1,683
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Novel targeted therapies in acute lymphoblastic leukemia

&
Pages 737-748 | Received 01 May 2013, Accepted 02 Jul 2013, Published online: 28 Aug 2013

References

  • Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000;95: 3310–3322.
  • Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211–1218.
  • Stock W, Johnson JL, Stone RM, et al. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia: results of Cancer and Leukemia Group B Study 19802. Cancer 2013;119:90–98.
  • Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 2005;106:3760–3767.
  • Thomas DA, O’Brien S, Faderl S, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 2010;28:3880–3889.
  • Ribera J-M. Optimal approach to treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: how to best use all the available tools. Leuk Lymphoma 2013;54:21–27.
  • Paietta E, Li X, Richards S, et al. Implications for the use of monoclonal antibodies in future adult ALL trials: analysis of antigen expression in 505 B-lineage (B-Lin) ALL patients (pts) on the MRC UKALLXII/ECOG2993 intergroup trial. Blood 2008;112(Suppl. 1): Abstract 1907.
  • Raponi S, De Propris MS, Intoppa S, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia:analysis of 552 cases. Leuk Lymphoma 2011;52:1098–1107.
  • Thomas DA, O’Brien S, Jorgensen JL, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood 2009;113:6330–6337.
  • Dworzak MN, Schumich A, Printz D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008;112:3982–3988.
  • Kennedy AD, Beum PV, Solga MD, et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol 2004;172:3280–3288.
  • Stockmeyer B, Dechant M, van Egmond M, et al. Triggering Fc alpha-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. J Immunol 2000;165:5954–5961.
  • Thomas DA, Kantarjian HM, Jorgensen JL, et al. Outcomes continue to be favorable for de novo Philadelphia chromosome negative B-lymphoblastic leukemia (ALL) after therapy with Hyper-CVAD (with or without rituximab) regimen. Blood 2012;120:(Suppl. 1): Abstract 3572.
  • Hoelzer D, Huettmann A, Kaul F, et al. Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20 + B-lineage standard and high risk patients; results of 263 CD20 + patients studied prospectively in GMALL study 07/2003. Blood 2010;116(Suppl. 1): Abstract 170.
  • Brüggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006;107:1116–1123.
  • Poe JC, Fujimoto Y, Hasegawa M, et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 2004;5:1078–1087.
  • Carnahan J, Stein R, Qu Z, et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 2007;44:1331–1341.
  • Raetz EA, Borowitz MJ, Devidas M, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic Leukemia: a Children's Oncology Group Study [corrected]. J Clin Oncol 2008;26:3971–3978.
  • Raetz EA, Cairo MS, Borowitz MJ, et al. Reinduction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL) in children, adolescents and young adults: results from Children's Oncology Group (COG) study ADVL04P2. Blood 2011;118 (Suppl.): Abstract 573.
  • Advani A, McDonough S, Coutre S, et al. Southwest Oncology Group study S0910: a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukemia. Blood 2012;120(Suppl. 1): Abstract 2603.
  • Advani AS, Gundacker HM, Sala-Torra O, et al. Southwest Oncology Group Study S0530: a phase 2 trial of clofarabine and cytarabine for relapsed or refractory acute lymphocytic leukaemia. Br J Haematol 2010;151:430–434.
  • Tibes R, Keating MJ, Ferrajoli A, et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer 2006;106: 2645–2651.
  • Hu Y, Turner MJ, Shields J, et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 2009;128:260–270.
  • Angiolillo AL, Yu AL, Reaman G, et al. A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children's Oncology Group report. Pediatr Blood Cancer 2009;53:978–983.
  • Stock W, Sanford B, Lozanski G, et al. Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): final phase I results of a Cancer and Leukemia Group B Study (CALGB 10102). Blood 2009;114(Suppl. 1): Abstract 838.
  • Stock W, Yu D, Sanford B, et al. Incorporation of alemtuzumab into front-line therapy of adult acute lymphoblastic leukemia (ALL) is feasible: a phase I/II study from the Cancer and Leukemia Group B (CALGB 10102). Blood 2005;106(Suppl. 1): Abstract 145.
  • Carnahan J, Wang P, Kendall R, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 2003;9:3982S–3990S.
