30
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Human NK Cells in Health and Disease: Clinical, Functional, Phenotypic and DNA Genotypic Characteristics

&
Pages 377-399 | Received 20 Dec 1991, Published online: 01 Jul 2009

References

  • Kabelitz D. Human cytotoxic lymphocytes. IV. Frequency and clonal specificity of CD8+ CD16− (Leu2+-Leull−) and CD16+ CD3− (Leu11 + Leu4−) cytotoxic lymphocyte precursors activated by alloantigen or K562 stimulator cells. Cell Immunol. 1989; 121: 298–305
  • Takasugi M., Mickey M. R., Terasaki P. I. Reactivity of lymphocytes from normal persons on cultured tumor cells. Cancer. Res. 1973; 33: 2898–2902
  • Rosenberg E. B., McCoy J. L., Green S. S., Donnelly F. C., Siwarski D. F., Levine P. H., Herberman R. B. Destruction of human lymphoid tissue culture cell lines by human peripheral lymphocytes in 51Cr-release cellular cytotoxicity assays. J. Natl. Cancer. Inst. 1974; 52: 345–352
  • Lanier L. L., Phillips J. H. Evidence for three types of human cytotoxic lymphocytes. Immunol. Today. 1986; 7: 132–134
  • Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 1987; 330: 256–259
  • Norment A. M., Salter R. D., Parham P., Engelhard V. H., Littman D. R. Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 1988; 336: 79–81
  • Lanier L. L., Kipps T. J., Phillips J. H. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fe receptors for IgG (CD16/leu-11 antigen). J. Exp. Med 1985; 162: 2089–2106
  • Brenner M. B., McLean J., Dialynas D. P., Strominger J. L., Smith J. A., Owen F. L., Seidman J. G., Ip S., Rosen F., Krangel M. S. Indentification of a putative second T-cell receptor. Nature 1986; 322: 145–149
  • Lanier L. L., Ruitenberg J. J., Phillips J. H. Human CD3+ T lymphocytes that express neither CD4 nor CD8 antigens. J. Exp. Med. 1986; 164: 339–344
  • Grimm E. A., Mazumder A., Zhang H. Z., Rosenburg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp. Med. 1982; 155: 1823–1841
  • Timonen T., Saksela E., Ranki A., Hayry P. Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell-line targets. Cell. Immunol 1979; 48: 133–148
  • Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp. Med. 1981; 153: 569–582
  • Karre K., Hansson M., Kiessling R. Multiple interactions at the natural killer workshop. Immunol. Today. 1991; 12: 343–345
  • Kay H. D., Bonnard G. D., West W. H., Herbermann R. B. A functional comparison of human Fc-receptor-bearing lymphocytes active in natural cytotoxicity and antibody-dependent cellular cytotoxicity. J. Immunol 1977; 118: 2058–2066
  • Ozer H., Strelkauskas A. J., Callery R. T., Schlossman S. F. The functional dissection of human peripheral null cells with respect to antibody-dependent cellular cytotoxicity and natural killing. Eur. J. Immunol 1979; 9: 112–118
  • Perussia B., Trinchieri G., Jackson A., Warner N. L., Faust J., Ruampold H., Kraft D., Lanier L. L. The Fe receptor on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J. Immunol 1984; 133: 180–189
  • Levy P. C., Shaw G. M., LoBuglio A. F. Human monocyte, lymphocyte, and granulocyte antibody-dependent cell-mediated cytotoxicity toward tumor cells. I. General characteristics of cytolysis. J. Immunol 1979; 123: 594–599
  • Van Kessel K. P. M., Verhoef J. A view to a kill: cytotoxic mechanisms of human polymorphonuclear leukocytes compared with monocytes and natural killer cells. Pathobiology 1990; 58: 249–264
  • Schlossman S. F., Chess L. Immunological functions of a subset of human null cells. Clinical Evaluation of Immune Function in Man. Grune and Stratton, New York 1976; 65–95
  • Mc Michael A. J. Leucocyte Typing III: White Cell Differentiation Antigens. Oxford University Press, Oxford 1987
  • Knapp W., Dorken B., Gilks W. R., Rieber E. P., Schmidt R. E., Stein H., von dem Borne A. E. G. Leucocyte Typing IV. Oxford University Press, Oxford 1989
  • Jondal M., Pross H. Surface markers on human B and T lymphocytes. VI. Cytotoxicity against cell lines as a functional marker for lymphocyte subpopulations. Int. J. Cancer 1975; 15: 596–605
  • Santoli D., Trinchieri G., Moretta L., Zmijewski D. M., Koprowski H. Spontaneous cell-mediated cytotoxicity in humans. Distribution and characterization of the effector cell. Clin. Exp. Immunol 1978; 33: 309–318
  • Fitzgerald-Bocarsly P., Herberman R., Hercend T., Hiserodt J., Kumar V., Lanier L., Ortaldo J., Pross H., Reynolds C., Welsh R., Wigzell H. A definition of natural killer cells. Immunol. Today. 1988; 9: 292
  • Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (leu-11) and leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic lymphocytes. J. Immunol 1986; 136: 4480–4486
  • Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J. Immunol. 1984; 132: 1410–1415
  • Anegon I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD 16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med 1988; 167: 452–472
  • Lanier L. L., Ruitenberg J. J., Phillips J. H. Functional and biochemical analysis of CD 16 antigen on natural killer cells and granulocytes. J. Immunol 1988; 141: 3478–3485
  • Lanier L. L., Yu G., Phillips J. H. Co-association of CD3C with a receptor (CD 16) for IgG Fc on human natural killer cells. Nature 1988; 342: 803–805
  • Griffin J. D., Hercend T., Beveridge R., Schlossman S. F. Characterization of an antigen expressed by human natural killer cells. J. Immunol 1983; 130: 2947–2951
  • Hercend T., Griffin J. D., Bensussan A., Schmidt R. E., Edson M. A., Brennan A., Murray C., Daley J. F., Schlossman S. F., Ritz J. Generation of monoclonal antibodies to a human natural killer clone. J. Clin. Invest. 1985; 75: 932–943
