1,060
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Molecular mechanisms of effectiveness of novel therapies in multiple myeloma

&
Pages 229-241 | Received 21 May 2012, Accepted 20 Jun 2012, Published online: 17 Sep 2012

References

  • Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011;364:1046–1060.
  • Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol 2011;6:249–274.
  • American Cancer Society. Multiple myeloma overview. Available from: http://www.cancer.org/Cancer/MultipleMyeloma/OverviewGuide/index
  • Kumar SK, Rajkumar SV, Dispenzieri A, . Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111:2516–2520.
  • Anderson KC. The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol 2012;30:445–452.
  • Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417–421.
  • Raje N, Anderson K. Thalidomide-a revival story. N Engl J Med 1999;341:1606–1609.
  • Hideshima T, Mitsiades C, Tonon G, . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007;7:585–598.
  • Basak GW, Srivastava AS, Malhotra R, . Multiple myeloma bone marrow niche. Curr Pharm Biotechnol 2009;10:345–346.
  • Bergsagel PL, Chesi M, Nardini E, . Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996;93:13931–13936.
  • Manz RA, Arce S, Cassese G, . Humoral immunity and long-lived plasma cells. Curr Opin Immunol 2002;14:517–521.
  • Kyle RA. Multiple myeloma: an odyssey of discovery. Br J Haematol 2000;111:1035–1044.
  • Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008;111: 2962–2972.
  • Iwakoshi NN, Lee AH, Vallabhajosyula P, . Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003;4:321–329.
  • Obeng EA, Carlson LM, Gutman DM, . Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006;107:4907–4916.
  • Lee AH, Iwakoshi NN, Anderson KC, . Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003;100:9946–9951.
  • van Anken E, Romijn EP, Maggioni C, . Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 2003;18:243–253.
  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011;334:1081–1086.
  • Reimold AM, Iwakoshi NN, Manis J, . Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001;412:300–307.
  • Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997;90:1031–1039.
  • Yoshida H, Matsui T, Yamamoto A, . XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107:881–891.
  • Calfon M, Zeng H, Urano F, . IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002;415:92–96.
  • Carrasco DR, Sukhdeo K, Protopopova M, . The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 2007;11:349–360.
  • Reimold AM, Ponath PD, Li YS, . Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med 1996;183:393–401.
  • Papandreou I, Denko NC, Olson M, . Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011;117:1311–1314.
  • Mimura N, Fulciniti M, Gorgun G, . Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 2011;118(Suppl. 1): Abstract 133.
  • Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996;381:571–579.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011;475:324–332.
  • Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet?Clin Cancer Res 2012;18:64–76.
  • Kuhn DJ, Hunsucker SA, Chen Q, . Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 2009;113:4667–4676.
  • Altun M, Galardy PJ, Shringarpure R, . Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res 2005;65:7896–7901.
  • Jain S, Diefenbach C, Zain J, . Emerging role of carfilzomib in treatment of relapsed and refractory lymphoid neoplasms and multiple myeloma. Core Evid 2011;6:43–57.
  • Nawrocki ST, Carew JS, Maclean KH, . Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 2008;112: 2917–2926.
  • Stuhmer T, Iskandarov K, Gao Z, . Preclinical activity of the novel orally bioavailable HSP90 inhibitor NVP-HSP990 against multiple myeloma cells. Anticancer Res 2012;32:453–462.
  • Patterson J, Palombella VJ, Fritz C, . IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother Pharmacol 2008;61: 923–932.
  • Stuhmer T, Zollinger A, Siegmund D, . Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 2008;22:1604–1612.
  • Kaiser M, Lamottke B, Mieth M, . Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Haematol 2010;84:337–344.
  • Siegel D, Jagannath S, Vesole DH, . A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 2011;52:2308–2315.
  • Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules?J Immunol 1996;157:1823–1826.
  • Yewdell JW, Schubert U, Bennink JR. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J Cell Sci 2001;114:845–851.
  • Cenci S, van Anken E, Sitia R. Proteostenosis and plasma cell pathophysiology. Curr Opin Cell Biol 2011;23:216–222.
  • Goldberg AL. Functions of the proteasome: the lysis at the end of the tunnel. Science 1995;268:522–523.
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.
  • Hebert DN, Bernasconi R, Molinari M. ERAD substrates: which way out?Semin Cell Dev Biol 2010;21:526–532.
  • Neefjes J, Jongsma MLM, Paul P, . Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011;11:823–836.
  • Seifert U, Bialy LP, Ebstein F, . Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010;142:613–624.