  • de Vries JF, Zwaan CM, De Bie M, et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia 2012;26:255–264.
  • DiJoseph JF, Armellino DC, Boghaert ER, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004;103:1807–1814.
  • Jabbour E, O’Brien S, Thomas D, et al. Inotuzumab ozogamicin (IO; CMC544), a CD22 monoclonal antibody attached to calicheamycin, produces complete response (CR) plus complete marrow response (mCR) of greater than 50% in refractory relapse (R-R) acute lymphocytic leukemia (ALL). J Clin Oncol 2011;29(Suppl.): Abstract 6507.
  • Kantarjian H, Thomas D, Jorgensen J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012;13:403–411.
  • Advani A, Coiffier B, Czuczman MS, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J Clin Oncol 2010;28:2085–2093.
  • DeAngelo D, Stock W, Petersdorf S, et al. Weekly inotuzumab ozogamicin in adult patients with relapsed or refractory CD22-positive acute lymphoblastic leukemia. Blood 2012;120(Suppl. 1): Abstract 2612.
  • O’Brien S, Thomas DA, Jorgensen JL, et al. Experience with 2 dose schedules of inotuzumab ozogamicin, single dose, and weekly, in refractory-relapsed acute lymphocytic leukemia (ALL). Blood 2012;120(Suppl. 1): Abstract 671.
  • Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005;115:98–104.
  • Löffler A, Kufer P, Lutterbüse R, et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95:2098–2103.
  • Gabrilovich D, Pisarev V. Tumor escape from immune response: mechanisms and targets of activity. Curr Drug Targets 2003;4:525–536.
  • Dreier T, Lorenczewski G, Brandl C, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002;100:690–697.
  • Brandl C, Haas C, d’Argouges S, et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother 2007;56:1551–1563.
  • Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012;119:6226–6233.
  • Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab: a historical perspective. Pharmacol Ther 2012;136:334–342.
  • Nagorsen D, Bargou R, Ruttinger D, et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma 2009;50:886–891.
  • Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 2011;317:1255–1260.
  • Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008;321:974–977.
  • Topp MS, Kufer P, Gökbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:2493–2498.
  • Topp MS, Goekbuget N, Zugmaier G, et al. Anti-CD19 BiTE blinatumomab induces high complete remission rate and prolongs overall survival in adult patients with relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). Blood 2012;120(Suppl. 1): Abstract 670.
  • Topp MS, Gökbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012;120:5185–5187.
  • Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 2007;109:944–950.
  • Hollyman D, Stefanski J, Przybylowski M, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169–180.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725–733.
  • Brentjens RJ, Davila ML, Rivière I, et al. CD19-targeted T-cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177ra38.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T-cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–1518.
  • Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3:95ra73.
  • Tanigaki K, Honjo T. Regulation of lymphocyte development by Notch signaling. Nat Immunol 2007;8:451–456.
  • Blaumueller CM, Qi H, Zagouras P, et al. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997;90:281–291.
  • van Tetering G, van Diest P, Verlaan I, et al. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 2009;284:31018–31027.
  • De Strooper B, Annaert W, Cupers P, et al. A presenilin- 1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999;398:518–522.
  • Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998;393:382–386.
  • Tzoneva G, Ferrando AA. Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 2012;360:163–182.
  • Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004;16:509–520.
  • Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269–271.
  • Groth C, Fortini ME. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin Cell Dev Biol 2012;23:465–472.
  • Lewis HD, Leveridge M, Strack PR, et al. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of Notch signaling. Chem Biol 2007;14: 209–219.
  • DeAngelo DJ, Stone RM, Silverman LB, et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 2006;24(Suppl.): Abstract 6585.
  • Samon JB, Castillo-Martin M, Hadler M, et al. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther 2012;11:1565–1575.
  • Wei P, Walls M, Qiu M, et al. Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 2010;9:1618–1628.
  • Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle 2008; 7:965–970.
  • Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007;13:1203–1210.
  • Sarmento LM, Barata JT. Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises. Expert Rev Anticancer Ther 2011;11:1403–1415.
  • Silva A, Jotta PY, Silveira AB, et al. Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors. Haematologica 2010;95:674–678.
  • Wu P, Hu Y-Z. PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem 2010;17: 4326–4341.