  • Lanier L. L., Chang C., Azuma M., Ruitenberg J. J., Hemperly J. J., Phillips J. H. Molecular and functional analysis of human natural killer cell-associated neural cell adhesion molecule (N-CAM/CD56). J. Immunol. 1991; 146: 4421–4426
  • Robertson M. J., Caligiuri M. A., Manley T. J., Levine H., Ritz J. R. Human natural killer cell adhesion molecules. J. Immunol. 1990; 145: 3194–3201
  • Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J. Immunol. 1981; 127: 1024–1029
  • Abo T., Cooper M. D., Balch C. M. Characterization of HNK-I+ (leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J. Immunol 1982; 129: 1752–1757
  • Perussia B., Fanning V., Trinchieri G. A human NK and K cell subset shares with cytotoxic T cell expression of the antigen recognized by antibody OKT8. J. Immunol 1983; 131: 223
  • Gadd S. Cluster report: CD13. Leucocyte Typing IV. White Cell Differentiation Antigens. Oxford University Press, Oxford 1989a; 782–784
  • Gadd S. Cluster report: CD14. Leucocyte Typing IV. White Cell Differentiation Antigens, W. Knapp, B. Dorken, W. R. Gilks, E. P. Rieber, R. E. Schmidt, H. Stein, A. E. G. von dem Borne. Oxford University Press, Oxford 1989b; 787–789
  • Koller S., Peschel Ch. Cluster report: CD33. Oxford University Press, Oxford 1989; 812–813
  • Arnout M. A. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990; 75: 1037–1050
  • Springer T. A. Adhesion receptors in the immune system. Nature 1990; 346: 425–433
  • Timonen T., Patarroyo M., Gahmberg C. G. CD11a-c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing. J. Immunol. 1988; 141: 1041–1046
  • Ball E. D., Schwarz L. M., Bloomfield C. D. Expression of the CD15 antigen on normal and leukemic myeloid cells: Effects of neuraminidase and variable detection with a panel of monoclonal antibodies. Mol Immunol 1991; 28: 951–958
  • Richards S. J., Scott C. S. Immunophenotypic dissection of normal peripheral blood NK associated (NKa) subpopulations by flow cytometry: Morphological features and relationships between membrane NKa (CD11b, CD16, CD56 and CD57) and T-cell (CD2, CD3, TCR, CD5, CD7, CD8 and CD38) associated determinant expression. Leuk. Lymphoma. 1990; 2: 111–126
  • Moebius U., Kober G., Griscelli A. L., Hercend T., Meuer S. C. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur. J. Immunol. 1991; 21: 1793–1800
  • Lanier L. L., Loken M. R. Human lymphocyte subpopulations identified by using three-color immunofluorescence and flow cytometry analysis: Correlation of leu-2, leu-3, leu-7, leu-8 and leu-11 cell surface antigen expression. J. Immunol. 1984; 132: 151–156
  • Scott C. S., Richards S. J., Galvin M. C., Child J. A., Hunt K. M., McEvoy M. W., Steed A. J., Sivakumaran M., Short M., Roberts B. E. Transient and persistent expansions of large granular lymphocytes (LGL) and NK-associated (NKa) cells: The Yorkshire Leukaemia Group study: in preparation. 1992
  • Richards S. J., Jones R. A., Roberts B. E., Patel D., Scott C. S. Relationships between 2H4 (CD45RA) and UCHL1 (CD45RO) expression by normal blood CD4+CD8−, CD4CD8+, CD4−CD8 dim+, CD3 + CD4−CD8− and CD3− CD4−CD8− lymphocytes. Clin. Exp. Immunol. 1990; 81: 149–155
  • Clement L. T., Yamashita N., Martin A. M. The functional subpopulations of human CD4+ helper/inducer T lymphocytes defined by anti-CD45R antibodies derive sequentially from a differentiation pathway that is regulated by activation-dependent post-thymic differentiation. J. Immunol. 1988; 141: 1464–1471
  • Akbar A. N., Terry L., Timms S., Beverley P. C. L., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol 1988; 140: 2171–2177
  • Yamashita N., Clement L. T. Phenotypic characterization of the post-thymic differentiation of human alloantigen-specific CD8+ cytotoxic T lymphocytes. J. Immunol 1989; 143: 1518–1525
  • Trinchieri G., Perussia B. Biology of disease. Human natural killer cells: Biologic and pathologic aspects. Lab. Invest. 1984; 50: 489–513
  • Plum J., Koning F., Leclercq G., Tison B., De Smedt M. Expansion of large granular lymphocytes in IL-2-driven 14-day-old fetal thymocytes in organ culture. J. Immunol. 1990; 144: 3710–3717
  • Maghazachi A. A., Vujanovic N. L., Herberman R. B., Hiserodt J. C. Lymphokine-activated killer cells in rats: IV, Developmental relationships among large agranular lymphocytes, large granular lymphocytes, and lymphokine-activated killer cells. J. Immunol. 1988; 140: 2846–2852
  • Michon J. M., Caligiuri M. A., Hazanow S. M., Levine H., Schlossman S. F., Ritz J. Induction of natural killer effectors from human thymus with recombinant IL-2. J. Immunol. 1988; 140: 3660–3667
  • Blue M.-L., Levine H., Daley J. F., Craig K. A., Schlossman S. A. Development of natural killer cells in human thymocyte culture: regulation by accessory cells. Eur. J. Immunol 1987; 17: 669–673
  • Lotzovo E., Savary C. A. Generation of NK cell activity from human bone marrow. J. Immunol 1987; 139: 279–284
  • Janeway C. A. A primitive immune system. Nature 1989; 341: 108
  • Anderson P., Caligiuri M., Ritz J., Schlossman S. F. CD3-negative natural killer cells express TCR as part of a novel molecular complex. Nature 1989; 341: 159–162
  • Ruthlein J., James S. P., Strober W. Role of CD2 activation and cytotoxic function of CD8/leu-7-positive T cells. J. Immunol 1988; 141: 3791–3797
  • Abo T., Miller C. A., Gartland G. L., Balch C. M. Differentiation stages of human natural killer cells in lymphoid tissues from fetal to adult life. J. Exp. Med 1983; 157: 273–279
