214
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Clinical significance of down-regulated cylindromatosis gene in chronic lymphocytic leukemia

, , , , , , , , & show all
Pages 588-594 | Received 02 Mar 2013, Accepted 22 May 2013, Published online: 15 Jul 2013

References

  • Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med 2005;352:804–815.
  • Messmer BT, Messmer D, Allen SL, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005;115:755–764.
  • Massoumi R. CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol 2011;7:285–297.
  • Kovalenko A, Chable-Bessia C, Cantarella G, et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003;424:801–805.
  • Brummelkamp TR, Nijman SM, Dirac AM, et al. Loss of the cylindromatosistumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003;424:797–801.
  • Trompouki E, Hatzivassiliou E, Tsichritzis T, et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003;424:793–796.
  • Reiley W, Zhang M, Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 2004;279:55161–55167.
  • Reiley WW, Zhang M, Jin W, et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol 2006;7:411–417.
  • Stokes A, Wakano C, Koblan-Huberson M, et al. TRPA1 is a substrate for deubiquitination by the tumor suppressor CYLD. Cell Signal 2006;18:1584–1594.
  • Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311–1323.
  • Wu W, Liu P, Li J. Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2012;82:249–258.
  • Jin W, Reiley WR, Lee AJ, et al. Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J Biol Chem 2007;282:15884–15893.
  • Reiley WW, Jin W, Lee AJ, et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med 2007;204:1475–1485.
  • Wright A, Reiley WW, Chang M, et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 2007;13:705–716.
  • Jin W, Chang M, Paul EM, et al. Deubiquitinating enzyme CYLD regulates RANK signaling and osteoclastogenesis. J Clin Invest 2008; 118:1858–1866.
  • Stegmeier F, Sowa ME, Nalepa G, et al. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 2007;104:8869–8874.
  • Gao J, Huo L, Sun X, et al. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J Biol Chem 2008;283:8802–8809.
  • Bignell GR, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000;25:160–165.
  • Strobel P, Zettl A, Ren Z, et al. Spiradenocylindroma of the kidney: clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am J Surg Pathol 2002;26:119–124.
  • Hashimoto K, Mori N, Tamesa T, et al. Analysis of DNA copynumber aberrations in hepatitis C virus-associated hepatocellular carcinomas byconventional CGH and array CGH. Mod Pathol 2004;17:617–622.
  • Hirai Y, Kawamata Y, Takeshima N, et al. Conventional and array-based comparative genomic hybridization analyses of novel celllines harboring HPV18 from glassy cell carcinoma of the uterine cervix. Int J Oncol 2004;24:977–986.
  • Hellerbrand C, Bumes E, Bataille F, et al. Reducedexpression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 2007;28:21–27.
  • Massoumi R, Kuphal S, Hellerbrand C, et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 2009;206:221–232.
  • Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115–130.
  • Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kB pathway in multiple myeloma. Cancer Cell 2007;12:131–144.
  • Espinosa L, Cathelin S, D’Altri T, et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 2010;18:268–281.
  • Liu P, Xu B, Shen W, et al. Dysregulation of TNFα-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 2012;26:1293–300.
  • Xu W, Li JY, Wu YJ, et al. Prognostic significance of ATM and TP53 deletions in Chinese patients with chronic lymphocytic leukemia. Leuk Res 2008;32:1071–1077.
  • Pepper C, Hewamana S, Brennan P, et al. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 2009;5:1027–1037.
  • Cuni S, Perez-Aciego P, Perez-Chacon G, et al. A sustained activation of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukaemia B cells. Leukemia 2004;18:1391–1400.
  • Furman RR, Asgary Z, Mascarenhas JO, et al. Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J. Immunol 2000;164:2200–2206
  • Tracey L, Perez-Rosado A, Artiga MJ, et al. Expression of the NF-κB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 2007;138: 721–732.
  • Gagro A, Dasic G, Sabioncello A, et al. Phenotypicanalysis of receptor-ligand pairs on B-cells in B-chronic lymphocytic leukemia. Leuk Lymphoma 1997;25:301–311.
  • Lopez-Matas M, Rodriguez-Justo M, Morilla R, et al. Quantitative expression of CD23 and its ligand CD21 in chronic lymphocytic leukemia. Haematologica 2000;85:1140–1145.
  • Stilgenbauer S, Bullinger L, Lichter P, et al. Genetics of chronic lymphocytic leukemia: genomic aberrations and VH gene mutation status in pathogenesis and clinical course. Leukemia 2002;16: 993–1007.
  • Sheikholeslami MR, Jilani I, Keating M, et al. Variations in the detection of ZAP70 in CLL: comparison with IgVh mutation analysis. Cytometry B Clin Cytom 2006;15;70:270–275.
  • Matrai Z, Lin K, Dennis M, et al. CD38 expression and IGVH gene mutation in B-cell chronic lymphocytic leukemia. Blood 2001;97: 1902–1903.
  • Oscier D, Wade R, Davis Z, et al. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica 2010;95:1705–1712.
  • Stamatopoulos B, Meuleman N, Haibe-Kains B, et al. Quantification of ZAP70 mRNA in B cells by real-time PCR is a powerful prognostic factor in chronic lymphocytic leukemia. Clin Chem 2007;53:1757–1766.
  • Sheikholeslami MR, Jilani I, Keating M, et al. Variations in the detection of ZAP70 in CLL: comparison with IgVh mutation analysis. Cytometry B Clin Cytom 2006;70:270–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.