5,052
Views
189
CrossRef citations to date
0
Altmetric
Reviews

Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma

, &
Pages 683-687 | Received 18 Aug 2012, Accepted 23 Aug 2012, Published online: 28 Sep 2012

References

  • Speirs AL. Thalidomide and congenital abnormalities. Lancet 1962;1:303–305.
  • Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther 1965;6:303–306.
  • Singhal S, Mehta J, Desikan R, . Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341:1565–1571.
  • Juliusson G, Celsing F, Turesson I, . Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma. Br J Haematol 2000; 109:89–96.
  • Attal M, Harousseau JL, Leyvraz S, . Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 2006;108:3289–3294.
  • Facon T, Mary JY, Hulin C, . Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet 2007; 370:1209–1218.
  • Palumbo A, Bringhen S, Liberati AM, . Oral melphalan, prednisone, and thalidomide in elderly patients with multiple myeloma: updated results of a randomized controlled trial. Blood 2008;112:3107–3114.
  • Muller GW, Corral LG, Shire MG, . Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J Med Chem 1996;39:3238–3240.
  • Marriott JB, Muller G, Stirling D, . Immunotherapeutic and antitumour potential of thalidomide analogues. Expert Opin Biol Ther 2001;1:675–682.
  • Madan S, Lacy MQ, Dispenzieri A, . Efficacy of retreatment with immunomodulatory drugs (IMiDs) in patients receiving IMiDs for initial therapy of newly diagnosed multiple myeloma. Blood;118: 1763–1765.
  • Wang M, Dimopoulos MA, Chen C, . Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 2008;112:4445–4451.
  • Guglielmelli T, Bringhen S, Rrodhe S, . Previous thalidomide therapy may not affect lenalidomide response and outcome in relapse or refractory multiple myeloma patients. Eur J Cancer 2011;47:814–818.
  • Lacy MQ, Tefferi A. Pomalidomide therapy for multiple myeloma and myelofibrosis. Leuk Lymphoma 2011;52:560–566.
  • Kotla V, Goel S, Nischal S, . Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2009;2:36.
  • Quach H, Ritchie D, Stewart AK, . Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 2010;24:22–32.
  • Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, . Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 2009;69:7347–7356.
  • Keifer JA, Guttridge DC, Ashburner BP, . Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 2001;276:22382–22387.
  • Li S, Pal R, Monaghan SA, . IMiD immunomodulatory compounds block C/EBP{beta} translation through eIF4E down-regulation resulting in inhibition of MM. Blood 2011;117:5157–5165.
  • Mitsiades N, Mitsiades CS, Poulaki V, . Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99:4525–4530.
  • Chauhan D, Uchiyama H, Akbarali Y, . Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996;87:1104–1112.
  • Dankbar B, Padro T, Leo R, . Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000;95:2630–2636.
  • Gupta D, Treon SP, Shima Y, . Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001;15: 1950–1961.
  • Hideshima T, Chauhan D, Schlossman R, . The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001;20:4519–4527.
  • Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 1996;31:213–221.
  • Hideshima T, Bergsagel PL, Kuehl WM, . Advances in biology of multiple myeloma: clinical applications. Blood 2004;104:607–618.
  • Breitkreutz I, Raab MS, Vallet S, . Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 2008;22:1925–1932.
  • Anderson G, Gries M, Kurihara N, . Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 2006;107:3098–3105.
  • Kumar S, Witzig TE, Dispenzieri A, . Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 2004;18:624–627.
  • Haslett PA, Corral LG, Albert M, . Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 1998;187:1885–1892.
  • Davies FE, Raje N, Hideshima T, . Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210–216.
  • Galustian C, Meyer B, Labarthe MC, . The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 2009;58: 1033–1045.
  • Braga WM, Atanackovic D, Colleoni GW. The role of regulatory T cells and TH17 cells in multiple myeloma. Clin Dev Immunol 2012;2012:293479.
  • Giannopoulos K, Kaminska W, Hus I, . The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer 2012;106:546–552.
  • Zhu D, Corral LG, Fleming YW, . Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol Immunother 2008;57:1849–1859.
  • Wu L, Adams M, Carter T, . lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res 2008;14:4650–4657.
  • Lopez-Girona A, Mendy D, Ito T, . Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012 May 3. [Epub ahead of print]
  • Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 1999;5:582–585.
  • Knobloch J, Shaughnessy JD Jr, Ruther U. Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J 2007;21:1410–1421.
  • Hansen JM, Gong SG, Philbert M, . Misregulation of gene expression in the redox-sensitive NF-kappab-dependent limb outgrowth pathway by thalidomide. Dev Dyn 2002;225:186–194.
  • Hansen JM, Harris C. A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 2004;6:1–14.
  • D’Amato RJ, Loughnan MS, Flynn E, . Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91:4082–4085.
  • Therapontos C, Erskine L, Gardner ER, . Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA 2009;106:8573–8578.
  • Ito T, Ando H, Suzuki T, . Identification of a primary target of thalidomide teratogenicity. Science 2010;327:1345–1350.
  • Higgins JJ, Pucilowska J, Lombardi RQ, . A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 2004;63:1927–1931.
  • Angers S, Li T, Yi X, . Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 2006;443:590–593.
  • Zhu YX, Braggio E, Shi CX, . Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011;118:4771–4779.
  • Bjorklund CC, Ma W, Wang ZQ, . Evidence of a role for activation of Wnt/{beta}-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem 2011;286:11009–11020.
  • Heintel D, Bolomsky A, Schreder M, . High expression of the thalidomide-binding protein cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Blood 2011;118(Suppl. 1): Abstract 2879.
  • Neri P, Belch AR, Johnson J, . A miRNA risk score for the prediction of response to lenalidomide in multiple myeloma (MM) patients. Blood 2011;118(Suppl. 1): Abstract 987.
  • Shaffer AL, Emre NC, Lamy L, . IRF4 addiction in multiple myeloma. Nature 2008;454:226–231.
  • Lopez-Girona A, Heintel D, Zhang LH, . Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 2011;154:325–336.
  • Yang Y, Shaffer AL 3rd, Emre NC, . Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012;21:723–737.
  • Higgins JJ, Hao J, Kosofsky BE, . Dysregulation of large-conductance Ca2+-activated K+ channel expression in nonsyndromal mental retardation due to a cereblon p.R419X mutation. Neurogenetics 2008;9:219–223.
  • Jo S, Lee KH, Song S, . Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem 2005; 94:1212–1224.
  • Lee KM, Jo S, Kim H, . Functional modulation of AMP-activated protein kinase by cereblon. Biochim Biophys Acta 2011;1813:448–455.
  • Baumann P, Mandl-Weber S, Emmerich B, . Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res 2007;313:3592–3603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.