  • Bianchi G, Oliva L, Cascio P, . The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 2009;113:3040–3049.
  • Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403.
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–758.
  • Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004;4:349–360.
  • Adams J, Palombella VJ, Sausville EA, . Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.
  • Hideshima T, Richardson P, Chauhan D, . The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001;61:3071–3076.
  • LeBlanc R, Catley LP, Hideshima T, . Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002;62:4996–5000.
  • Orlowski RZ, Stinchcombe TE, Mitchell BS, . Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002;20:4420–4427.
  • Chauhan D, Hideshima T, Anderson KC. A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer 2006;95: 961–965.
  • Hideshima T, Mitsiades C, Akiyama M, . Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003;101:1530–1534.
  • Ma MH, Yang HH, Parker K, . The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003;9:1136–1144.
  • Mitsiades N, Mitsiades CS, Richardson PG, . The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003;101:2377–2380.
  • Hideshima T, Ikeda H, Chauhan D, . Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009;114:1046–1052.
  • Richardson PG, Sonneveld P, Schuster MW, . Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:2487–2498.
  • San Miguel JF, Schlag R, Khuageva NK, . Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 2008;359:906–917.
  • Kumar SK, Mikhael JR, Buadi FK, . Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clinic Proc 2009;84:1095–1110.
  • Mahindra A, Laubach J, Raje N, . Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 2012;21:135–143.
  • Richardson PG, Barlogie B, Berenson J, . A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609–2617.
  • Richardson PG, Sonneveld P, Schuster M, . Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007;110:3557–3560.
  • Wang Q, Mora-Jensen H, Weniger MA, . ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci USA 2009;106: 2200–2205.
  • Kuhn DJ, Chen Q, Voorhees PM, . Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007;110: 3281–3290.
  • Chauhan D, Catley L, Li G, . A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 2005;8:407–419.
  • Singh AV, Bandi M, Aujay MA, . PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br J Haematol 2011;152:155–163.
  • Ramakrishna S, Suresh B, Baek KH. The role of deubiquitinating enzymes in apoptosis. Cell mol life sci 2011;68:15–26.
  • Sun H, Kapuria V, Peterson LF, . Inhibition of Usp9x deubiquitinase activity by WP1130 reduces Mcl-1 levels and induces apoptosis in cells from patients with plasma cell dyscrasia and drug-refractory multiple myeloma. Blood 2011;118(Suppl. 1): Abstract 3005.
  • Colland F, Formstecher E, Jacq X, . Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther 2009;8:2286–2295.
  • Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009;27:5459–5468.
  • Kawaguchi Y, Kovacs JJ, McLaurin A, . The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115:727–738.
  • Kopito RR, Sitia R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 2000;1:225–231.
  • Catley L, Weisberg E, Kiziltepe T, . Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006;108:3441–3449.
  • Hideshima T, Bradner JE, Wong J, . Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005;102: 8567–8572.
  • Mazumder A, Vesole DH, Jagannath S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: a case series illustrating utility in clinical practice. Clin Lymphoma Myeloma Leuk 2010;10:149–151.
  • Santo L, Hideshima T, Kung AL, . Preclinical activity, pharmacodynamic and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma.Blood2012;119:2579–2589.
  • Michallet AS, Mondiere P, Taillardet M, . Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PloS One 2011;6:e25820.
  • David E, Sun SY, Waller EK, . The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 2005;106: 4322–4329.
  • Lonial S, Boise LH. Farnesyl transferase inhibitors, autophagy, and proteasome inhibition: synergy for all the right reasons. Autophagy 2011;7:448–449.
  • Puissant A, Robert G, Auberger P. Targeting autophagy to fight hematopoietic malignancies. Cell Cycle 2010;9:3470–3478.
  • Chen Q, Xie W, Kuhn DJ, . Targeting the p27 E3 ligase SCF (Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 2008;111:4690–4699.
  • Hoang B, Benavides A, Shi Y, . Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther 2009;8:1974–1984.
  • Aggarwal R, Ghobrial IM, Roodman GD. Chemokines in multiple myeloma. Exp Hematol 2006;34:1289–1295.
  • Moller C, Stromberg T, Juremalm M, . Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003;17:203–210.
  • Tokoyoda K, Egawa T, Sugiyama T, . Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 2004;20:707–718.
  • Campbell DJ, Kim CH, Butcher EC. Chemokines in the systemic organization of immunity. Immunol Rev 2003;195:58–71.
  • Azab AK, Azab F, Blotta S, . RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009;114: 619–629.
