186
Views
107
CrossRef citations to date
0
Altmetric
Original Article

PECAM-1: Its Expression and Function as a Cell Adhesion Molecule on Hemopoietic and Endothelial Cells

, &
Pages 229-244 | Received 30 May 1994, Published online: 01 Jul 2009

References

  • Albelda S. M., Oliver P. D., Romer L. H., Buck C. A. EndoCAM:A novel endothelial cell-cell adhesion molecule. J. Cell. Biol. 1990; 110: 227–237
  • Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Ann. Rev. Immunol. 1993; 11: 767–804
  • Muller W. A., Ratti C. M., McDonnell S. L., Cohn Z. A. A human endothelial cell-restricted externally disposed plas-malemmal protein enriched in intercellular junctions. J. Exper. Med. 1989; 170: 399–414
  • Newman P. J., Albelda S. M. Cellular and molecular aspects of PECAM-1. Nouvelle Revue Francaise d'Hematologic 1992; 34: 9–13
  • Ruco L. P., Pomponi D., Pigott R., Gearing A. J., Baiocchini A., Baroni C. D. Expression of cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive lymph nodes and in Hodgkin's disease. Am. J. Pathol 1992; 140: 1337–1344
  • Goerdt S., Sorg C. Endothelial heterogeneity and the acquired immunodeficiency syndrome: a paradigm for the pathogenesis of vascular disorders. Clin. Invest. 1992; 70: 89–98
  • Metzelaar M. J., Korteweg J., Sixma J. J., Nieuwenhuis H. K. Biochemical characterisation of PECAM-1 (CD31 antigen) on human platelets. Thrombosis and Haemostasis 1991; 66: 700–707
  • Albelda S. M., Muller W. A., Buck C. A., Newman P. J. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J. Cell. Biol. 1991; 114: 1059–1068
  • Newman P. J., Berndt M. C., Gorski J., White G. C., II, Lyman S., Paddock C., Muller W. A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin super-family. Science 1990; 247: 1219–1221
  • Simmons D. L., Waker C., Power C., Pigott R. Molecular cloning of CD31, a putative intercellular adhesion molecule closely related to carcinoembryonic antigen. J. Exper. Med. 1990; 171: 2147–2151
  • Stockinger H., Gadd S. J., Eher R., Majdic O., Schreiber W., Kasinrerk W., Strass N., Schnabl E., Knapp W. Molecular characterisation and functional analysis of the leukocyte surface protein CD31. J. Immunol. 1990; 145: 3889–3897
  • Bordessoule D., Jones M., Gatter K. C., Mason D. Y. Immunohistological patterns of myeloid antigens: tissue distribution of CD13, CD14, CD16, CD31, CD36, CD65, CD66, and CD67. Br. J. Haematol. 1993; 83: 370–383
  • Mazurov A. V., Vinogradov D. V., Kabaeva N. V., Antonova A. N., Romanov Y. A., Vlasik T. N., Antonova A. S., Smirnov V. N. A monoclonal antibody, VM64, reacts with a 130 kDa glycoprotein common to platelets and endothelial cells: heterogeneity in antibody binding to human aortic endothelial cells. Thrombosis and Haemostasis 1991; 66: 494–499
  • Couvelard A., Scoazec J. Y., Feldmann G. Expression of cell-cell and cell-matrix adhesion proteins by sinusoidal endothelial cells in the normal andcirrhotichuman liver. Am. J. Pathol. 1993; 143: 738–752
  • Parums D. V., Cordell J. L., Micklem K., Heryet A. R., Gatter K. C., Mason D. Y. JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J. Clin. Pathol. 1990; 43: 752–757
  • Nickoloff B. J. PECAM-I (CD31) is expressed on proliferating endothelial cells, stromal spindle-shaped cells, and dermal den-drocytes in Kaposi's sarcoma. Arch. Dermatol. 1993; 129: 250–251
  • Stockinger H., Schreiber W., Majdic O., Holter W., Maurer D., Knapp W. Phenotype of human T cells expressing CD31 a molecule of the immunoglobulin supergene family. Immunol. 1992; 75: 53–58
  • Tanaka Y., Albelda S. M., Horgan K. J., van Seventer G. A., Shiminu Y., Newman W., Hallam J., Newman P. J., Buck C. A., Shaw S. CD31 expressed on distinctive T cell subsets is a preferential amplifier of β1 integrin-mediated adhesion. J. Exper. Med. 1992; 176: 245–253
  • Morimoto C., Schlossman S. F. Rambotti lecture. Human naive and memory T cells revisited: new markers (CD3I and CD27) that help define CD4 T cell subsets. Clin. Exper. Rheumatol 1993; 11: 241–247
  • Tanaka Y., Shaw S. T cell adhesion cascades: general considerations and illustration with CD31. Advances in Exper. Med. and Biol. 1992; 323: 157–162
