31
Views
5
CrossRef citations to date
0
Altmetric
Original Article

T-cell Acute Lymphoblastic Leukemia and the Associated Basic Helix-Loop-Helix Gene SCL/tal

&
Pages 157-166 | Received 12 May 1993, Published online: 01 Jul 2009

References

  • Shuster J.J., Falletta J.M., Pullen J., Crist W.M., Humphrey G.B., Dowell B.L., Wharam M.D., Borowitz M. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 75: 166–173
  • Poplack D.G. Acute lymphoblastic leukemia in childhood. Peel. Clin. N. Am. 1985; 32: 669–697
  • Pul C.H., Behm F.G., Singh B., Schell M.J., Williams D.L., Rivera G.K., Kalwinsky D.K., Sandlund J.T., Crist W.M., Raimondi S.C. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990; 75: 174–179
  • Crist W.M., Shuster J.J., Falletta J., Pullen D.J., Berard C.W., Vietti T.J., Alvarado C.S., Roper M.A., Prasthofer E., Grossi C.E. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group study. Blood 1988; 72: 1891–1897
  • Pui C.-H., Behm F.G., Raimondi S.C., Dodge R.K., George S.L., Rivera G.K., Mirro J., Kalwinsky D.K., Dahl G.V., Murphy S.B., Crist W.M., Williams D.L. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. New Eng. J. Med. 1989; 321: 136–142
  • Janossy G., Coustan-Smith E., Campana D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases. Leukemia 1989; 3: 170–181
  • Borowitz M.J. Acute lymphoblastic leukemia. Neoplastic Hematopathology, D.M. Knowles. Williams and Wilkins, Baltimore 1992; 1301–1304
  • Knowles D.M. Lymphoblastic lymphoma. Neoplastic Hematophathology, D.M. Knowles. Williams and Wilkins, Baltimore 1992; 716
  • Pui C.-H., Williams D.L., Robertson P.K., Raimondi S.C., Behm F.G., Lewis S.H., Rivera G.K., Kalwinsky D.K., Abromowitch M., Crist W.M. Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia. J. Clin. Oncol. 1988; 6: 56–61
  • Pui C.-H., Carroll A.J., Head D., Raimondi S.C., Shuster J.J., Crist W.M., Link M.P., Borowitz M.J., Behm F.G., Land V.J., Nash M.B., Pullen D.J., Look A.T. Near-triploid and near-tetraploid acute lymphoblastic leukemia of childhood. Blood 1990; 76: 590–596
  • Le Beau M.M. The role of cytogenetics in the diagnosis and classification of hematopoietic neoplasms. Neoplastic Hematophatology, D.M. Knowles. Williams and Wilkins, Baltimore 1992; 308–312
  • Baer R., Chen K.-C., Smith S.D., Rabbitts T.H. Fusion of an immunoglobulin variable gene and a T cell receptor constant gene in the chromosome 14 inversion associated with T cell tumors. Cell 1985; 43: 705–713
  • Schatz D.G., Oettinger M.A., Schlissel M.S. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 1992; 10: 359–383
  • Croce C.M. Role of chromosomal translocations in human neoplasia. Cell 1987; 49: 155–156
  • McGuire E.A., Rintoul C.E., Sclar G.M., Korsmeyer S.J. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol. Cell. Biol. 1992; 12: 4186–4196
  • Boehm T., Foroni L., Kaneko Y., Perutz M.F., Rabbitts T.H. The rhombotin family of LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc. Natl. Acad. Sci. USA 1991; 88: 4367–4371
  • Dube I.D., Kamel-Reid S., Yuan C.C., Lu M., Wu X., Corpus G., Raimondi S.C., Crist W.M., Carroll A.J., Minowada J., Baker J.B. A novel human hom-eobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with the chromosomal translocation t(10; 14). Blood 1991; 78: 2996–3003
  • Ellisen L.W., Bird J., West D.C., Lee Soreng A., Reynolds T.C., Smith S.D., Sklar J. TAN-1, the human homolog of the drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991; 66: 649–661
  • Naumovski L., Stevens M., Barsh G., Link M.P., Cleary M.L. Characterization of mice transgenic for the oncogenic basic heJix-loop-helix protein LYL-1. Blood. 1992; 80: 301a, abstract 1196, (Supp 1)
  • Xia Y., Brown L., Yang C. Y.-C., Tsan J.T., Siciliano M.J., Espinosa R., Le Beau M.M., Baer R.J. TAL2, a helix-loop-helix gene activated by the t(7;9)(q34;q32) translocation in human T-cell leukemia. Proc. Natl. Acad. Sci. USA 1991; 88: 11416–11420