  • Alsayed Y, Ngo H, Runnels J, . Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007;109:2708–2717.
  • Azab AK, Runnels JM, Pitsillides C, . CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009;113:4341–4351.
  • Calandra G, McCarty J, McGuirk J, . AMD3100 plus G-CSF can successfully mobilize CD34 + cells from non-Hodgkin's lymphoma, Hodgkin's disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008;41:331–338.
  • Devine SM, Flomenberg N, Vesole DH, . Rapid mobilization of CD34 + cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004;22:1095–1102.
  • Raje N, Roodman GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 2011;17: 1278–1286.
  • Vanderkerken K, Asosingh K, Croucher P, . Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 2003;194: 196–206.
  • Morgan GJ, Davies FE, Gregory WM, . First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 2010;376:1989–1999.
  • Castellano D, Sepulveda JM, Garcia-Escobar I, . The role of RANK-ligand inhibition in cancer: the story of denosumab. Oncologist 2011;16:136–145.
  • Vij R, Horvath N, Spencer A, . An open-label, phase 2 trial of denosumab in the treatment of relapsed or plateau-phase multiple myeloma. Am J Hematol 2009;84:650–656.
  • Fulciniti M, Tassone P, Hideshima T, . Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009;114:371–379.
  • Richardson PG, Lonial S, Jakubowiak AJ, . Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol2011 Jul 21. [Epub ahead of print]
  • Kieran MW, Folkman J, Heymach J. Angiogenesis inhibitors and hypoxia. Nat Med 2003;9:1104–1105.
  • Colla S, Storti P, Donofrio G, . Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 2010;24: 1967–1970.
  • Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012;33:207–214.
  • Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012;12:9–22.
  • Martin SK, Diamond P, Gronthos S, . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011;25:1533–1542.
  • Martin SK, Diamond P, Gronthos S, . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011;25:1533–1542.
  • Hu Y, Kirito K, Yoshida K, . Inhibition of hypoxia-inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan. Mol Cancer Ther 2009;8:2329–2338.
  • Colla S, Storti P, Donofrio G, . Hypoxia and hypoxia inducible factor (HIF)-1 alpha in multiple myeloma: effect on the pro-angiogenic signature of myeloma cells and the bone marrow microenvironment. Blood 2008;112:595–596.
  • Staller P, Sulitkova J, Lisztwan J, . Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003;425:307–311.
  • Schioppa T, Uranchimeg B, Saccani A, . Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003;198: 1391–1402.
  • Martin SK, Diamond P, Williams SA, . Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 2010;95:776–784.
  • Azab AK, Hu J, Quang P, . Hypoxia promotes dissemination of multiple myeloma through acquisition of endothelial to mesenchymal transition-like features. Blood 2012;119:5782–5794.
  • Colla S, Tagliaferri S, Morandi F, . The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007;110: 4464–4475.
  • Storti P, Airoldi I, Bolzoni M, . Hypoxia-inducible factor (HIF)-1α is a therapeutic target in myeloma-induced angiogenesis. Blood 2011;118(Suppl. 1): Abstract 3927.
  • Perrone G, Borsi E, Terragna C, . HIF 1 alpha: a suitable target for multiple myeloma. Blood 2011;118(Suppl. 1):Abstract 2901.
  • Greenberger LM, Horak ID, Filpula D, . A RNA antagonist of hypoxia-inducible factor-1alpha, EZN- 2968, inhibits tumor cell growth. Mol Cancer Ther2008;7:3598–3608.
  • Hu J, Handisides DR, Van Valckenborgh E, . Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood 2010;116:1524–1527.
  • NCT01522872. Open-label study of TH-302 as monotherapy and in combination with bortezomib in subjects with relapsed/refractory multiple myeloma. Available on Clinicaltrials.gov
  • Singhal S, Mehta J, Desikan R, . Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341:1565–1571.
  • Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med 2001;344:1951–1952.
  • Zangari M, Anaissie E, Barlogie B, . Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood 2001;98:1614–1615.
  • D’Amato RJ, Loughnan MS, Flynn E, . Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91: 4082–4085.
  • Davies FE, Raje N, Hideshima T, . Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210–216.
  • LeBlanc R, Hideshima T, Catley LP, . Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 2004;103: 1787–1790.
  • Li S, Pal R, Monaghan SA, . IMiD immunomodulatory compounds block C/EBP{beta} translation through eIF4E down-regulation resulting in inhibition of MM. Blood 2011;117:5157–5165.
