeloma cell death. Cancer Res 1996;56:4213–4218.
  • Billadeau D, Jelinek DF, Shah N, . Introduction of an activated N-ras oncogene alters the growth characteristics of the interleukin-6 depenednt myeloma cell line ANBL6. Cancer Res 1995;55:3640–3646.
  • El-Sherbiny YM, Meade JL, Holmes TD, . The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer-cell mediating killing of myeloma cells. Cancer Res 2007;67:8444–8449.
  • Jinushi M, Vanneman M, Munshi NC, . MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 2008;105:1285–1290.
  • Carbone E, Neri P, Mesuraca M, . HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005;105:251–258.
  • Perez-Andres M, Almeida J, Martin-Ayuso M, . Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 2005;19:449–455.
  • Perez-Andres M, Almeida J, Martin-Ayuso M, . Soluble and membrane levels of molecules involved in the interaction between clonal lasma cells and the immunological microenvironment in multiple myeloma and their association with the characteristics of the disease. Int J Cancer 2009;124:367–375.
  • Iwai Y, Ishida M, Tanaka Y, . Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002;99:12293–12297.
  • Benson DM Jr, Bakan CE, Mishra A, . The PD-1/PD-L1 signaling axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010;116:2286–2294.
  • Soriani A, Zingoni A, Cerboni C, . ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2009;113:3503–3511.
  • Bernal M, Garrido P, Jimenez P, . Changes in the activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells. Hum Immunol 2009;70:854–857.
  • Landowski TH, Qu N, Buyuksal I, . Mutations in the Fas antigen in patients with multiple myeloma. Blood 1997;90:4266–4270.
  • von Lilienfeld-Toal M, Frank S, Leyendecker C, . Reduced immune effector cell NKG2D expression and increase levels of soluble NKG2D ligands in multiple myeloma may not be causally linked. Cancer Immunol Immunother 2010;59:829–839.
  • Fauriat C, Mallet F, Olive D, . Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 2006;20:732–733.
  • Kirkwood JM, Ernstoff MS. Interferons in the treatment of human cancer. J Clin Oncol 1984;2:336–352.
  • Einhorn S, Ahre A, Blomgren H, . Interferon and natural killer activity in multiple myeloma. Lack of correlation between interferon-induced enhancement of natural killer activity and clinical response to human interferon-alpha. Int J Cancer 1982;30:167–172.
  • Millar BC, Bell JB, Powles RL. Lymphocyte recovery and clinical response in multiple myeloma patients receiving interferon alpha 2 beta after intensive therapy. Br J Cancer 1996;73:236–240.
  • Hall PD, Self SE, Hall RK. The interaction of maintenance interferon with cytolytic cells in patients with multiple myeloma who responded to cytotoxic chemotherapy. Pharmacotherapy 1997;17: 248–255.
  • Gisslinger H. Interferon alpha in the therapy of multiple myeloma. Leukemia 1997;11(Suppl. 5):S52–S56.
  • Fritz E, Ludwig H. Interferon-alpha treatment in multiple myeloma: meta-analysis of 30 randomized trials among 3948 patients. Ann Oncol 2000;11:1427–1436.
  • Browman GP, Bergsagel D, Sicheri D, . Randomized trial of interferon maintenance in multiple myeloma: a study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1995;13:2354–2360.
  • Anderson KC, Alsina M, Bensinger W, . Multiple myeloma. J Natl Compr Canc Netw 2011;9:1146–1183.
  • Bianchi A, Omede P, Attisano C, . Phenotypic and functional analysis of peripheral blood lymphocytes during interferon-alpha 2b therapy in multiple myeloma patients with low tumor mass. Haematologica 1991;76:383–388.
  • Shimazaki C, Atzpodien J, Wisniewski D, . Cell-mediated toxicity of interleukin-2-activated lymphocytes against autologous and allogeneic human myeloma cells. Acta Haematol 1988;80:203–209.