  • Begley C.G., Aplan P.D., Denning S.M., Haynes B.F., Waldmann T.A., Kirsch I.R. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc. Nail. Acad. Sci. USA 1989; 86: 10128–10132
  • Rabbitts T.H. Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell. 1991; 67: 641–644
  • Goldfarb A.N., Wolf M.L., Greenberg J.M. Expression of a chimeric helix-loop-helix gene, Id-SCL, in K562 human leukemic cells is associated with nuclear segmentation. Am. J. Pathol. 1992; 141: 1125–1137
  • Finger L.B., Kagan J., Christopher G., Kurtzberg J., Hershfield M.S., Nowell P.C., Croce C.M. Involvement of the TCL-5 gene on chromosome I in T cell leukemia and melanoma. Proc. Natl. Acad. Sci. USA 1989; 86: 5039–5043
  • Chen Q., Cheng J.-T., Tsai L.H., Schneider N., Buchanan G., Carroll A., Crist W., Ozanne B., Siciliano M.J., Baer R. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990; 9: 415–424
  • Carroll A.J., Crist W.M., Link M.P., Amylon M.D., Pullen D.J., Ragab A.H., Buchanan G.R., Wimmer R.S., Vietti T.J. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 76: 1220–1224
  • Brown L., Cheng J.-T., Chen Q., Siciliano M.J., Crist W., Buchanan G., Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990; 9: 3343–3351
  • Aplan P.D., Lombardi D.P., Reaman G., Sather H., Hammond G.D., Kirsch I.R. Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood 1992; 79: 1327–1333
  • Breit T.M., Mol E.J., Wolvers-Tettero I.L.M., Ludwig W.-D., Van Wering E.R., Van Dongen J.J.M. Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J. Exp. Med. 1993; 177: 965–977
  • Bash R.O., Crist W.M., Shuster J.J., Link M.P., Amylon M., Pullen J., Carroll A.J., Buchanan G.R., Graham Smith R., Baer R. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL-1 locus: a Pediatric Oncology Group study. Blood 1993; 81: 2110–2117
  • Smit L., Ritz J., Strominger J.L., Macintyre E.A. Expression of the SCL/tal-1 gene is common in T-ALL in the absence of any detectable disruption of the gene. Blood 1992; 80: 303a, abstract 1201, (Suppl. 1)
  • Aplan P.D., Begley C.G., Bertness V., Nussmeier M., Ezquerra A., Coligan J., Kirsch I.R. The SCL gene is formed from a transcriptionally complex locus. Mol. Cell. Biol. 1990; 10: 6426–6435
  • Bernard O., Azogui O., Lecointe N., Mugneret F., Berger R., Larsen C.J., Mathieu-Mahul D. A third tal-1 promoter is specifically used in human T cell leukemias. J. Exp. Med. 1992; 176: 919–925
  • Fitzgerald T.J., Neale G.A.M., Raimondi S.C., Goorha R.M. c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood 1991; 78: 2686–2695
  • Xia Y., Brown L., Tsou Tsan J., Ying-Chuan Yang C., Siciliano M.J., Crist W.M., Carroll A.J., Baer R. The translocation t(1;14)(p34;q11) in human T cell leukemia: chromosome breakage 25 kilobasepairs downstream of the tal-1 proto-oncogene. Genes Chromosomes & Cancer 1992; 4: 211–216
  • Aplan P.D., Lombardi D.P., Ginsberg A.M., Cossman J., Bertness V.L., Kirsch I.R. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 1990; 250: 1426–1429
  • Aplan P.D., Lombardi D.P., Kirsch I.R. Structural characterization of SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol. Cell. Biol. 1991; 11: 5462–5469
  • Macintyre E.A., Smit L., Ritz J., Kirsch I.R., Strominger J.L. Disruption of the SCL locus in T-lymphoid malignancies correlates with commitment to the T-cell receptor alpha/beta lineage. Blood 1992; 80: 1511–1520
  • Mouthon M.-A., Bernard O., Mitjavila M.-T., Romeo P.-H., Vainchenker W., Mathieu-Mahul D. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 1993; 81: 647–655
  • Green A.R., Lints T., Visvader J., Harvey R., Begley C.G. SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. Oncogene 1992; 7: 653–660
  • Visvader J., Begley C.G., Adams J.M. Differential expression of the LYL, SCL, and E2A helix-loop-helix genes within the hemopoietic system. Oncogene 1991; 6: 187–194
  • Green A.R., Salvaris E., Begley C.G. Ery-throid expression of the ‘helix-loop-helix’ gene, SCL. Oncogene 1991; 6: 475–479