  • Ohto H., Maeda H., Shibata Y., Chen R. F., Ozaki Y., Higashihara M., Takeuchi A., Tohyama H. A novel leukocyte differentiation antigen: two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets and activated lymphoblasts. Blood 1985; 66: 873–881
  • Zehnder J. L., Hirai K., Shatsky M., McGregor J. L., Levitt L. J., Leung L. L. K. The cell adhesion molecule CD3I is phosphorylated after cell activation. J. Biological Chem. 1992; 267: 5243–5249
  • Watt S. M., Williamson J., Genevier H., Fawcett J., Simmons D. L., Hatzfeld A., Nesbitt S. A., Coombe D. R. The heparin binding PECAM-1 adhesion molecule is expressed by CD34 hematopoietic precursor cells with early myeloid and B-lymphoid phenotypes. Blood 1993; 82: 2649–2663
  • Calapso P., Vitarelli E., Crisafulli C., Tuccari G. Immunocytochemical detection of megakaryocytes by endothelial markers: a comparative study. Pathologica 1992; 84: 215–223
  • Lund-Johansen F., Terstappen L. W. Differential surface expression of cell adhesion molecules during granulocyte maturation. J. Leukocyte Biol. 1993; 54: 47–55
  • Ashman L. K., Aylett G. W. Expression of CD31-epitopes on human lymphocytes. CD31 monoclonal antibodies differentiate between naive (CD45RA+) and memory (CD45RA-) CD4 positive T cells. Tissue Antigens 1991a; 38: 208–212
  • Ashman L. K., Aylett G. W., Cambareri A. C., Cole S. R. Different epitopes of the CD31 antigen identified by monoclonal antibodies: cell type-specific patterns of expression. Tissue Antigens 1991b; 38: 199–207
  • Torimoto Y., Rothstein D. M., Dang N. H., Schlossman S. F., Morimoto C. CD31, a novel cell surface marker for CD4 cells of suppressor lineage, unaltered by state of activation. J Immunol. 1992; 148: 388
  • Tavassoli M., Yoffey J. M. Bone Marrow Structure and Function, 1993 edn. Alan R. Liss, New York 1993; 47–234
  • Lichtman M. A., Packman C. H., Constine L. S. Molecular and cellular traffic across the marrow sinuses. Handbook of the Hemopoietic Microenvironment, M. Tavassoli. Humana Press, Amsterdam 1990; 87
  • Blaszek I., Misset J.-L., Benavides M., Comisso M., Ribaud P., Mathe G. Hematon: a multicellular functional unit in normal human bone marrow: structural organisation, hemopoietic activity and its relationship to myelodysplasia and myeloid leukemias. Exper. Hematoi 1990; 18: 259–265
  • Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 1977; 91: 335–344
  • Gartner S., Kaplan H. S. Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. USA 1980; 77: 4756–4759
  • Watt S. M., Fawcett J., Murdoch S. J., Teixeira A. M., Gschmeissner S. E., Hajibagheri M. A. N., Simmons D. L. CD66 identifies the biliary glycoprotein (BGP) adhesion molecule: cloning, expression and adhesion functions of the BGPc splice variant. Blood 1994; 84: 200–210
  • Goyert S. M., Ferrero E. M., Seremetis S. V., Winchester R. J., Silver J., Mattison A. C. Biochemistry and expression of myelomonocytic antigens. J. Immunol. 1986; 137: 3909–3914
  • De Lisser H. M., Newman P. J., Albelda S. M. Platelet endothelial cell adhesion molecule (CD31). Current Topics in Microbiology and Immunology. Adhesion in Leukocyte Homing and Differentiation, D. Dunon, C. Mackay, B. Imhof. Springer-Verlag, Berlin/Heidelberg 1993; 38–45
  • Hunkapiller T., Hood L. Diversity of the immunoglobulin gene superfamily. Advances in Immunol. 1989; 44: 1–63
  • Williams A. F., Barclay A. N. The immunoglobulin superfamily domains for cell surface recognition. Ann. Rev. Immunol. 1988; 6: 381–405
  • Bates P. A., Luo J., Sternberg M. J. E. A predicted three-dimensional structure for the carcinoembryonic antigen (CEA). FEBS Letters 1992; 301: 207–214
  • Berendt A. R., McDowall A., Craig A. G., Bates P. A., Sternberg M. J. E., Marsh K., Newbold C. I., Hogg N. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site. Cell 1992; 68: 71–81
  • Tang D. G., Chen Y. Q., Newman P. J., Shi L., Gao X., Giglio C. A., Honn K. V. Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J. Biol. Chem. 1993; 268: 22883–22894