  • Gottlieb DJ, Prentice HG, Heslop HE, . Effects of recombinant interleukin-2 administration on cytotoxic function following high-dose chemo-radiotherapy for hematological malignancy. Blood 1989;74:2335–2342.
  • Gottlieb DJ, Prentice HG, Mehta AB, . Malignant plasma cells are sensitive to LAK cell lysis: pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. Br J Haematol 1990;75:499–505.
  • Porrata LF, Inwards DJ, Lacy MQ, . Immunomodulation of early engrafted natural killer cells with interleukin-2 and interferon-alpha in autologous stem cell transplantation. Bone Marrow Transplant 2001;28:673–680.
  • Peest D, Leo R, Deicher H. Tumor-directed cytotoxicity in multiple myeloma – the basis for an experimental treatment with interleukin-2. Stem Cells 1995;13(Suppl. 2):72–76.
  • Higuchi CM, Thompson JA, Petersen FB, . Toxicity and immunomodulatory effects of interleukin-2 after autologous bone marrow transplantation for hematologic malignancies. Blood 1991;77:2561–2568.
  • Porrata LF, Gertz MA, Inwards DJ, . Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma. Blood 2001;98:579–585.
  • Porrata LF, Gertz MA, Geyer SM, . The dose of infused lymphocytes in the autograft directly correlates with clinical outcomes after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 2004;18:1085–1092.
  • Kim H, Sohn HJ, Kim S, . Early lymphocyte recovery predicts longer survival after autologous peripheral blood stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2006; 37:1037–1042.
  • Hiwase DK, Hiwase S, Bailey M, . Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2008;14:116–124.
  • Poratta LF, Gastineau DA, Padley D, . Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma 2003;44:997–1000.
  • Siddiqui MA, Markovic SN, Nevala WK, . Day 15 natural killer cell recovery predicts progression free survival after autologous stem cell transplantation in non-Hodgkin lymphoma. Blood 2006; 108(Suppl. 1): Abstract 2914.
  • Markasz L, Stuber G, Vanherberghen B, . Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol Cancer Ther 2007;6:644–654.
  • Gabriel IH, Sergeant R, Szydlo R, . Interaction between KIR3DS1 and HLABw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood 2010;116:2033–2039.
  • Lokhorst H, Einsele H, Vesole D, . International myeloma working group consensus statement regarding the current status of allogeneic stem cell transplantation for multiple myeloma. J Clin Oncol 2010;28:4521–4530.
  • Gharton G. Progress in allogeneic stem cell transplantation for multiple myeloma. Eur J Haematol 2010;85:279–289.
  • Tricot G, Vesole DH, Jagannath S, . Graft versus myeloma effect: proof of principle. Blood 1996;87:73–91.
  • Alici E, Konstantinidis KV, Sutlu T, . Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model. Exp Hematol 2007;35: 1839–1846.
  • Ruggeri L, Capanni M, Urbani E, . Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002;295:2097–2100.
  • Kroger N, Shaw B, Iacobelli S, . Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol 2005;129:631–643.
  • Shi J, Tricot G, Szmania S, . Infusion of halpo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 2008;143:641–653.
  • Kroger N, Zabelina T, Berger J, . Donor KIR haplotype B improves progression-free and overall survival after allogeneic hematopoietic stem cell transplantation for multiple myeloma. Leukemia 2011;25:1657–1661.
  • Lioznov M, El-Cheikh J, Hoffmann F, . Lenalidomide as salvage therapy after allo-SCT for multiple myeloma is effective and leads to an increase in activated NK (NKp44(+)) and T (HLA-DR(+)) cells. Bone Marrow Transplant 2010;45:349–353.
  • Quach H, Ritchie D, Stewart AK, . Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 2001;24:22–32.
  • Davies FE, Raje N, Hideshima T, . Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210–216.
  • Hayashi T, Hideshima T, Akiyama M, . Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005;128:192–203.
  • Schafer PH, Gandhi AK, Loveland MA, . Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther 2003;305:1222–1232.
  • Tai YT, Li XF, Catley L, . Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 2005;65:11712–11720.
