53
Views
31
CrossRef citations to date
0
Altmetric
Original Article

The Human Immunodeficiency Virus Type-1 (HIV-1) Tat Protein and Bcl-2 Gene Expression

&
Pages 551-560 | Received 16 Mar 1996, Published online: 01 Jul 2009

References

  • Jones K. A., Peterlin M. B. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 1994; 63: 717–743
  • Ranki A., Lagerstedt A., Ovod V., Aavik E., Krohn K. J. E. Expression kinetics and subcellular localization of HIV-1 regulatory proteins Nef, Tat and Rev in acutely and chronically infected lymphoid cell lines. Arch. Virol. 1994; 139: 365–378
  • Laspia M. F., Rice A. P., Mathew M. B. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 1989; 59: 283–292
  • Marciniak R. A., Calnan B. J., Frankel A. D., Sharp P. A. HIV-1 Tat protein trans-activates transcription in vitro. Cell 1990; 63: 791–802
  • Cullen B. R. Does HIV-1 tat induce a change in viral initiation rights?. Cell 1993; 73: 417–419
  • Koken S. E. C., Greijer A. E., Verhoef K., Van Wamel J., Bukrinskaya A. G., Berkout B. Intracellular analysis of in vitro modified HIV Tat protein. J. Biol. Chem. 1994; 269: 8366–8374
  • Dang C. V., Lee W. M. F. Nuclear and nucleolar targeting sequences of c-erb-A, c-myc, N-myc, p53, HPS70, and HIV tat proteins. J. Biol. Chem. 1989; 264: 18019–18023
  • Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A., Valerio R. HIV-1 tat protein binds transactivation-response region (TAR) in vitro. Proc. Natl. Acad. Sci. USA 1989; 86: 6925–6932
  • Taylor J. P., Kunda M., Khalili K. TAR-independent activation of HIV-1 requires the activation domain but not the RNA-binding domain of Tat. Virol. 1993; 195: 780–788
  • Huang L., Joshi A., Willey R., Orenstein J., Jeang K. T. Human immunodeficiency viruses regulated by alternative trans-activators: genetic evidence for a novel non-transcriptional function of Tat in virion infectivity. EMBO J. 1994; 13: 2886–2893
  • Ensoli B., Barillari G., Zaki Salahuddin S., Gallo R. C., Wong-Stall F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990; 345: 84–86
  • Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., Wingfield P., Gallo R. C. Release, uptake, and effects of extracellular human immunodeficiency virus type I tat protein on cell growth and viral transactivation. J. Virol. 1993; 67: 277–287
  • Milani D., Zauli G., Neri L. M., Marchisio M., Previati M., Capitani S. Influence of the human immunodeficiency virus type 1 tat protein on the proliferation and differentiation of PC12 rat pheochromocytoma cells. J. Gen. Virol. 1993; 74: 2587–2594
  • Frankel A. D., Pabo C. O. Cellular uptake of the Tat protein from Human immunodeficiency virus. Cell 1988; 55: 1189–1193
  • Mann D. A., Frankel A. D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 1991; 10: 1733–1739
  • Bonifaci N., Sitia R., Rubartelli A. Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. AIDS 1995; 9: 995–1000
  • Fawell S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 1994; 91: 664–671
  • Nigg E. A., Baeuerle P. A., Luhrmann R. Nuclear-import-export: in search of signals and mechanisms. Cell 1991; 66: 15–22
  • Marasco W. A., Szilvay A. M., Kalland K. H., Helland D. G., Reyes H. M., Walter R. J. Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably trans-fected Jurkat T-cells. Arch. Virol. 1994; 139: 133–154
  • Paine P. L., Moore L. C., Horowitz S. B. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 1990; I11: 807–816
  • Olsnes S., Moskaug J. O., Stenmark H., Sandvig K. Diphtheria toxin entry: protein translocation in the reverse direction. Trends Biochem. Sci. 1988; 13: 348–351