  • Oshimi K. Granular lymphocyte proliferative disorders: Report of 12 cases and review of the literature. Leukemia 1988; 2: 617–627
  • Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J. Exp. Med. 1986; 164: 814–825
  • Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J. Immunol 1989; 143: 3183–3191
  • Braakman E., Sturm E., Vijverberg K., van Krimpen B. A., Gratama J. W., Bolhuis R. L. Expression of CD45 isoforms by fresh and activated γ T lymphocytes and natural killer cells. J. Immunol 1991; 3: 691–697
  • London L., Perussia B., Trinchieri G. Induction of proliferation in vitro of resting human natural killer cells: Expression of surface activation antigens. J Immunol 1985; 134: 718–727
  • Fuchshuber P. R., Lotzova E., Pollock R. E. Antitumor activity, growth and phenotype of long-term IL-2 cultures of human NK and T lymphocytes. Lymph. Cyto. Res. 1991; 10: 51–59
  • Ortaldo J. R., Winkler-Pickett R. T., Yagita H., Young H. A. Comparative studies of CD3− and CD3+ CD56+ cells: Examination of morphology, functions, T cell receptor rearrangement, and pore-forming protein expression. Cell. Immunol 1991; 136: 486–495
  • Koberda J., Bergmann L., Mitrou P. S., Hoelzer D. High release of tumor necrosis fractor α, inteferon γ and interleukin-6 by adherent lymphokine-activated killer cells phenotypically derived from T cells. J. Cancer Res. Clin. Oncol. 1991; 117: 425–430
  • Ritz J. The role of natural killer cells in immune surveillance. New. Engl. J. Med 1989; 320: 1748–1749
  • Garcia-Penarrubia P., Koster F. T., Kelley R. O., McDowell T. D., Bankhurst A. D. Antibacterial activity of human natural killer cells. J. Exp. Med. 1989; 169: 99–113
  • Biron C. A., Natuk R. J., Welsh R. M. Generation of large granular T lymphocytes in vivo during viral infection. J. Immunol. 1986; 136: 2280–2286
  • Agostini C., Zambello R., Pontisso P., Alberti A., Trentin L., Siviero F., Foa R., Pandolfi F., Semenzato G. Lymphoproliferative disease of granular lymphocytes in a patient with concomitant hepatitis B virus infection of CD4 lymphocytes. J. Clin. Immunol. 1989; 9: 401–408
  • Biron C. A., Byron K. S., Sullivan J. L. Severe herpes virus infections in an adolescent without natural killer cells. New. Engl. J. Med 1989; 320: 1731–1735
  • Ortaldo J. R., Oldham R. K., Cannon G. C., Herberman R. B. Specificity of natural cytotoxic reactivity of normal human lymphocytes against a myeloid leukemia cell line. J. Natl. Cancer. Inst. 1977; 59: 77–82
  • Lozzio B. B., Lozzio C. B., Machado E. Human myelogenous (Ph+) leukemia cell line: transplantation into athymic mice. J. Natl. Cancer. Inst. 1976; 56: 627–629
  • Brunner K. T., Mauel J., Cerottini J.-C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; Inhibition by isoantibody and by drugs. Immunology 1968; 14: 181–196
  • Persussia B., Trinchieri G., Cerottini J.-C. Functional studies of Fc receptor-bearing human lymphocytes: Effect of treatment with proteolytic enzymes. J. Immunol 1979; 123: 681–687
  • Radcliff G., Waite R., LeFevre J., Poulik M. D., Callewaert D. M. Quantification of effector/target conjugation involving natural killer (NK) or lymphokine activated killer (LAK) cells by two-color flow cytometry. J. Immunol. Methods 1991; 139: 281–292
  • Papa S., Vitale M., Mariani A. R., Roda P., Facchini A., Manzoli F. A. Natural killer function in flow cytometry. I. Evaluatation of NK lytic activity on the K562 cell line. J. Immunol. Methods 1988; 107: 73–78
  • Radosevic K., Garritsen H. S. P., Graft M., Grooth B. G., Greve J. A simple and sensitive flow cytometric assay for the determination of the cytolytic activity of human natural killer cells. J. Immunol. Methods 1990; 135: 81–89
  • Vitale M., Neri L. M., Comani S., Falcieri E., Rizzoli R., Rana R., Papa S. Natural killer function in flow cytometry. II. Evaluation of NK lytic activity by means of target cell morphological changes detected by right angle light scatter. J Immunol. Methods 1989; 121: 115–120
  • Yannelli J., Maleckar J., West W., Oldham R. Cellular biotherapy of cancer: generation, characterization, and use of anti-tumour effector cells. Cellular biotherapy of cancer: generation, characterization, and use of anti-tumour effector cells, R. C. Rees. Oxford University Press, New York 1990; 120–138
  • Fierro M. T., Liao X.-S., Lusso P., Bonferroni M., Matera L., Cesano A., Lista P., Arione R., Forni G., Foa R. In vilro and in vivo susceptibility of human leukemic cells to lymphokine activated killer activity. Leukemia 1988; 2: 50–54
  • Horton S. A., Oldham R. K., Yannelli J. R. Generation of human lymphokine-activated killer cells following brief exposure to high dose interleukin 2. Cancer. Res. 1990; 50: 1686–1692
  • Timonen T., Ortaldo J. R., Herberman R. B. Analysis, by a single cell cytotoxicity assay of natural killer (NK) cell frequencies among large granular lymphocytes and of the effects of interferon on their activity. J Immunol. 1982; 128: 2514–2521
  • Trinchieri G., Granato D., Perussia B. Interferon-induced resistance of fibroblasts to cytolysis mediated by natural killer cells: specificity and mechanism. J. Immunol. 1981; 126: 335–340
  • Vitale M., Zamai L., Neri L. M., Manzoli L., Facchni A., Papa S. Natural killer cell function in flow cytometry: Identification of human lymphoid subsets able to bind to the NK sensitive target K562. Cytometry. 1991; 12: 717–722
  • Scott C. S., Richards S. J., Roberts B. E. Patterns of membrane TCRa α, β J and TCRγ, chain expression by normal blood CD4+ CD8−, CD4−CD8+, CD4−CD8dim+ and CD4− CD8− lymphocytes. Immunology 1990; 70: 351–356