  • Gorgun G, Calabrese E, Soydan E, . Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 2010;116:3227–3237.
  • Benson DM Jr, Bakan CE, Zhang S, . IPH2101, a novel anti-inhibitor KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 2011;118: 6387–6391.
  • Mitsiades CS. How “immunomodulatory” are IMIDs? Blood 2011;117:1440–1441.
  • Ghandhi AK, Kang J, Capone L, . Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduced lenalidomide-induced immunomodulation of T and NK cell function. Curr Cancer Drug Targets 2010;10:155–167.
  • Hsu AK, Quach H, Tai T, . The immuno-stimulatory effect of lenalidomide on NK cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood 2011;117:1605–1613.
  • Shi J, Tricot G, Garg TK, . Bortezomib down-regulates the cell surface expression of HLA-class I and enhances natural killer cell mediated lysis of myeloma. Blood 2008;111:1309–1317.
  • Wu X, Shao Y, Tao Y, . Proteasome inhibitor lacta cystin augments natural killer cell cytotoxicity of myeloma via downregulation of HLA class I. Biochem Biophys Res Commun 2001;415:187–192.
  • Hallett WH, Ames E, Motarjemi M, . Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol 2008;180:163–170.
  • Stevenson FK, Bell AJ, Crusack R, . Preliminary studies for an immunotherapeutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody. Blood 1991;77:1071–1079.
  • Hsi ED, Steinle R, Balasa B, . CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 2008;14:2775–2784.
  • Van Rhee F, Szmania SM, Dillon M, . Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther 2009;8: 2616–2624.
  • Cruz-Munoz ME, Dong Z, Shi X, . Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol 2009;10:297–305.
  • Collins SM, Bakan CE, Alghothani Y, . The effect of elotuzumab on NK cell function against myeloma. J Clin Oncol 2011;29(15 Suppl.): Abstract 2572.
  • Zonder JA, Singhal S, Bensinger W, . Phase I study of elotuzumab (HuLuc63) in relapsed/refractory multiple myeloma. Blood 2011 Dec 19. [Epub ahead of print]
  • Lonial S, Vij R, Harousseau J-L, . Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2011;29(15 Suppl.): Abstract 8076.
  • Jakubowiak AJ, Benson DM, Bensinger W, . A phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 2012 Jan 30. [Epub ahead of print]
  • Weber DM, Chen C, Niesvizky R, . Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007;357:2133–2142.
  • Dimopoulos M, Spencer A, Attal M, . Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357:2123–2132.
  • Richardson PG, Barlogie B, Berenson J, . A phase 2 study of bortezomib in relapsed, refractory multiple myeloma. N Engl J Med 2003;348:2609–2617.
  • Velardi A. Role of KIRs and KIR ligands in hematopoietic transplantation. Curr Opin Immunol 2008;20:581–587.
  • Romange F, Andre P, Spee P, . Preclinical characterization of 1 - 7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009;114:2667–2677.
  • Benson DM, Bakan C, Hofmeister CC, . Phase I trial of IPH2101 in patients with myeloma. Haematologica 2011;96(Suppl.): Abstract P-194.
  • Richardson PG, Lonial S, Jakubowiak AJ, . Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol 2011;154:745–754.
  • Atanackovic D, Panse J, Hildebrandt Y, . Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica 2011;96:1512–1520.
  • Zhu D, Corral LG, Fleming YW, . Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Canacer Immunol Immunother 2008;57:1849–1859.
  • Schmudde M, Braun A, Pende D, . Histone deacetylase inhibitors sensitive tumor cells for cytotoxic effects of natural killer cells. Cancer Lett 2008;272:110–121.
  • Fionda C, Soriani A, Malgarini G, . Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J Immunol 2009;183:4385–4394.
  • Alici E, Sutlu T, Bjorkstrand B, . Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 2008;111:3155–3162.
  • Barkholt L, Alici E, Conrad R, . Safety analysis of ex vivo expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy 2009;1:753–764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.