32
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Mechanisms of Protection of Hematopoietic Stem Cells from Irradiation

Pages 27-32 | Received 29 Jun 1993, Published online: 01 Jul 2009

References

  • Walker R.I. Acute radiation injuries. Pharmacol. Therapeutics 1988; 39: 9–12
  • Murray D., Prager A., Meyn R.E., Milas L. Radioprotective agents as modulators of cell and tissue radio-sensitivity. Cancer Bull 1992; 44: 137–144
  • Goffman T.E., Raubitschek A., Mitchell J.B., Glar-Stein E. The emerging biology of modern radiation oncology. Cancer Res. 1990; 50: 7735–7744
  • Kumar K.S., Vaishnav Y.N., Weiss J.F. Ra-dioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol. Therapeutics 1988; 39: 301–309
  • Patt H.M., Tyres E.B., Straube R.L. Cysteine protection against X-irradiation. Science 1949; 110: 213–214
  • Coleman C.N., Bump E.A., Kramer R.A. Chemical modifiers of cancer treatment. J. Clin. Oncol. 1988; 6: 709–733
  • Yuhas J. Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res. 1980; 40: 1519–1524
  • Glover D., Glick J., Weiler C. Phase I trials of WR-2721 and cis-platinum. Int. J. Radiat. Oncol. Biol. Phys. 1984; 10: 1781–1784
  • Yuhas J.M. Biological factors affecting the radioprotective efficiency of S-2-(3-aminopropylamino)ethylphos-phorothioic acid (WR-2721). Radiat. Res. 1970; 44: 632–638
  • Walden T.L. A paradoxical role for eicosaniods: Ra-dioprotectants and radiosensitizers. Prostaglandin and Lipid Metabolism in Radiation Injury, T.L. Walden, H.M. Hughes. Plenum, New York 1987; 263–271
  • Walden T.L. Leukotriene C4-induced radioprotec-tion: The role of hypoxia. Radiat. Res. 1992; 132: 359–367
  • Walden T.L., Patchen M.L., MacVittie T.J. Leukotriene-induced radioprotection of hematopoietic stem cells in mice. Radiat. Res. 1988; 113: 388–395
  • Hansen W.R. Radiation protection by exogenous ar-achidonic acid and several metabolites. Prostaglandin and Lipid Metabolism in Radiation Injury, T.L. Walden, H.M. Hughes. Plenum, New York 1987; 233–243
  • Walden T.L. Pretreatment with leukotriene C4 enhances the whole-animal survival of mice exposed to ionizing radiation. Ann. NY Acad. Sci. 1988; 524: 431–433
  • Yuhas J.M., Storer J. Chemoprotection against three modes of radiation death in the mouse. Int. J. Radiat. Biol. 1969; 15: 233–237
  • Ramakrishnan N., Wolfe W.W., Catravas G.N. Radioprotection of hematopoietic tissues in mice by lipoic acid. Radiat. Res. 1992; 130: 360–365
  • Floersheim G.L. Calcium antagonists protect mice against lethal doses of ionizing radiation. Br. J. Radiol. 1992; 65: 1025–1029
  • Floersheim G.L. radioprotective effects of calcium antagonists used alone or with other types of radioprotectors. Radiat. Res. 1993; 133: 80–87
  • Smith W.W., Alderman I.M., Gillespie R.E. Increased survival in irradiated animals treated with bacterial endotoxins. Am. J. Physiol. 1957; 192: 549–556
  • Ainsworth E.I., Chase H.B. Effect of microbial antigens on irradiation mortality in mice. Porc. Soc. Exp. Biol. Med. 1959; 102: 483–485
  • Ainsworth E.J., Hatch M.H. The effect of Pro teusmorgani endotoxin on radiation mortality in mice. Radiat. Res. 1960; 13: 767–774
  • Neta R., Douches S., Oppenheim J.J. Interleu-kin-1 is a radioprotector. J. Immunol. 1986; 136: 2483–2485
  • Neta R., Oppenheim J.J., Douches S.D. Inter dependence of the radioprotective effects of human recombinant IL-1, TNF-α, G-CSF, and murine recombinant G-CSF. J. Immunol. 1988; 140: 108–111
  • Neta R., Oppenheim J.J. Cytokines in therapy of radiation injury. Blood 1988; 72: 1093–1095
  • Slordal L., Muench M.O., Warren D.J., Moore M. A. S. Radioprotection by murine and human tumor necrosis factor: Dose-dependent effects on hematopoiesis in the mouse. Eur. J. Haematol. 1989; 43: 428–434
  • Slordal L., Warren D.J., Moore M. A. S. Effects of recombinant murine tumor necrosis factor on hematopoietic reconstitution in sublethally irradiated mice. J. Immunol. 1989; 142: 833–835
  • Neta R., Oppenheim J.J., Schreiber R.D., Chizzonite R., Ledney G.D., MacVittie T.J. Role of cytokines (interleukin 1, tumor necrosis factor and transforming growth factor β) in natural and lipopolysaccharide-induced radioresistance. J. Exp. Med. 1991; 173: 177–182
  • Oppenheim J.J., Neta R., Tiberghian R., Cress R., Kenny J.J., Longo D.L. Interleukin-1 enhances survival of lethally irradiated mice treated with allogeneic bone mar row cells. Blood 1989; 74: 2257–2263