  • Orkin S.H. GATA-binding transcription factors in hematopoietic cells. Blood 1992; 80: 575–581
  • Keller G., Kennedy M., Papayannopoulou T., Wiles M.V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 1993; 13: 473–486
  • Aplan P.D., Nakahara K., Orkin S.H., Kirsch I.R. The SCL gene product: a positive regulator of ery-throid differentiation. EMBO J. 1992; 11: 4073–4081
  • Fujita T., Ohno S., Yasumitsu J., Taniguchi T. Delimitation and properties of DNA sequences required for the regulated expression of human Interferon-beta gene. Cell 1985; 41: 489–496
  • Cheng J.-T., Hsu H.-L., Hwang L.-Y., Baer R. Products of the TAL-1 oncogene: basic helix-loop-helix proteins phosphorylated at serine residues. Oncogene 1993; 8: 677–683
  • Goldfarb A.N., Goueli S., Mickelson D., Greenberg J.M. T-cell acute lymphoblastic leukemia—the associated gene SCL/tal codes for a 42-Kd nuclear phosphoprotein. Blood 1992; 80: 2858–2866
  • Tapscott S.J., Weintraub H. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J. Clin. Invest. 1991; 87: 1133–1138
  • Nourse J., Mellentin J.D., Galili N., Wilkinson J., Stanbridge E., Smith S.D., Cleary M.L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion raRNA that codes for a potential chimeric transcription factor. Cell 1990; 60: 535–545
  • Goodwin G., MacGregor A., Crompton M.R. Molecular cloning of the chicken SCL cDNA. Nucl. Acids Res. 1992; 20: 368
  • Begley C.G., Visvader J., Green A.R., Aplan P.D., Metcalf D., Kirsch I.R., Gough N.M. Molecular cloning and chromosomal localization of the murine homolog of the human helix-loop-helix gene SCL. Proc. Natl. Acad. Sci. USA 1991; 88: 869–873
  • Hsu H.-L., Cheng J.-T., Chen Q., Baer R. Enhancer binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol. Cell. Biol. 1991; 11: 3037–3042
  • Macintyre E.A., Smit L., Kirsch I.R., Strominger J.L. Analysis of the role of SCL/tal-1 in T cell receptor transcriptional regulation. Blood 1992; 80: 302a, abstract 1200, (Suppl 1)
  • Benezra R., Davis R.L., Lockshon D., Turner D.L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 1990; 61: 49–59
  • Li L., Zhou J., James G., Heller-Harrison R., Czech M.P., Olson E.N. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 1992; 71: 1181–1194
  • Fisher D.E., Parent L.A., Sharp P.A. High affinity DNA-binding Myc analogs: recognition by an alpha helix. Cell 1993; 72: 467–476
  • Tapscott S.J., Davis R.L., Thayer M.J., Cheng P.-F., Weintraub H., Lassar A.B. MyoDl: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 1988; 242: 405–411
  • Davis R.L., Weintraub H. Acquisition of myogenic specificity by replacement of three amino acid residues from MyoD into E12. Science 1992; 256: 1027–1030
  • Mitchell P.J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989; 245: 371–378
  • Hunter T., Karin M. The regulation of transcription by phosphorylation. Cell 1992; 70: 375–387
  • Cheng J.-T., Cobb M.H., Baer R. Phosphorylation of the Tal-1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Mol. Cell. Biol. 1993; 13: 801–808
  • Goueli S., Goldfarb A.N. Unpublished observation 1992
  • Henkel T., Zabel U., Van Zee K., Muller J.M., Fanning E., Baeuerle P.A. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kB subunit. Cell 1992; 68: 1121–1133
  • Green A.R., DeLuca E., Begley C.G. Anti-sense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. EMBO J. 1991; 10: 4153–4158
  • Goldfarb A.N. Unpublished observation 1992
  • Bengal E., Ransone L., Scharfmann R., Dwarki V.J., Tapscott S.J., Weintraub H., Verma I.M. Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell 1992; 68: 507–519
  • Gu W., Schneider J.W., Condorelli G., Kaushal S., Mahdavi V., Nadal-Ginard B. Interaction of myogenic factors and the retinoblasoma protein mediates muscle cell commitment and differentiation. Cell 1993; 72: 309–324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.