  • Abraham J. A., Mergia A., Whang J. L., Tumolo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 1986; 233: 545–548
  • Rusnati M., Coltrini D., Caccia P., Dell'Era P., Zoppetti G., Oreste P., Valsasina B., Presta M. Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem. Biophis. Res. Commu. 1994; 203: 250–258
  • Brake D. A., Debouck C., Biesecher G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J. Cell Biol. 1990; 111: 1275–1281
  • Barillari G., Gendelman R., Gallo R. C., Ensoli B. The tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same types by using integrin receptors recognizing RGD amino acid sequence. Proc. Natl. Acad. Sci. USA 1993; 90: 7941–7945
  • Vogel B. E., Lee S. J., Hildebrand A., Craig W., Pierschbacher M. D., Wong-Staal F., Ruoslahti E. A novel integrin specificify exemplified by binding of the α,β5 integrin to the basic domain of the HIV tat protein and vitronectin. J. Cell Biol. 1993; 121: 461–468
  • Weeks B. S., Desai K., Loewenstein P. M., Klotman M. E., Klotman P., Green M., Kleinman H. K. Identification of a novel cell attachment domain in the HIV-1 Tat protein and its 90-kDa cell surface binding protein. J. Biol. Chem. 1993; 268: 5279–5284
  • Albini A., Fontanini G., Masiello L., Tacchetti C., Bigini D., Luzzi P., Noonan D. M., Stetler-Stevenson W. G. Angiogenic potential in vivo by Kaposi's sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS 1994; 8: 1237–1244
  • Ensoli B., Gendelman R., Markham P., Fiorelli V., Colombini S., Raffeld M., Cafaro A., Chang H. K., Brady J. N., Gallo R. C. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 1994; 371: 674–680
  • Kim C. M., Vogel J., Jay G., Rhim J. S. The HIV tat gene transforms human keratinocytes. Oncogene 1992; 7: 1525–1529
  • Zauli G., Gibellini D., Milani D., Mazzoni M., Borgatti P., La Placa M., Capitani S. Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res. 1993; 53: 4481–4485
  • Caputo A., Sodroski J. G., Haseltine W. A. Constitutive expression of HIV-1 tat protein in human Jurkat T cells using a BK virus vector. J. AIDS 1990; 3: 372–379
  • Zauli G., Marchisio M., Bertagnolo V., Celeghini C., Capitani S. HIV-1 Tat protein suppresses the nerve growth factor (NGF)-mediated differentiation of PC12 rat phechromocytoma cell line. Oncology Reports 1994; 1: 773–777
  • Fauci A. S. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 1993; 262: 1011–1018
  • Gibellini D., Caputo A., Celeghini C., Bassini A., La Placa M., Capitani S., Zauli G. Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection. Br. J. Haematol. 1995; 89: 24–33
  • Zauli G., Gibellini D., Caputo A., Bassini A., Negrini M., Monne M., Mazzoni M., Capitani S. The human immunodeficiency virus type-1 (HIV-1) Tat protein upregulates Bcl-2 gene expression in Jurkat T cell lines and primary peripheral blood mononuclear cells. Blood 1995; 86: 3823–3834
  • Vogel J., Hinrichs S. H., Reynolds R. K., Luciw P. A., Jay G. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 1988; 335: 606–611
  • Vogel J., Hinrichs S. H., Napolitano L. A., Ngo L., Jay G. Liver cancer in transgenic mice carrying the human immunodeficiency virus tat gene. Cancer Res. 1991; 51: 6686–6690
  • Vellutini C., Horschowski N., Philippon V., Gambarelli D., Nave K. A., Filippi P. Development of lymphoid hyperplasia in transgenic mice expressing the HIV tat gene. AIDS Res. Hu. Retro. 1995; 11: 21–29