  • van deGriend R. J., Bolhuis R. L. H., Stoter G., Roozemond R. C. Regulation of cytolytic activity on CD3− and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J. Immunol. 1987; 138: 3137–3144
  • Alarcon B., Fresno M. Specific effect of anti transferrin antibodies on natural killer cells directed against tumor cells. Evidence for the transferrin receptor being one of the target structures recognized by NK cells. J. Immunol. 1985; 134: 1286–1291
  • Perl A., Looney R. J., Ryan D. H., Abraham G. N. The low affinity 40,000 Fey receptor and the transferrin receptor can be alternative or simultaneous target structures on cells sensitive for natural killing. J. Immunol. 1986; 136: 4714–4720
  • Bridges K. R., Smith B. R. Discordance between transferrin receptor expression and susceptibility to lysis by natural killer cells. J. Clin. Invest. 1985; 76: 913–918
  • Schmidt R. E., Caulfield J. P., Michon J., Hein A., Kamada M. M., MacDermott R. P., Stevens R. L., Ritz J. T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J. Immunol. 1988; 140: 991–1002
  • Mullbacher A., King N. J. C. Target cell lysis by natural killer cells is influenced by β2-microglobulin expression. Scand. J. Immunol. 1989; 30: 21–29
  • Petranyi G. G., Pocsik E., Kotlan B., Gorog G., Benczur M. Regulatory function of cell surface molecules CD2-, LFA- and β2-microglobulin in natural killer activity. Mol. Immunol. 1986; 23: 1275–1281
  • Storkus W. J., Howell D. N., Salter R. D., Dawson J. R., Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 1987; 138: 1657–1659
  • Dennert G., Landon C., Lord E. M., Bahler D. W., Frelinger J. G. Lysis of a lung carcinoma by poly I:C-induced natural killer cells is independent of the expression of class I histocompatibility antigens. J. Immunol. 1988; 140: 2472–2475
  • Reiter Z., Reiter Y., Fishelso Z., Shinitsky M., Kessler A., Loyter A., Nussbaum O., Rubinstein M. Resistance to NK cell-mediated cytotoxicity (in K562 cells) does not correlate with Class I MHC antigen levels. Immunobioloay. 1991; 183: 23–29
  • Jones R. A., Richards S. J., Patel D., Scott C. S. Suppression of natural killer cell activity by rabbit antibody to human beta2-microglobulin (β2m) is an Fc-mediated phenomenom and is not β2m specific. Immunobioloay. 1991; 73: 342–347
  • Berke G. Lymphocyte-triggered internal target disintegration. Immunol. Today. 1991; 12: 396–399
  • Dealtry G. B., Naylor M. S., Fiers W., Balkwill F. R. DNA fragmentation and cytotoxicity caused by tumor necrosis factor is enhanced by interferon-γ. Eur. J. Immunol. 1987; 17: 689–693
  • Grossi C. E., Cadoni A., Zicca A., Leprini A., Ferrarini M. Large granular lymphocytes in human peripheral blood: Ultrastructural and cytochemical characterization of the granules. Blood 1982; 59: 277–283
  • Heumann D., Colombatti M., Mach J.-P. Human large granular lymphocytes contain an esterase activity usually considered as specific for the myeloid series. Eur. J. Immunol. 1983; 13: 254–258
  • Zalman L. S., Brothers M. A., Chiu F. J., Muller-Eberhard H. J. Mechanism of cytotoxicity of human large granular lymphocytes: Relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement. Proe. Natl. Acad. Sci. USA 1986; 83: 5262–5266
  • Liu C. C., Perussia B., Cohn Z. A., Young J. D. Identification and characterization of a pore-forming protein of human natural killer cells. J Exp. Med. 1986; 164: 2061–2076
  • Lichtenheld M. G., Olsen K. J., Lu P., Lowrey D. M., Hameed A., Hengartner H., Podack E. R. Structure and function of human perforin. Nature 1988; 335: 448–451
  • Shinkai Y., Takio K., Okumura K. Homology of perforin to the ninth component of complement (C9). Nature 1988; 334: 525–527
  • Krahnenbuhl O., Tschopp J. Perforin-induced pore formation. Immunol. Today. 1991; 12: 399–402
  • Chow S. C., Jondal M. A central role for phosphoinositide hydrolysis in activating the lytic mechanism of human killer cells. Immunology 1990; 70: 106–110
  • Wright S. C., Bonavida B. Studies on the mechanism of natural killer cell-mediated cytotoxicity. J. Immunol. 1987; 138: 1791–1798
  • Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. J. Exp. Med. 1978; 5: 1314–1333
  • Trinchieri G., Santoli D., Koprowski H. Spontaneous cell-mediated cytotoxicity in humans: role of interferon and immunoglobulins. J. Immunol. 1978; 120: 1849–1855
  • Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J. Exp. Med. 1984; 160: 1147–1169
  • Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer activity. Nature 1981; 291: 335–338
  • Sharon M., Klausner R. D., Cullen B. R., Chizzonite R., Leonard W. J. Novel interleukin-2 receptor subunit detected by cross-linking under high affinity conditions. Science 1986; 234: 859–863
  • Teshigawara K., Wang H.-M., Kato K., Smith K. A. Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J. Exp. Med. 1987; 165: 223–238
  • Umehara H., Bloom E. T. The IL-2 receptor beta subunit is absolutely required for mediating the IL-2-induced activation of NK activity and proliferative activity of human large granular lymphocytes. Immunology 1990; 70: 111–115
  • Robb R. J., Rusk C. M., Neeper M. P. Structure-function relationships for the interleukin 2 receptor: Location of ligand and antibody binding sites cm the Tac receptor chain by mutational analysis. Proc. Natl. Acad. Sci. USA 1988; 85: 5654–5663
  • Tsudo M., Goldman C. K., Bongiovanni K. F., Chan W. C., Winton E. F., Yagita M., Grimm E. A., Waldman T. A. The p75 peptide is the receptor for interleukin 2 expressed on large granular lymphocytes and is responsible for the interleukin 2 activation of these cells. Proc. Acad. Sci. USA 1986; 84: 5394–5398