  • Aste-Amézaga M, Zhang N, Lineberger JE, et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PloS One 2010;5:e9094.
  • Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010;464:1052–1057.
  • Chillón MC, Gómez-Casares MT, López-Jorge CE, et al. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4 + and MLL-germline acute lymphoblastic leukemia. Leukemia 2012;26:2360–2366.
  • Armstrong SA, Mabon ME, Silverman LB, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004;103: 3544–3546.
  • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47.
  • Levis M, Ravandi F, Wang ES, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011;117:3294–3301.
  • Brown P, Levis M, Shurtleff S, et al. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005;105:812–820.
  • Brown P, Levis M, McIntyre E, et al. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 2006;20:1368–1376.
  • Brown P, Hunger SP, Smith FO, et al. Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Rev Hematol 2009;2:145.
  • Brown P, Hilden JM, Dreyer ZE, et al. Report on excessive induction toxicity in infants with ALL enrolled on COG protocol AALL0631: a Children's Oncology Group study. Blood 2009;114(Suppl. 1): Abstract 3091.
  • Zarrinkar PP, Gunawardane RN, Cramer MD, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009;114:2984–2992.
  • Kampa-Schittenhelm KM, Heinrich MC, Akmut F, et al. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT isoforms. Mol Cancer 2013;12:19.
  • Cortes JE, Perl AE, Dombret H, et al. Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients > = 60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood 2012;120(Suppl. 1): Abstract 48.
  • Katz FE, Lovering RC, Bradley LA, et al. Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia 1994;8:574–577.
  • Feldhahn N, Rio P, Ndikung B, et al. Deficiency of Bruton's tyrosine kinase in B cell precursor leukemia cells. Proc Natl Acad Sci USA 2005;102:13266–13271.
  • Goodman PA, Wood CA, Vassilev AO, et al. Defective expression of Bruton's tyrosine kinase in acute lymphoblastic leukemia. Leuk Lymphoma 2003;44:1011–1018.
  • Schult C, Dahlhaus M, Glass A, et al. The dual kinase inhibitor NVP-BEZ235 in combination with cytotoxic durgs exerts anti-proliferative activity towards acute lymphoblastic leukemia. Anticancer Res 2012;32:463–474.
  • Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009;114:647–650.
  • Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 2004;10: 3371–3376.
  • Horton TM, Pati D, Plon SE, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study. Clin Cancer Res 2007; 13:1516–1522.
  • Horton TM, Gannavarapu A, Blaney SM, et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006;58:13–23.
  • Messinger Y, Gaynon P, Raetz E, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer 2010;55:254–259.
  • Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012;120:285–290.
  • Filicko-O’Hara J, Mookerjee B, Carabasi MH, et al N. Phase I trial of bortezomib, mitoxantrone and etoposide in relapsed/refractory acute leukemia. J Clin Oncol 2008;26(Suppl.): Abstract 7071.
  • Filicko-O’Hara J, Mookerjee B, Alpdogan O, et al. Phase II study of bortezomib, mitoxantrone and etoposide in relapsed/ refractory acute leukemias. Blood 2010;116(Suppl. 1): Abstract 2192.
  • Roman-Gomez J, Jimenez-Velasco A, Barrios M, et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 2007; 48:1269–1282.
  • Vilas-Zornoza A, Agirre X, Martín-Palanco V, et al. Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PloS One 2011;6:e17012.
  • Bhatla T, Wang J, Morrison DJ, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012;119:5201–5210.
  • Yánez L, Bermúdez A, Richard C, et al. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 2009;23:1342–1343.
  • Paulson K, Kumar R, Ahsanuddin A, et al. Azacytidine as a novel agent in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma 2011;52:134–136.
  • Garcia-Manero G, Thomas DA, Rytting ME, et al. Final report of a phase I trial of decitabine with or without HyperCVAD in relapsed acute lymphocytic leukemia (ALL). Blood 2010;116(Suppl. 1): Abstract 867.
  • Webb MS, Harasym TO, Masin D, et al. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 1995;72:896–904.
  • O’Brien S, Schiller G, Lister J, et al. High-dose vincristine sulfate liposome injection for advanced, relapsed and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol 2013;31:676–683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.