  • Corallini A., Altavilla G., Pozzi L., Bignozzi F., Negrini M., Rimessi P., Gualandi F., Barbanti-Brodano G. Systemic expression of HIV-1 tat gene in transgenic mice induces endothelial proliferation and tumors of different hystotypes. Cancer Res. 1993; 53: 5569–5576
  • Harnly M. E., Swan S. H., Holly E. A., Kelter A., Padian N. Temporal trends in the incidence of non-Hodgkin's lymphoma and selected malignancies in a population with a high incidence of acquired immunodeficiency syndrome (AIDS). Am. J. Epidemiol. 1988; 128: 261–274
  • Viscidi R. P., Mayur K., Lederman H. M., Frankel A. D. Inhibition of antigen-induced lymphocyte proliferation by tat protein from HIV-1. Science 1989; 246: 1606–1608
  • Subramanyam M., Gutheil W. G., Bachovchin W. W., Huber B. T. Mechanism of HIV-1 Tat induced inhibition of antigen-specific T cell responsiveness. J. Immunol. 1993; 150: 2544–2553
  • Chirmule N., Than S., Khan S., Pahwa S. Human immunodeficiency virus Tat induces functional unresponsiveness in T cells. J. Virol. 1995; 69: 492–498
  • Westendorp M. O., Frank R., Ochsenbauer C., Stricker K., Dhein J., Walczak H., Debatin K. M., Krammer P. H. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500
  • Li C. J., Friedman D. J., Wang C., Metelev V., Pardee A. B. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 1995; 268: 229–231
  • Purvis S. F., Jacobberger J. W., Sramkoski R. M., Patki A. H., Lederman M. M. HIV type 1 Tat protein induces apopotosis and death in Jurkat cells. AIDS Res. Hu. Retro. 1995; 11: 443–451
  • Philippon V., Vellutini C., Gambarelli D., Harkiss G., Arbuthnott G., Metzger D., Roubin R., Filippi P. The basic domain of the lentiviral Tal protein is responsible for damages in mouse brain: involvment of cytokines. Virology 1994; 205: 519–529
  • Magnuson D. S., Knudsen B. E., Geiger J. D., Brownstone R. M., Nath A. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann. Neurol. 1995; 37: 373–380
  • Zauli G., La Placa M., Vignoli M., Re M. C., Gibellini D., Furlini G., Milani D., Marchisio M., Mazzoni M., Capitani S. An autocrine loop of HIV type 1 Tat protein responsible for the improved survival/proliferation capacity of permanently tat-transfected cells and required for optimal human immunodeficiency virus type 1 long terminal repeat transactivating activity. J. AIDS 1995; 10: 306–316
  • Meyaard L., Otto S. A., Schuitemaker H., Miedema F. Effects of HIV-1 Tat protein on human T cell proliferation. Eur. J. Immunol. 1992; 22: 2729–2736
  • Buonaguro L., Buonaguro F. M., Giraldo G., Ensoli B. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J. Virol. 1994; 68: 2677–2682
  • Sastry K. J., Reddy H. R., Pandita R., Tolpal K., Aggarwal B. B. HIV-1 tat induces tumor necrosis factor-beta (lymphotoxin) in a human B lymphoblastoid cell line. J. Biol. Chem. 1990; 265: 20091–20093
  • Buonaguro L., Barillari G., Chang H. K., Bohan C. A., Kao V., Morgan R., Gallo R. C., Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokine. J. Virol. 1992; 66: 7159–7167
  • Sharma V., Knobloch T. J., Benjamin D. Differential expression of cytokine genes in HIV-1 tat transfected T and B cell lines. Biochem. Biophys. Res. Commu. 1995; 208: 704–713
  • Biswas D. K., Salas T. R., Wang F., Ahlers C. M., Dezube B. J., Pardee A. B. A Tat-induced auto-up-regulatory loop for superactivation of the human immunodeficiency virus type 1 promoter. J. Virol. 1995; 69: 7437–7444
  • Scala G., Ruocco M. R., Ambrosino C., Mallardo M., Giordano V., Baldassarre F., Dragonetti E., Quinto I., Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 tat protein. J. Exp. Med. 1994; 179: 961–971