  • Brunda M. J., Tarnowski D., Davatelis V. Interaction of recombinant interferons with recombinant interleukin-2: differential effects on natural killer cell activity and interleukin-2 activated killer cells. Int. J. Cancer 1986; 37: 787–793
  • Silva A., Bonavida B., Targan S. Mode of action of interferon-mediated modulation of natural killer cytotoxic activity: recruitment of pre-NK cells and enhanced kinetics of lysis. J. Immunol 1980; 125: 479–484
  • Targen S., Dorey F. Interferon activation of ‘pre-spontaneous killer’ (pre-SK) cells and alteration in kinetics of lysis of both ‘pre-SK’ and active SK cells. J. Immunol. 1980; 124: 2157–2161
  • Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 1989; 170: 827–845
  • Ortaldo J. R., Mason A. T., Gerard J. P., Henderson L. E., Farrar W., Hopkins I II, R F., Herberman R. B., Rabin H. Effects of natural and recombinant IL-2 on regulation of IFNy production and natural killer activity: Lack of involvement of the Tac antigen for these immunoregulatory effects. J. Immunol 1984; 133: 779–783
  • Kasahara T., Djeu J. Y., Dougherty S. F., Oppenheim J. J. Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin 2, interferon, and colony stimulating factor. J. Immunol. 1983; 131: 2379–2385
  • Mingari M. C., Ferrini S., Pende D., Bottino C., Prigione I., Moretta A., Moretta L. Phenotypic and functional analysis of human CD3+ and CD3 clones with ‘lymphokine-activated killer’ (LAK) activity. Frequent occurrence of CD3+ LAK clones which produce interleukin-2. Int. J. Cancer 1987; 40: 495–498
  • Cuturi M. C., Anegon I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp. Med 1989; 169: 569–583
  • Procopio A. D. G., Allavena P., Ortaldo J. R. Noncytotoxic functions of natural killer (NK) cells: Large granular lymphocytes (LGL) produce a B cell growth factor (BCGF). J. Immunol 1985; 135: 3264–3271
  • Mc Glone J. J., Lumpkin E. E., Norman R. L. Adrenocorticotropin stimulates natural killer cell activity. Endocrinology 1991; 129: 1653–1658
  • Leu S., Sigh V. K. Modulation of natural killer cell-mediated lysis by corticotropin-releasing neurohormone. J. Neuroimmunol 1991; 33: 253–260
  • Nagler A., Greenberg P. L. Bone marrow modulation and inhibition of myelopoiesis by large granular lymphocytes and natural killer cells. Int. J. Cell. Cloning. 1990; 8: 171–183
  • Rosenberg S. A., Lotze M. T., Muul L. M., Chang A. E., Avis F. P., Leitman S., Lineham W. M., Robertson C. N., Lee R. E., Rubin J. T., Seipp, Simpson C. A., White D. E. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. New. Engl. J. Med 1987; 316: 889–879
  • West W. H., Tauer K. W., Yanelli J. R., Marshall G. D., Orr D. W., Thurman G. B., Oldham R. K. Constant infusion recombinant interleukin-2 in adoptive immunotherapy of cancer. New. Engl. J. Med. 1987; 316: 898–905
  • Melder R. J., Whiteside T. L., Vujanovic N. L., Hiserodt J. C., Herbermann R. B. A new approach to generating antitumor effects for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Res. 1988; 48: 3461–3469
  • Lotzova E. Natural killer cells: Immunobiology and clinical prospects. Cancer Invest. 1991; 9: 173–184
  • Barlozzari T., Leonhardt J., Wiltrout R. H., Herbermann R. B., Reynolds C. W. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J. Immunol 1985; 134: 2783–2789
  • Gorelik E. L., Herberman R. B. Immunological control of tumor metastases. Immunological control of tumor metastases, R. H. Goldfarb. Kluwer Academic Publishers, DordrechtNetherlands 1989; 134–143
  • Kakumu S., Hirofuji H., Fuji A., Tahara H., Yashioka K. Phenotypic expression of natural killer cell associated membrane antigens in patients with chronic liver disease and hepatocellular carcinoma. J. Clin. Lab. Immunol 1988; 26: 29–32
  • Le Fever A. V., Funahashi A. Phenotype and function of natural killer cells in patients with bronchogenic carcinoma. Cancer Res. 1991; 51: 5596–5601
  • Griffin D. E., Ward B. J., Jauregui E., Johnson R. T., Vaisberg A. Natural killer cell activity during measles. Clin. Exp. Immunol 1990; 81: 218–224
  • Takasugi M., Ramseyer A., Takasugi J. Decline of natural nonselective cell-mediated cytotoxicity in patients with tumor progression. Cancer Res. 1977; 37: 413–418
  • Steinhauer E. H., Doyle A. T., Reed J., Kadish A. S. Effective natural cytotoxicity in patients with cancer: Normal numbers of effector cells but decreased cycling capacity in patients with advanced disease. J. Immunol 1982; 129: 2255–2259
  • Eremin O., Coombs R. R.A., Ashby J. Lymphocytes infiltrating human breast cancer lack K-cell activity and show low levels of NK-cell activity. Br. J. Cancer 1981; 44: 166–176
  • Nakanishi H., Monden T., Morimoto H., Koyabashi T., Shimano T., Mori T. Perforin expression in lymphocytes infiltrated to human colorectal cancer. Br. J. Cancer 1991; 64: 239–242
  • Trinchieri G. Biology of natural killer cells. Adv. Immunol 1989; 47: 187–376
  • Hanto D., Frizzera G., Gajil-Peczalski K., Simmons R. Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation 1985; 39: 461–472
  • Purtilo D., Sakamoto K., Saemundson A., Sullivan J. L., Synnerholm A. C., Anvret M. Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by clinical, virological and immunopathological studies. Cancer Res. 1981; 41: 4226–4235
  • Haliotis T., Roder J. C., Klein M., Ortaldo J., Fauci A. S., Herberman R. B. Chediak-Higashi gene in humans. I. Impairment of natural killer function. J. Exp. Med. 1980; 151: 1029–1048