  • Schwartz G.N., Neta R., Vigneulle R.M., Patchen M.L., MacVittie T.J. recovery of hematopoietic colony-forming cells in irradiated mice pretreated with interleu kin-1 (IL-1). Exp. Hematol. 1988; 16: 752–757
  • Neta R., Sztein M.B., Oppenheim J.J., Gillis S., Douches S.D. The in vivo effects of interleukin I. 1. Bone marrow cells are induced to cycle after administration of interleukin 1. J. Immunol. 1987; 139: 1861–1866
  • Zsebo K.M., Smith K.A., Hartley C.A., Greenblatt M., Cooke K., Rich W., McNiece I.K. Radiopro tection of mice by recombinant rat stem cell factor. Proc. Natl. Acad. Sci. USA 1992; 89: 9464–9468
  • Neta R., Williams D., Selzer F., Abrams J. Inhibition of c-kit ligand/steel factor by antibodies reduces survival of lethally irradiated mice. Blood 1993; 81: 324–327
  • Neta R., Erlstein R., Vogel S.F., Ledney G.D., Abrams J. Role of interleukin 6 (IL-6) in protection from lethal irradiation and in endocrine responses to IL-1 and tumor necrosis factor. J. Exp. Med. 1992; 175: 689–694
  • Eastgate J., Moreb J., Nick H.S., Suzuki K., Taniguchi N., Zucali J.R. A role for manganese superoxide dismutase in radioprotection of hematopoietic stem cells by interleukin-I. Blood 1993; 81: 639–647
  • Zucali J.R., Moreb J., Gibbons W., Alderman J., Suresh A., Zhang Y., Shelby B. Radioprotection of he matopoietic stem cells by interleukin-l. Exp. Hematol. 1993, Submitted to
  • Lajtha L.G., Pozzi L.V., Schofield R., Fox M. Kinetic properties of haemopoietic stem cells. Cell Tissue Ki-net. 1969; 2: 39–49
  • Wong G. H. W., Goeddel D.V. Induction of manganese superoxide dismutase by tumor necrosis factor: Possible protective mechanisms. Science 1988; 242: 941–944
  • Visner G.A., Dougall W.C., Wilson J.M., Burr I.A., Nick H.S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-I and tumor necrosis factor. J. Biol. Chem. 1990; 265: 2856–2864
  • Masuda A., Longo D.L., Kobayashi Y., Appela E., Op penheim J.J., Matsushima K. Induction of mi-tochondrial manganese superoxide dismutase by interleukin-I. FASEB J. 1988; 2: 3087–3091
  • Tsuji Y., Watanabe N., Okamoto T., Tsuji N., Sasaki H., Okizawa S., Yamauchi N., Niitsu Y. En dogenous tumor necrosis factor functions as a resistant factor against hyperthermic cytotoxicity. Cancer Res. 1992; 52: 6258–6262
  • Wong G. H. W., Elwell J.H., Oberley L.W., Goed-Del D.V. Manganese superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 1989; 58: 923–932
  • Wong G. H. W., McHugh T., Weber R., Goeddel D.V. Tumor necrosis factor α selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation. Proc. Natl. Acad. Sci. USA 1991; 88: 4372–4376
  • St. Clair D.K., Oberley T.D., Ho Y.-S. Over production of human Mn-superoxide dismutase modulates paraquat-mediated toxicity in mammalian cells. Fed. Eur. Biochem. Soc. 1991; 293: 199–203
  • Petkau A., Kelly K., Chelack W.S., Pleskoch S.D., Barefoot C., Meeker B.E. Radioprotection of bone marrow stem cells by superoxide dismutase. Biochem. Biophys. Res. Commun. 1975; 67: 1167–1174
  • Petkau A., Chelack W.S. Radioprotection by superoxide dismutase of macrophage progenitor cells from mouse bone marrow. Biochem. Biophys. Res. Commun. 1984; 119: 1089–1095
  • Machlin L.J., Bendich A. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1987; 1: 441–445
  • Touati D. Molecular genetics of superoxide dismu-tases. Free Rad. Biol. Med. 1988; 5: 393–402
  • Thornulley P.J., Vasak M. Possible role for me-tallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochem. Biophs. Acta 1985; 827: 36–74
  • Karin M., Inbra R.J., Heguy J., Wong G. In-terleukin I regulates human metallothionein gene expression. Mole. Cell Biol. 1985; 5: 2866–2869
  • Matubara J., Tajima Y., Karasawa M. Promotion of radioresistance by metallothionein induction prior to irradiation. Environ. Res. 1987; 43: 66–74
  • Mitchell J.B., Biaglow J.E., Russo A. Role of glutathione and other endogenous thiols in radiation pro tection. Pharmacol. Therapeutics 1988; 39: 269–274
  • Hirose K., Longo D.L., Oppenheim J.J., Matsushima K. Overexpression of mitochondrial manganese su peroxide dismutase promotes the survival of tumor cells ex posed to interleukin-I, tumor necrosis factor, selected anti-cancer drugs and ionizing radiation. FASEB J. 1993; 7: 361–368
  • Suresh A., Zucali J.R., Tung F. Role of man ganese superoxide dismutase in radioprotection. Exptl. He-matol. 1993; 21: 1028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.