  • Leukemia 2012 May 3. [Epub ahead of print]
  • Gorgun G, Calabrese E, Soydan E, . Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 2010;116:3227–3237.
  • Davies F, Baz R. Lenalidomide mode of action: linking bench and clinical findings. Blood Rev 2010;24(Suppl. 1):S13–S19.
  • Baz R, Hussein M, Lebovic DJ, . Evaluation of single agent lenalidomide in patients with newly diagnosed multiple myeloma (NDMM). Blood 2009;114:1488.
  • Gandhi AK, Kang J, Capone L, . Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function. Curr Cancer Drug Targets 2010;10:155–167.
  • Ito T, Ando H, Suzuki T, . Identification of a primary target of thalidomide teratogenicity. Science 2010;327:1345–1350.
  • Zhu YX, Braggio E, Shi CX, . Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011;118:4771–4779.
  • Lopez-Girona A, Mendy D, Ito T, . Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012 May 3, doi: 10.1038/leu.2012.119. [Epub ahead of print]
  • Attal M, Lauwers VC, Marit G, . Maintenance treatment with lenalidomide after transplantation for myeloma: final analysis of the IFM 2005-02. Blood 2010;116:141–141.
  • McCarthy PL, Owzar K, Anderson KC, . Phase III intergroup study of lenalidomide versus placebo maintenance therapy following single autologous hematopoietic stem cell transplantation (AHSCT) for multiple myeloma: CALGB100104. Blood2010;116:21–22.
  • Palumbo A, Delforge M, Catalano J, . A phase 3 study evaluating the efficacy and safety of lenalidomide combined with melphalan and prednisone in patients >65 years with newly diagnosed multiple myeloma (NDMM): continuous use of lenalidomide vs fixed-duration regimens. Blood 2010;116:273–274.
  • Landgren O, Thomas A, Mailankody S. Myeloma and second primary cancers. N Engl J Med 2011;365:2241–2242.
  • Dimopoulos MA, Richardson PG, Brandenburg N, . A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide. Blood 2012;119: 2764–2767.
  • Kneppers E, van der Holt B, Kersten MJ, . Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood 2011;118:2413–2419.
  • Laubach JP, Richardson PG, Anderson KC. Hematology: thalidomide maintenance in multiple myeloma. Nat Rev Clin Oncol 2009;6:565–566.
  • Munshi NC, Mitsiades CS, Richardson PG, . Does maintenance therapy with thalidomide benefit patients with multiple myeloma?Nat Clin Pract Oncol 2007;4:394–395.
  • Lacy MQ, Hayman SR, Gertz MA, . Pomalidomide (CC4047) plus low dose dexamethasone (pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia 2010;24:1934–1939.
  • Vasir B, Borges V, Wu Z, . Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation. Br J Haematol 2005;129:687–700.
  • Rosenblatt J, Vasir B, Uhl L, . Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2011;117: 393–402.
  • Bae J, Carrasco R, Lee AH, . Identification of novel myeloma-specific XBP1 peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma. Leukemia 2011;25:1610–1619.
  • Hoang B, Frost P, Shi Y, . Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 2010;116: 4560–4568.
  • Chauhan D, Singh AV, Brahmandam M, . Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009;16:309–323.
  • Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol 2009;27:83–117.
  • Gera J, Lichtenstein A. The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leuk Lymphoma 2011;52:1857–1866.
  • Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol 2012;22:3–13.
  • Hsi ED, Steinle R, Balasa B, . CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 2008;14:2775–2784.
  • van Rhee F, Szmania SM, Dillon M, . Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther 2009;8:2616–2624.
  • Jakubowiak AJ, Benson DM, Bensinger W, . Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 2012;30:1960–1965.
  • Morgan G. Future drug developments in multiple myeloma: an overview of novel lenalidomide-based combination therapies. Blood Rev 2010;24(Suppl. 1):S27–S32.
  • Ikeda H, Hideshima T, Fulciniti M, . The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin Cancer Res 2009;15:4028–4037.
  • Peterson TR, Laplante M, Thoreen CC, . DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873–886.
  • Nardi V, Rochelle-Keyes H, Peterson T, . Activation of the PI3K/Akt pathway in plasma cell myeloma is associated with MAF and DEPTOR overexpression and favorable response to therapy. Mod Pathol 2011;24(Suppl.):311A.
  • Raje N, Richardson P, Hari PN, . An open-label phase I study of the safety and efficacy of RAD001 in combination with lenalidomide in the treatment of patients with relapsed and relapsed/refractory multiple myeloma. Blood 2009;114:1483–1483.