  • Roder J. C., Haliotis T., Klein M., Korec S., Jett J. R. A new immunodificiency disorder in humans involving NK cells. Nature 1980; 284: 553–555
  • Strayer D. R., Carter W. A., Mayberry S. D., Pequignot E., Brodsky I. Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidences of cancer. Cancer. Res. 1984; 44: 370–374
  • Guanti G., Massari S., Cristofaro G., Carusco M. L., Porsia R., Stella A., Susca F., Tauro A., Giorgio I. Depressed levels of natural killer cells in cancer family syndrome. Cancer Immunol. Immunother. 1989; 30: 307–311
  • Hersey P., Edwards A., Honeyman M., Mc Carthy W. H. Low natural killer-cell activity in familial melanoma patients and their relatives. Br. J. Cancer 1979; 40: 113–122
  • Strayer D. R., Carter W. A., Brodsky I. Familial occurrence of breast cancer is associated with reduced natural killer cytotoxicity. Breast. Cancer. Res. Treat. 1986; 7: 187–192
  • Foa R., Fierro M. T., Cesano A., Guarini A., Bonferroni M., Raspadori D., Miniero R., Lauria F., Gavosto F. Defective lymphokine-activated killer cell generation and activity in acute leukemia patients with active disease. Blood 1991; 78: 1041–1046
  • Dickinson A. M., Proctor S. J., Jacobs E., Reid M. M., Walker W., Craft A. W., Kernahan J. Natural killer activity in childhood acute lymphoblastic leukaemia in remission. Br. J. Haematol. 1985; 59: 45–53
  • Yoda Y., Abe T., Tashiro A., Hirosawa S., Kawada K., Onozawa Y., Adachi Y., Shishido H., Nomara T. Normalized natural killer (NK) cell activity in long-term remission of acute leukaemia. Br. J. Haematol 1983; 55: 305–309
  • Ruco L. P., Procopio A., Maccallini V., Calogero A., Uccini S., Annino L., Madelli F., Baroni C. D. Severe deficiency of natural killer activity in the peripheral blood of patients with hairy cell leukemia. Blood 1983; 61: 1132–1137
  • Trentin L., Zambello R., Agostini C., Ambrosetti A., Chisesi T., Raimondi R., Bulian P., Pizzolo G., Semenzato G. Mechanisms accounting for the defective natural killer activity in patients with hairy cell leukemia. Blood 1990; 75: 1525–1530
  • Takagi S., Kitagawa S., Takeda A., Minato N., Takaku F., Miura Y. Natural killer-interferon system in patients with preleukaemic states. Br. J. Haematol. 1984; 58: 71–81
  • Galvani D. W., Nethersell A. B. W., Cawley J. C. a-Interferon in myelodysplasia; clinical observations and effects on NK cells. Leukemia Res. 1988; 12: 257–262
  • Alvarez de Mon M., Casas J., Laguna R., Toribio M. L., Landazuri M. O., Durantez A. Lymphokine induction of NK-like cytotoxicity in T cells from B-CLL. Blood 1986; 67: 228–232
  • Sorskaar D., Forre 0., Stavem P. Natural killer cells in chronic leukemia. Function and markers. Int. Arch. Allergy. Appl. Immunol 1988; 87: 159–164
  • Brouet J., Flandrin G., Sasportes M., Homme J.-L., Seligmann M. Chronic lymphocytic leukaemia of T-cell origin. Lancet 1975; 2: 890–893
  • Newland A. C., Catovsky D., Linch D., Cawley J. C., Beverley P., San Miguel J. F., Gordon-Smith E. C., Blecher T. E., Shahriari S., Varadi S. Chronic T cell lymphocytosis: a review of 21 cases. Br. J. Haematol. 1984; 58: 433–446
  • Editorial. Large granulr lymphocytic leukaemia. Lancet, 338: 284–285
  • Semenzato G., Pandolfi F., Chisesi T., De Rossi G., Pizzolo G., Zambello K., Trentin L., Agostini C., Dini E., Vespignani M., Cafaro A., Pasqualetti D., Giubellino M. C., Migone N., Foa R. The lymphoproliferative disease of granular lymphocytes. A heterogeneous disorder ranging from indolent to aggressive conditions. Cancer 1987; 60: 2971–2978
  • Loughran R. P., Starkebaum G. Large granular lymphocyte leukemia: Report of 38 cases and review of the literature. Medicine. 1987; 66: 397–405
  • Foa R., Matutes E., Forini L., Catovsky D., Brito-Babapulle V. T-cell chronic lymphocytic leukemia: A proliferation of large granular lymphocytes. Immunological, clinical, ultrastructural and molecular studies. T-cell chronic lymphocytic leukemia: A proliferation of large granular lymphocytes. Immunological, clinical, ultrastructural and molecular studies, A. Polliack, D. Catovsky. Harwood Academic Publishers, London 1988; 367–381
  • Bassan R., Rambaldi A., Abbate M., Biondi A., Allavena P., Barbui T., Bertani T. Association of NK-cell lymphoproliferative disease and nephrotic syndrome. Am. J. Clin. Pathol 1990; 94: 334–338
  • Ault K. A., Lanier L. L. Terminology in Ty lymphoproliferative disease. Blood 1985; 66: 248–249
  • Drexler H. G., Scott C. S. Morphological and immunological aspects of leukaemia diagnosis. Morphological and immunological aspects of leukaemia diagnosis, C. S. Scott. Ellis Horwood, Chichester 1989; 13–67
  • Chan W. C., Link S., Mawle A., Check I., Byrnes R. K., Winton E. F. Heterogeneity of large granular lymphocyte proliferations: Delineation of two major subtypes. Blood 1986; 68: 1142–1153
  • Agnarsson B. A., Loughran T. P., Starkebaum G., Kadin M. E. The pathology of large granular lymphocyte leukemia. Hum. Pathol. 1989; 20: 643–651
  • Reynolds C. W., Foon K. A. T.-lymphoproliferative disease and related disorders in humans and experimental animals: A review of the clinical, cellular, and functional characteristics. Blood 1984; 64: 1146–1158
  • Mc Kenna R. W., Arthur D. C., Gajl-Peczalska K. J., Flynn P., Brunning R. D. Granulated T cell lymphocytosis with neutopenia: Malignant or benign chronic lymphoproliferative disorder?. Blood 1985; 66: 259–266
  • Pandolfi F., Loughran T. P., Starkebaum G., Chisesi T., Chan W. C. Clinical course and prognosis of the lymphoproliferative disease of granular lymphocytes. Cancer 1990; 65: 341–348