  • Puri R. K., Aggarwal B. B. Human immunodeficiency virus type 1 tat gene up-regulates interleukin-4 receptors on a human B-lymphoblastoid cell line. Cancer Res. 1992; 52: 3787–3790
  • Gibellini D., Zauli G., Re M. C., Milani D., Furlini G., Caramelli E., Capitani S., La Placa M. Recombinant human immunodeficiency virus type-1 (HIV-1) Tat protein sequentially upregulates IL-6 and TGF-β1 mRNA expression and protein synthesis in peripheral blood monocytes. Br. J. Haematol. 1994; 88: 261–267
  • Zauli G., Davis B. R., Re M. C., Visani G., Furlini G., La Placa M. Tat protein stimulates production of transforming growth factor-β1 by marrow macrophages: a potential mechanism for HIV-1 induced hematopoietic suppression. Blood. 1992; 80: 3036–3043
  • Cupp C., Taylor P., Khalili K., Amini S. Evidence for stimulation of the transforming growth factor β1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 1993; 8: 2231–2236
  • Lotz M., Clark-Lewis I., Ganu V. HIV-1 transactivator protein Tat induces proliferation and TGFβ expression in human articular chondrocytes. J. Biol. Chem. 1994; 124: 365–371
  • Westendorp M. O., Li-Weber M., Frank R. W., Krammer P. H. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J. Virol. 1994; 68: 4177–4185
  • Purvis S. F., Georges D. L., Williams T. M., Lederman M. M. Suppression of interleukin-2 and interleukin-2 receptor expression in Jurkat cells stably expressing the human immunodeficiency virus Tat protein. Cell. Immunol. 1992; 144: 32–42
  • Puri R. K., Leland P., Aggarwal B. B. Constitutive expression of human immunodeficiency virus type 1 tat gene inhibits interleukin 2 and interleukin 2 receptor expression in a human CD4+ T lymphoblastoid (H9) cell line. AIDS Res. Hu. Retro. 1995; 11: 31–40
  • Korsmeyer S. J. Bcl-2: a repressor of lymphocyte death. Immunol. Today 1992; 13: 285–290
  • Oltvai Z. N., Milliman C. L., Korsmeyer S. J. Bcl-2 heterodimerizes in vivo with a conserved homology, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–618
  • Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J. A., Reed J. C. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 1995; 80: 279–288
  • Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–293
  • Merino R., Ding L., Veis D. J., Korsmeyer S. J., Nunez G. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J. 1994; 13: 683–692
  • Caputo A., Grossi M. P., Bozzini R., Rossi C., Betti M., Marconi P. C., Barbanti-Brodano G., Balboni P. G. Inhibition of HIV-1 replication and reactivation from latency by tat transdominant negative mutants in the cysteine rich region. Gene Therapy 1996; 3: 235–245
  • Longo F., Marchetti M. A., Castagnoli L., Battaglia P. A., Gigliani F. A novel approach to protein-protein interaction: complex formation between p53 tumor suppressor and the HIV Tat proteins. Biochem. Biophys. Res. Commu. 1995; 206: 326–334
  • Li C. J., Wang C., Friedman D. J., Pardee A. B. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1995; 92: 5461–5464
  • Flores S. C., Marecki J. C., Harper K. P., Bose S. K., Nelson S. K., Mc Cord J. M. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in Hela cells. Proc. Natl. Acad. Sci. USA 1993; 90: 7632–7636
  • Ursini M. V., Lettieri T., Braddock M., Martini G. Enhanced activity of human G6PD promoter transfected in HeLa cells producing high levels of HIV-1 Tat. Virol. 1993; 196: 338–343
  • Church S. L., Grant J. M., Ridnour L. A., Oberley L. W., Swanson P. E., Meltzer P. S., Trent J. M. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 3113–3117