  • Kirschbaum N. E., Newman P. J. Characterization of the human gene for platelet endothelial cell adhesion molecule (PECAM-1). Thrombosis and Haemostasis 1993; 69: 1010a
  • Goldberger A., Middleton K., Paddock C., Kornak J., Newman P. J. Synthesis and processing of the cell adhesion molecule PECAM-1 incudes production of a soluble form. Blood 1992; 80: 266A
  • Barnett T. R., Drake L., Pickle W. Human biliary glycoprotein gene: characterization of a family of novel alternative spliced RNAs and their expressed proteins. Mol. Cell. Biol. 1993; 13: 1273–1282
  • Jackson D. G., Buckley J., Bell J. I. Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J. Biol. Chem. 1992; 267: 4732–4739
  • Newman P. J., Hillery C. A., Albrecht R., Parise L. V., Bemdt M. C., Mazurov A. V., Dunlop L. C., Zhang J., Rittenhouse S. E. Activation-dependent changes in human platelet PECAM-1: phosphorylation, cytoskelet al association, and surface membrane redistribution. J. Cell. Biol. 1992; 119: 239–246
  • Parravicini C. L., Soligo D., Cattoretti G., Berti E., Gaiera G., Biberfeld P. Endothelial reactivity of CD31, CD36 and anti-GMP-140 (CD62) mAb in normal tissues and vascular neoplasms. Leucocyte Typing IV. White Cell Differentiation Antigens, B. W. Knapp, W. R. Dorken, Gilks, et al. Oxford University Press, Oxford 1989; 985–988
  • Muller W. A., Weigl S. A., Deng X., Philips D. M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exper. Med. 1993; 178: 449–460
  • Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 1986; 161: 177–184
  • Kishimoto A., Nishiyama K., Nakanishi H., Uratsuji Y., Nomura H., Takeyama Y., Nishizuka Y. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′, 5-monophosphate-dependent protein kinase. J. Biol. Chem. 1985; 260: 12492–12499
  • Cooper J. A., Esch F. S., Taylor S. S., Hunter T. Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J. Biol. Chem. 1984; 259: 7835–7841
  • De Lisser H. M., Chilkstowsky J., Yan H.-C, Daise M. L., Buck C. A., Albelda S. M. Deletions in the cytoplasmic do main of platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD31) result in changes in ligand binding properties. J. Cell. Biol 1994; 124: 195–203
  • Leach L., Clark P., Lampugnani M. G., Arroyo A. G., Dejani E., Firth J. A. Immunoelectron characterisation of the inter-endothelial junctions of human term placenta. Acta Haematologia (Basel) 1993; 104: 1073–1081
  • Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21–32
  • Kallapur S. G., Akeson R. A. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J. Neurosci. Res. 1992; 33: 538–548
  • Cole G. J., Akeson R. Identification of a heparin binding domain of the neural cell adhesion molecule N-CAM using synthetic peptides. Neuron 1989; 2: 1157–1165
  • Reyes A. A., Akeson R., Brezina L., Cole G. J. Structural requirements for neural cell adhesion molecule-heparin interaction. Cell Regulation 1990; 1: 567–576
  • Werz W., Schachner M. Adhesion of neural cells to extracellular matrix constituents. Involvement of glycosaminoglycans and cell adhesion molecules. Developmental Brain Res. 1988; 43: 225–234
  • De Lisser H. M., Yan H. C., Newman P. J., Muller W. A., Buck C. A., Albelda S. M. Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J. Biol. Chem. 1993; 268: 16037–16046
  • Muller W. A., Berman M. E., Newman P. J., De Lisser H. M., Albelda S. M. A heterotypic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 (CD31). J. Exper. Med. 1993; 175: 1401–1404
  • Albedla S. M., De Lisser H. M., Yan H.-C, Muller L. A., Buck C. A., Newman P. J. Multiple binding domains regulate heterophilic binding of the vascular cell-cell adhesion molecule, PECAM-1. Clin. Res. 1992; 40: 355A
  • Bogen S. A., Baldwin H. S., Watkins S. C., Albelda S. M., Abbas A. K. Association of murine CD31 with transmigrating lymphocytes following antigenic stimulation. Am. J. Pathol. 1992; 141: 843–854
  • Xie Y., Muller W. A. Molecular cloning and adhesive properties of murine platelet/endothelial cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 1993; 90: 5569–5573