  • Pastor E., Sayas M. J. Severe neutopenia associated with large granular lymphocytosis: Successful control with cyclosporin A. Blut. 1989; 59: 501–502
  • Kaneko T., Ogawa Y., Hirata Y., Hoshino S., Takahashi M., Oshimi K., Mizogichi H. Agranulocytosis associated with granular lymphocyte leukaemia: Improvement of peripheral blood granulocyte count with human recombinant granulocyte colony-stimulating factor (G-CFS). Br. J. Haematol. 1990; 74: 121–122
  • Lauria F., Foa R., Migone N., Giubellino M. C., Raspadori D., Buzzi M., Casorati G., Gobbi M., Tazzari P. L., Tura S. Heterogeneity of large granular lymphocyte proliferations: morphological, immunological and molecular analysis in seven patients. Br. J. Haematol 1987; 66: 187–191
  • Mc Kenna R. W., Parkin J., Kersey J. H., Gajl-Peczalska K. J., Peterson L., Brunning R. D. Chronic lymphoproliferative disorder with unusual clinical, morphological, ultrastructural and membrane surface markers. Am. J. Med 1977; 62: 588–596
  • Schlimok G., Thiel E., Rieber E. P., Huhn D., Feucht H., Lohmeyer J., Riethmuller G. Chronic leukemia with a hybrid surface phenotype (T lymphocytic/myelomono-cytic): Leukemic cells displayed natural activity and antibody-dependent cellular cytotoxicity. Blood 1982; 59: 1157–1162
  • Itoh K., Tsuchikawa K., Awataguchi T., Shiiba K., Kumagai K. A case of chronic lymphocytic leukemia with properties of natural killer cells. Blood 1983; 61: 940–948
  • Knowles D. M. Immunophenotypic and antigen receptor gene analysis in T cell neoplasia. Am. J. Pathol 1989; 134: 761–785
  • Moretta L., Webb S. R., Grossi C. E., Lydyard P. M., Cooper M. D. Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T cells bearing receptors for IgM and IgG. J. Clin. Invest. 1977; 146: 184–190
  • Rumke H. C., Miedema F., Ten Berge I. J. M., Terpstra F., der Reijden H. J., Van de Griend R. J., De Bruin H. G., Von dem Borne A. E. G., Smit J. W., Zeijlemaker W. P., Melief C. J. M. Functional properties of T cells in patients with chronic Ty lymphocytosis and chronic T cell neoplasia. J. Immunol. 1982; 129: 419–425
  • Palutke M., Eisenberg L., Kaplan J., Hussain M., Kithier K., Tabaczka P., Mirchandani I., Tenenbaum D. Natural killer and suppressor T-cell chronic lymphocytic leukemia. Blood 1983; 62: 627–63
  • Tagawa, Konishi S., Karatune H., Katagiri S., Taniguchi N., Tamaki T., Inoue R., Kanayama Y., Tsubakio T., Machii T., Yoezawa T., Kitani T. A case of T-cell chronic lymphocytic leukemia (T-CLL) expressing a peculiar phenotype (E+, OKM1+, Leul+, OKT3−, and IgGEA−). Cancer 1983; 52: 1378–1384
  • Pandolfi F., Pezzuto A., de Rossi G., Pasqualetti D., Semenzato S., Quinti I., Ranucci A., Raimondi R., Basso G., Strong D. M., Fontana L., Auiti F. Characterization of two patients with lymphomas of large granular lymphocytes. Cancer 1984; 53: 445–452
  • Bakri K., Ezdinli E. Z., Wasser, Han L. P., Sinclair T., Singh S., Ozer H., Minowda J. T-suppressor cell chronic lymphocytic leukemia. Cancer 1984; 54: 284–289
  • Phyliky R. L., Li C.-Y., Yam L. T. T-cell chronic lymphocytic leukemia with morphologic and immunologic of cytotoxic/suppressor phenotype. Mayo Clin. Proc 1983; 58: 709–720
  • Quinti I., Pacilli L., Zoli V., De Sactis G., Mannella E., Bonomo G., De Laurenzi A., Pandolfi F. Unusual phenotype (Leu7 +, OKT4 +, OKM1 +) expressed by cells from a patient with an abnormal expansion of granular lymphocytes. Acta Haematol. 1984; 71: 310–315
  • Berrebi A., Talmor M., Vorst E. J., Shtalrid M., Polliack A., Nir E. Chronic T cell lymphocytosis with large granular lymphocytes of helper (OKT4) phenotype. Scand. J. Haematol 1985; 34: 160–169
  • Koizumi S., Seki H., Tachinami T., Taniguchi, Matsuda M., Taga K., Nakarai T., Kato E., Taniguchi N., Nakamura H. Malignant clonal expansion of large granular lymphocytes with a leu-11+, leu-7− surface phenotype: In vitro responsiveness of malignant cells to recombinant human interleukin 2. Blood 1986; 68: 1065–1073
  • Forini L., Matutes E., Foldi J., Morlla R., Rabbitts T., Luzzatto L., Catovsky D. T-cell leukemias with rearrangement of the γ but not β T-cell receptor genes. Blood 1988; 71: 356–362
  • Ohno T., Kanoh T., Arita Y., Fujii H., Kuribayashi K., Masuda T., Horiguchi Y., Taniwaki M., Nosaka T., Hatanaka M., Uchino H. Fulminant clonal expansion of large granular lymphocytes: Characterization of their morphology, phenotype, genotype, and function. Cancer 1988; 62: 1918–1927
  • Lin C. K., Liu H. W., Tse P. W. T., Lai C. L., Chan G. T. C. A patient with large granular lymphocytosis of unusual phenotype and polymorphic T-cell receptor beta-chain gene rearrangement. Am. J. Clin. Pathol. 1990; 94: 211–216
  • Sansoni P., Girasole G., Manara G. C., Snelli G., Passeri G., Allavena P., Rossi V., De Panfilis G., Passeri M. Lymphocytes of patient with lymphoproliferative disease of large granular lymphocytes express high natural killer ADCC and LAK activity. Clin. Immunol. Immunopathol 1990; 56: 9–21
  • Imamura N., Kusunoki Y., Kawa-Ha K., Yumura K., Hara J., Oda K., Abe K., Dohy H., Inada T., Kajihara H., Kuramoto A. Aggressive natural killer cell leukemia/lymphoma: Report of four cases and review of the literature. Br. J. Haematol. 1990; 75: 49–59
  • Mulligan S. P., Wills E. J., Young G. A. R. Exercise-induced CD8 lymphocytosis: A phenomenon associated with large granular lymphocyte leukaemia. Br. J. Haematol 1990; 75: 175–180
  • Le Deist F., de Saint Basile G., Coulombel L., Breton-Gorius J., Maier-Redelsperger M., Beljorde K., Bremard C., Griscelli C. A familial occurrence of natural killer cell-T-lymphocyte proliferation disease in two children. Cancer 1991; 67: 2610–261