  • Nabel G., Baltimore D. An inducible transcription factor activates expression of human immmunodeficiency virus in T-cell. Nature 1987; 326: 711–713
  • Roulston A., Lin R., Beauparlant P., Wainberg M. A., Hiscott J. Regulation of human immunodeficiency virus type-1 and cytokine gene expression in myeloid cells by NF-kB/Rel transcription factors. Microbiol. Rev. 1995; 59: 481–505
  • AlcamÌ J., Lain De Lera T., Folgueira L., Pedraza M. A., Jacque J. M., Bachelerie F., Noriega A. R., Hay R. T., Harrich D., Gaynor R. B., Virelizier J. L., Arenzana-Seisdedos F. Absolute dependence of kB responsive elements for initiation and Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes. EMBO (Eur. Mol. Biol. Organ.) J. 1995; 14: 1552–1560
  • Demarchi F., D'Agaro P., Falaschi A., Giacca M. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 1993; 67: 7450–7460
  • Westendorp M. O., Shatrov V. A., Schulze-Osthoff K., Frank R., Kraft M., Los M., Krammer P. H., Droge W., Lehmann V. HIV-1 Tat potentiates TNF-induced NF-kB activation and cytotoxicity by altering the cellular redox state. EMBO (Eur. Mol. Biol. Organ.) J. 1995; 14: 546–556
  • Campioni D., Corallini A., Zauli G., Possati L., Altavilla G., Barbanti-Brodano G. HIV-1 type 1 extracellular Tat protein stimulates growth and protects cells of BK virus/tat transgenic mice from apoptosis. AIDS Res. Hu. Retro. 1995; 1039–1048
  • Steinaa L., Serensen A. M., Nielsen J. O., Hansen J. E. S. Antibody to HIV-1 Tat protein inhibits the replication of virus in culture. Arch. Virol. 1994; 139: 263–271
  • Re M. C., Furlini G., Vignoli M., Ramazzotti E., Roderigo G., De Rosa V., Zauli G., Lolli S., Capitani S., La Placa M. Effect of antibody to HIV-1 Tat protein on viral replication in vitro and progression of HIV-1 disease in vivo. J. AIDS 1995; 10: 408–416
  • Krone W. J., Debouck C., Epstein L. G., Heutink P., Meloen R., Goudsmit J. Natural antibodies to HIV-tat epitopes and expression of HIV-1 genes in vivo. J. Med. Virol. 1988; 26: 261–274
  • Rodman T. C., Pruslin F. H., To S. E., Winston R. Human immunodeficiency virus (HIV) tat-reactive antibodies present in normal HIV-negative sera and depleted in HIV-positive sera. Identification of the epitope. J. Exp. Med. 1992; 175: 1247
  • Zhang Z., Vuori K., Reed J. C., Ruoslahti E. The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc. Natl. Acad. Sci. USA 1995; 92: 6161–6170
  • Yamada A., Nikaido T., Nojima Y., Schlossman S. F., Marimoto C. Activation of Human CD4 T lymphocytes. Interaction of fibronectin with VLA-5 receptor on CD4 cells induces the AP-1 transcription factor. J. Immunol. 1991; 146: 53–62
  • Juliano R. L., Varner J. A. Adhesion molecules in cancer: the role of integrins. Curr. Op. Biol. 1993; 5: 812–819
  • Sandstrom P. A., Pardi D., Goldsmith C. S., Diamond M., Folks T. M. (1978) Bcl-2 expression facilitates HIV-1-mediated cytopathic effects during acute spreading infections. 3rd Conference on Retroviruses and Opportunistic Infections, Abs. 1996; 92, Washington, DC, January 28-February 1, 1996
  • Herndier B. G., Kaplan L. D., McGrath M. S. Pathogenesis of AIDS lymphomas. AIDS 1994; 8: 1025–1044
  • Hockenbery D. M., Zutter M., Hickey W., Nahm M., Korsmeyer S. J. Bcl-2 protein is topographically restricted in tissues characterized by apopototic cell death. Proc. Natl. Acad. Sci. USA 1991; 88: 6961–6965
  • Akbar A. N., Borthwick N., Salmon M., Gombert W., Bofill M., Shamsadeen N., Pilling D., Pett S., Grundy J. E., Janossy G. The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J. Exp. Med., 178: 427–438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.