  • Farag SS, Zhang S, Jansak BS, . Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res 2009;33:1475–1480.
  • Ghobrial IM, Weller E, Vij R, . Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol 2011;12:263–272.
  • Baumann P, Schneider L, Mandl-Weber S, . Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anticancer Drugs 2012;23:131–138.
  • Cirstea D, Hideshima T, Rodig S, . Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther 2010;9:963–975.
  • Harvey RD, Lonial S. PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol 2007;3:639–647.
  • Hideshima T, Catley L, Yasui H, . Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107: 4053–4062.
  • Ikeda H, Hideshima T, Fulciniti M, . CAL-101: a selective inhibitor of PI3K p110 delta for the treatment of multiple myeloma. Clin Lymphoma Myeloma 2009;9:S98–S99.
  • Silberman J, Dalbey K, Torre C, . A novel pan-PI3K/Akt inhibitor, SF1126, inhibits in vitro growth of multiple myeloma cells. Blood2007;110(Suppl. 1): Abstract 4806.
  • Banerjee S, Baird R, Basu B, . A phase I study evaluating GDC-0941, a pan-phosphoinositide-3 kinase (PI3K) inhibitor, in patients (pts) with advanced solid tumours, multiple myeloma, and PIK3Ca mutant (mt) tumours. Eur J Cancer2011; 47:S159–S159.
  • Lonial S, Harvey RD, Francis D, . Preliminary results of a phase I study of the pan-PI3 kinase inhibitor SF1126 in patients with relapsed and refractory myeloma. Blood 2009;114:1492–1493.
  • Annunziata CM, Hernandez L, Davis RE, . A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 2011;117:2396–2404.
  • Hurt EM, Wiestner A, Rosenwald A, . Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5:191–199.
  • Kyle RA, Greipp PR. Smoldering multiple myeloma. N Engl J Med 1980;302:1347–1349.
  • Kumar S, Rajkumar SV, Kimlinger T, . CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia 2005;19:1466–1470.
  • Ramakrishnan V, Kimlinger T, Haug J, . TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. Am J Hematol 2010;85:675–686.
  • Molineaux SM. Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res 2012;18:15–20.
  • Shah JJ, Orlowski RZ. Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 2009;23:1964–1979.
  • Chauhan D, Bianchi G, Anderson KC. Targeting the UPS as therapy in multiple myeloma. BMC Biochem 2008;9(Suppl. 1):S1.
  • Parlati F, Lee SJ, Aujay M, . Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 2009;114:3439–3447.
  • Chauhan D, Tian Z, Zhou B, . In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 2011;17:5311–5321.
  • Chauhan D, Singh AV, Aujay M, . A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 2010;116:4906–4915.
  • Piva R, Ruggeri B, Williams M, . CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood2008;111:2765–2775.
  • Reske T, Fulciniti M, Munshi NC. Mechanism of action of immunomodulatory agents in multiple myeloma. Med Oncol 2010;27(Suppl. 1):S7–S13.
  • Mitsiades CS, Mitsiades NS, McMullan CJ, . Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004;101: 540–545.
  • Knop S. From the observation DAC: romidepsin revisited. Blood 2011;118:6231–6232.
  • Richardson PG, Mitsiades CS, Laubach JP, . Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 2011;152:367–379.
  • Body JJ, Facon T, Coleman RE, . A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006;12:1221–1228.
  • Henry DH, Costa L, Goldwasser F, . Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011;29: 1125–1132.
  • Trikha M, Corringham R, Klein B, . Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003;9:4653–4665.
  • Voorhees PM, Chen Q, Kuhn DJ, . Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007;13: 6469–6478.
  • Voorhees PM, Chen Q, Small GW, . Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009;145:481–490.
  • Hunsucker SA, Magarotto V, Kuhn DJ, . Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011;152:579–592.
  • Yan H, Frost P, Shi Y, . Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer research. 2006;66:2305–2313.
  • Frost P, Moatamed F, Hoang B, . In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood. 2004;104:4181–4187.
  • Li J, Favata M, Kelley JA, . INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia.2010;12:28–38.
  • Tai YT, Fulciniti M, Hideshima T, . Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood. 2007;110:1656–1663.
  • Vanderkerken K, Medicherla S, Coulton L, . Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma. Cancer research. 2007;67:4572–4577.
  • Nguyen AN, Stebbins EG, Henson M, . Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Experimental cell research. 2006;312: 1909–1923.
  • Tai YT, Dillon M, Song W, . Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008;112:1329–1337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.