  • Raziuddin S., Sheikha A., Teklu B. Humoral immunodeficiency in T-cell chronic lymphocytic leukemia. Cancer 1990; 64: 2518–2522
  • Ainsberg A. C., Krontiris T. G., Mak T. W., Wilkes B. M. Rearrangement of the gene for the beta chain of the T-cell receptor in T-cell chronic lymphocytic leukemia and related disorders. New Engl. J. Med. 1985; 313: 529–533
  • Bertness V., Kirsch I., Hollis G., Johnson B., Bunn P. A. T-cell receptor gene rearrangements as clinical markers of human T-cell lymphomas. New Engl. J. Med. 1985; 313: 534–538
  • Foa R., Pellici P.-G., Migone N., Lauria F., Pizzola G., Flug F., Knowles D. M., Dalla-Favera R. Analysis of T-cell receptor beta chain (Tβ) gene rearrangements demonstrates the monoclonal nature of T-cell chronic lymphoproliferative disorders. Blood 1986; 64: 247–250
  • Waldmann T. A., Davis M. M., Bongiovanni K. F., Korsmeyer S. J. Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms. New Engl. J. Med. 1985; 313: 776–783
  • Rambaldi A., Pelicci P.-R., Allavena P., Knowles D. M., Rossini S., Bassan R., Barbui T., Dalla-Fevera R., Mantovani A. T cell receptor β chain gene rearrangements in lymphoproliferative disorders of large granular lymphocytes/natural killer cells. J. Exp. Med. 1985; 162: 2156–2162
  • Berliner N., Duby A. D., Linch D. C., Mure C., Quertermous T., Knott L. J., Azin T., Newland A. C., Lewis D. L., Galvin M. C., Seidman J. G. T cell receptor gene rearrangement define a monoclonal T cell proliferation in patients with T cell lymphocytosis and cytopenia. Blood 1986; 67: 914–918
  • Brenner M. B., McLean J., Scheft H., Riberdy J., Ang S.-L., Seidman J. G., Devlin P., Krangel M. S. Two forms of the T-cell receptor γ protein found on peripheral blood cytotoxic lymphocytes. Nature 1987; 325: 689–694
  • Borst J., Griend R. J., Ang J. W., Melief C. J., Seidman J. G., Bolhuis R. L. H. A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 1987; 325: 683–688
  • Oshimi K., Hoshino S., Takahashi M., Akahoshi M., Saito H., Kobayashi Y., Hirai H., Takaku F., Yahagi N., Oshimi Y., Horie Y., Mizoguchi H. Ti (WT31)-negative, CD3-positive, large granular lymphocyte leukemia with nonspecific cytotoxicity. Blood 1988; 71: 923–93
  • Loughran T. P., Starkebaum G., Aprile J. A. Rearrangement and expression of T-cell receptor genes in large granular lymphocyte leukemia. Blood 1988; 71: 822–824
  • Pelicci P.-C, Allavena P., Subar M., Rambaldi A., Pirelli A., Bello M. D., Barbui T., Knowles D. M., Dalla-Fevera R., Mantovani A. T cell receptor (α, β, γ) gene rearrangements and expression in normal and leukemic large granular lymphocytes/natural killer cells. Blood 1987; 70: 1500–1508
  • Scott C. S., Richards S. J., Sivakumaran M. Large granular lymphocytes. Lancet 1991; 338: 898
  • Sivakumaran M., Richards S. J., Hunt K. M., Steed A. J., Bynoe A. G., Morgan M. M., Pyrah R., Roberts B. E., Scott C. S. Patterns of CD 16 and CD56 expression in persistent expansions of CD3 + Nka+ lymphocytes are predictive for clonal T-cell receptor gene rearrangements. Br. J. Haematol. 1991; 78: 368–377
  • Pandolfi F. T-CLL and allied diseases: New insights into classification and pathogenesis. Diagnost. Immunol. 1986; 4: 61–74
  • Taniwaki M., Tagawa S., Nishigaki H., Horlike S., Misawa S., Shimazaki C., Maekawa T., Fuji H., Kitani T., Abe T. Chromosomal abnormalities define clonal proliferation in CD3− large granular lymphocyte leukemia. Am. J. Haematol. 1990; 33: 32–38
  • Bassan R., Rambaldi A., Allavena P., Abbate M., Marini B., Barbui T. Association of large granular lymphocyte/natural killer cell proliferative disease and second hematologic malignancy. Am. J. Haematol. 1988; 29: 85–93
  • Semple J. W., Bruce S., Freedman J. Suppressed natural killer cell activity in patients with chronic autoimmune thrombocytopenic purpura. Am. J. Hemaiol 1991; 37: 258–262
  • Warzynski M. J., White C., Golightly M. G., Steingart R., Otto R. N., Podgurski A. E., Johnson M. L., Glynn P., Smith D. E. Natural killer lymphocyte blast crisis of chronic myelogenous leukemia. Am. J. Hematoi 1989; 32: 279–286
  • Sun T., Cohen N. S., Marino J., Koduru P., Cuomo J., Henshall J. CD3+, CD4−, CD8− large granular T-cell lymphoproliferative disorder. Am. J. Hematol 1991; 37: 173–178
  • Scott C. S., Richards S. J., Milligan D., Steed A. J., Norfolk D. R. Clonal expansions of TCRγ+ lymphocytes associated with severe neutropenia: in preparation. 1992
  • Pizzolo G., Trentin L., Vinante F., Agostini C., Zambello R., Ranucci A., Luca M., Chilosi M., Dazzi F., Foa R., Caligaris-Cappio F., Perona G., Semenzato G. Rearrangement for the T-cell receptor gene and co-expression of immature T-cell markers and natural killer cell phenotype, in a patient with acute lymphoblastic leukaemia. Br. J. Haematol. 1987; 65: 17–22
  • Pirruccello S. J., Bicak M. S., Gordon B. G., Gajl-Peczalska K., Gnarra D. J., Coccia P. F. Acute lymphoblastic leukemia of NK-cell lineage: Responses to IL-2. Leuk. Res. 1989; 13: 735–743
  • Cerezo L., Shuster J. J., Pullen J., Brock B., Borowitz M. J., Falletta J. M., Crist W. M., Head D. R. Laboratory correlates and prognostic significance of granular acute lymphoblastic leukemia in children. Am. J. Clin. Pathol. 1991; 95: 526–531
  • Imamura N., Kusunoki Y., Kajihara H., Okada K., Kuramoto A. Aggressive natural killer cell leukemia/lymphoma with N901-positive surface phenotype: Evidence for the existence of a third lineage in lymphoid cells. Acta Haematol. 1988; 80: 121–128

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.