  • Bogen S. A., Winberg D. S., Abbas A. K. Histologic analysis of T lymphocyte activation in reactive lymph nodes. J. Immunol. 1991; 147: 1537–1541
  • van Mourik J. A., Leeksma O. C., Reinders J. H., de Groot P. G., Zandbergen-Spaargaren J. Vascular endothelial cells synthesize a plasma membrane protein indistinguishable from platelet membrane glycoprotein Ila. J. Biol. Chem. 1985; 260: 11300–11306
  • Muller W. A., Gimbrone M. A. Plasmalemmal proteins of cultured vascular endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination. J. Cell Biol. 1986; 103: 2389–2402
  • Merwin J. R., Tucker A., Albelda S. M., Mardi J. A. CAMs, JAMs and SAMs-expression in microvascular endothelial cells. J Cell. Biol. 1990; 111: 157a
  • Schimmenti L. A., Yan H. C., Madri J. A., Albelda S. M. Platelet endothelial cell adhesion molecule, PECAM-1 modulates cell migration. J. Cell. Physiol. 1992; 153: 417–428
  • Romer L. H., Albelda S. M., De Lisser H., Buck C. A. PECAM expression on human endothelial cells is altered by TNF al and gm interferon. J. Cell. Biol. 1991; 115: 69a
  • Bird I. N., Spragg J. S., Ager A., Matthews N. Studies of lymphocyte transendothelial migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1), CD45RA and CD45RO. Immunol. 1993; 80: 553–560
  • Vaporciyan A. A., De Lisser H. M. H. C. Y., Mendiguren I. I., Thorn S. R., Jones M. L., Ward R. A., Albedla S. M. Involvement of platelet-endothelial cell adhesion molecule-1 in netrophil recruitment in vivo. Science 1993; 262: 1580–1582
  • Bogen S., Pak J., Garifallou M., Deng X., Muller W. A. Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J. Exper. Med. 1994; 179: 1059–1064
  • Chen W., Knapp W., Majdic O., Stockinger H., Bohmig G. A., Zlabinger G. J. Co-ligation of CD31 and FcyRII induces cytokine production in human monocytes. J. Immunol. 1994; 152: 3991–3997
  • Macintyre E. A., Roberts P. J., Jones M., Van der Schoot C. E., Favalaro E. J., Tidman N., Linch D. C. Activation of human monocytes occurs on cross-linking monocytic antigens to an Fc receptor. J. Immunol. 1989; 142: 2377–2383
  • Schreck R., Alberman K., Baeuerle P. A. Nuclear factor Kappa B:an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radical Research Communication 1992; 17: 221–237
  • Urban M. B., Schreck R., Baeuerle P. A. NF-kappa B contacts DNA by a heterodimer of the p50 and-65 subunit. EMBO J. 1991; 10: 1817–1825
  • Piali L., Albelda S. M., Baldwin H. S., Hammel P., Gisler R. H., Imhof B. A. Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates bl integrins on lym-phokine-activated killer cells. Eur. J. Immunol. 1993; 23: 2464–2471
  • Teixido J., Hemler M. E., Greenberger J. S., Ankelsaria P. Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J. Clin. Invest. 1992; 90: 358–367
  • Ballard L. L., Brown E. J., Holers V. M. Expression of the fibronectin receptor VLA-5 is regulated during human B cell differentiation and activation. Clin, and Exper. Immunol. 1991; 84: 336–346
  • Saeland S., Duvert V., Caux C., Pandrau D., Favre C., Valle A., Durand I., Charbord P., deVries J., Banchereau J. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoetic cells. Exper. Hematol. 1992; 20: 24–33
  • Ryan D. H., Nuccie B. L., Abboud C. N., Winslow J. M. Vascular cell adhesion of human B cell precursors to cultured bone marrow adherent cells. J. Clin. Invest. 1991; 88: 995–1004
  • Miyake K., Weissman I. L., Greenberger J. S., Kincade P. W. Evidence for a role of the integrin VLA-4 in lymphohe-mopoiesis. J. Exper. Med. 1991; 173: 599–607
  • Miyake K., Medina K., Ishihara K., Kimoto M., Auerbach R., Kincade P. W. A V-CAM-like adhesion molecule on murine bone marrow mediates binding of lymphocyte precursors in culture. J. Cell. Biol. 1991; 114: 557–565
  • Coombe D. R., Watt S. M., Parish C. R. The multipo-tential cell line FDCPmA4 interacts with stromal fibroblastoid cells through Mac-1 and CD45. Blood 1994; 84: 739–752
  • Williams D. A., Rios M., Stephens C., Palel V. P. Fibronectin and VLA-4 in haematopoietic stem cell-microenviron-ment interactions. Nature 1991; 352: 438–441

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.