361
Views
117
CrossRef citations to date
0
Altmetric
Original Article

Regulation of Hematopoiesis by Microvascular Endothelium

, , , &
Pages 375-386 | Accepted 12 Jan 1997, Published online: 01 Jul 2009

References

  • Moore M., Metcalf D. Ontogeny of the hematopoietic system: Yolk sac origin of in vivo and in vitro colony‐forming cells in the developing mouse embryo. British Journal of Hematology 1970; 18: 279
  • Yoder M. C., Papaioannou V. E., Breitfeld P. P., Williams D. A. Murine yolk sac endoderm‐ and mesodem‐derived cell lines support in vitro growth and differentiation of hematopoietic cells. Blood 1994; 83: 2436
  • LeBastie M., Poole T., Peault B., Le Dourain N. MB‐1, a quail leukocyte‐endothelium antigen: Partial characterization of the cell surface forms in cultured endothelial cells. Proc Natl AcdSci 1986; 83: 9016
  • Pardanaud L., Kitos P., Dieterlein‐lievre F., Buck C. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 1987; 100: 339
  • Tavassoli M. Embryonic and fetal hemopoiesis: an overview. Blood Cells 1991; 17: 269
  • Zon L. I. Developmental biology of hematopoiesis. Blood 1995; 86: 2876
  • Abboud C. N. Human bone marrow microvascular endothelial cells: Elusive cells with unique structural and functional properties. Experimental Hematology 1995; 23: 1
  • Abboud C. N., Liesveld J. L., Litchman M. A. The architecture of marrow and its role in hematopoietic cell lodgment. The Hematopoietic Microenvironment, M. W. Long, M. S. Wicha. The Johns Hopkins University Press, Baltimore 1993
  • Tavassoli M. Hemopoietic endothelium, incognito [editorial; comment]. Exp. Hematoi 1992; 20: 386
  • Aoki M., Tavassoli M. Identification of microfilaments in marrow sinus endothelial cells: their possible role in cell egress. J. Ultrastruct. Res. 1981; 74: 255
  • Tavassoli M. Structure and function of sinusoidal endothelium of bone marrow. Prog. Clin. Biol. Res. 1981; 59B: 249
  • Soda R., Tavassoli M. Mapping of the bone marrow sinus endothelium with lectins and glycosylated ferritins: identification of differentiated microdomains and their functional significance. J. Ultrastruct. Res. 1983; 84: 299
  • Grafe M., Auch‐Schwelk W., Graf K., Terbeek D., Hertel H., Unkelbach M., Hildebrandt A., Fleck E. Isolation and characterization of macrovascular and microvascular endothelial cells from human hearts. Am. J. Physiol. 1994; 267: H2138
  • Scott P. A., Bicknell R. The isolation and culture of microvascular endothelium. J. Cell Sci. 1993; 105: 269
  • Imcke E., Ruszczak Z., Mayer‐da Silva A., Detmar M., Orfanos C. E. Cultivation of human dermal microvascular endothelial cells in vitro: immunocytochemical and ultrastructural characterization and effect of treatment with three synthetic retinoids. Arch. Dermatol. Res. 1991; 283: 149
  • Ades E. W., Candal F. J., Swerlick R. A., George V. G., Summers S., Bosse D. C., Lawley T. J. HMEC‐I: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 1992; 99: 683
  • Magee J. C., Stone A. E., Oldham K. T., Guice K. S. Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am. J. Physiol. 1994; 267: L433
  • Odonnell M. E., Martinez A., Sun D. Cerebral microvascular endothelial cell Na‐K‐Cl cotransport: regulation by astrocyte‐conditioned medium. Am. J. Physiol. 1995; 268: C747
  • Rafii S., Shapiro F., Rimarachin J., Nachman R. L., Ferris B., Weksler B., Moore M. A. S., Asch A. S. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 1994; 84: 10
  • Schweitzer C. M., Van der Schoot C. E., Drager A. M., Van der Valk P., Zevenbergen A., Hooibrink B., Westra A. H., Langenhijsen M. M. A. C. Isolation and culture of bone marrow endothelial cells. Experimental Hematology 1995; 23: 41
  • Masek L. C., Sweetenham J. W., Whitehouse J. M. A., Schumacher U. Immuno‐, lectin, and enzyme‐histochem‐ical characterization of human marrow endothelium. Experimental Hematology 1994; 22: 1203
  • Rafii S., Candal F. J., Shapiro F., Mohle R., Moore M. A. S., Kellar K. L. Immortalized human bone marrow microvascular endothelial cells (BMEC‐1) support long term multilineage hematopoiesis. Blood 1995; 86Sl: 495a, (abstract)
  • Mohle R., Moore M. A. S., Nachman R. L., Rafii S. Transendothelial migration of CD34+ and mature hematopoietic cells: An in vitro study using an human bone marrow endothelial cell line. Blood 1997; 89: 72
  • Francisco J. C., Rafii S., Parker J. T., Ades E. W., Nachman R. L., Kellar K. L. BMEC‐I: A human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvascular Research 1996; 52: 221
  • Litchman M. A. The ultrastructure of the hematopoietic microenvironment: a review. Experimental Hematology 1981; 9: 391
  • Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of hematopoietic cells in vitro. Journal of Cell Physiology. 1976; 91: 344
  • Deryugina E. I., Muller‐Sieburg C. E. Stromal cells in long‐term cultures: keys to the elucidation of hematopoietic development?. Critical Reviews in Immunology 1993; 13: 115
  • Quesenberry P. J. Stromal Cells in long‐term bone marrow cultures. Handbook of the Hematopoietic Microenvironment, M. Tavassoli. Humana Press, Clifton, N.J. 1989; 253–285
  • Gordon M. Y., Riley G. O., Watt S. M., Greaves M. F. Compartmentilization of a hematopoietic growth factor (GM‐CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 1987; 326: 403
  • Taichman R. S., Emerson S. G. Human osteoblasts support hematopoiesis through the production of granulocyte colony‐stimulating factor. Journal of Experimental Medicine 1994; 179: 1677
  • Roberts R., Gallagher J., Spooncer E., Allen T. D., Blommfield F., Dexter T. M. Heparin sulphate bound growth factors: A mechanism for stromal cell mediated hemopoiesis. Nature 1988; 322: 376
  • Eaves C. J., Cashman J. D., Kay R. J., Dougherty G. J., Otsuka T., Gaboury L. A., Hogge D. E., Lansdorp P. M., Eaves A. C., Humphries R. K. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long‐term human marrow cultures. Blood 1991; 78: 110
  • Kittler E. L. W., McGrath H., Temeles D., Crittenden R. W., Kister V. K., Quesenberry P. J. Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood 1992; 79: 3168
  • Whitlock C. A., Witte O. N. Long‐term Culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci 1982; 79: 3608
  • Fennie C., Cheng J., Dowbenko D., Young P., Lasky L. A. CD34+ endothelial cell lines derived from murine yolk sac‐induce the proliferation and differentiation of yolk sac CD34* hematopoietic progenitors. Blood 1995; 86: 4454
  • Rafii S., Shapiro F., Pettengell R., Ferris B., Nachman R. L., Moore M. A. S., Asch A. Human bone marrow microvascular endothelial cells support long‐term proliferation and differentiation of myeloid and megakaryocyte progenitors. Blood 1995; 86: 3353
  • Davis T. A., Robinson D. H., Lee K. P., Kessler S. W. Porcine brain microvascular endothelial cells support the in vitro expansion of human primitive hematopoietic bone marrow progenitor cells with a high replating potential: Requirement for cell‐to‐cell interactions and colony‐stimulating factors. Blood 1995; 85: 1751
  • Shalaby F., Rossant J., Yamaguchi T. P., Gertsenstein M., Wu X. F., Breitman M. L., Schuh A. C. Failure of blood island formation and vasculogenesis in FLK‐I deficient mice. Nature 1995; 376: 62
  • Fong G. H., Rossant J., Gertsenstein M., Brietman M. L. Role of the FLT‐1 receptor Kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66
  • Sato T. N., Tozawa Y., Deutsch U., Wolburg‐Buchholz K., Fujiwara Y., Gendron‐Maguire M., Gridley T., Wolburg H., Risau T., Ying Qin. Distinct roles of the receptor tyrosine kinases Tie‐1 and Tie‐2 in blood vessel formation. Nature 1995; 376: 70
  • Grosset C., Jazwiec B., Taupin J. L., Liu H., Richard S., Mahon F. X., Reiffers J., Moreau J. F., Ripoche J. In vitro biosynthesis of leukemia inhibitory factor/human interleukin for DA cells by human endothelial cells: Differential regulation by interleukin‐1 alpha and glucocorticoids. Blood 1995; 86: 3763
  • Shalaby M. R., Waage A., Espevik T. Cytokine‐regulation of interleukin‐6 production by human endothelial cells. Cell Immunol 1989; 121: 372
  • Libby P., Ordovas J. M., Auger K. R., Robbins A. H., Birinyi L. K., Dinarello C. A. Endotoxin and tumor necrosis factor induce interleukin‐1 gene expression in adult human vascular endothelial cells. American Journal of Pathology 1986; 124: 179
  • Segal C. A., McCall E., Bagby G. C. Erythroid Burst Promoting Activity produced by Interleukin‐1 stimulated endothelial cells is granulocyte‐macrophage colony‐stimulating factor. Blood. 1988; 72: 1364
  • Sieff C. A., Niemeyer C. M., Faller D. V. The production of hematopoietic growth factors by endothelial accessory cells. Blood Cells. 1987; 13: 65
  • Pober J. S. Cytokine‐mediated activation of vascular endothelium. American Journal Of Pathology 1988; 133: 426
  • Broudy V. C., Kaushansky K., Segal G. M., Harlan J. M., Adamson J. W. Tumor necrosis factor‐alpha stimulates human endothelial cells to produce multilineage hematopoietic growth factor(s). Proc Natl Acad Set 1986; 83: 7467
  • Suen Y., Chang M., Lee S. M., Buzby S. J., Cairo M. S. Regulation of Interleukin‐11 protein and mRNA expression in neonatal and adult fibroblasts and endothelial cells. Blood 1994; 84: 4125
  • Hannan R. L., Kourembanas S., Flanders K. C., Rogelj S. J., Roberts A. B., Faller D. V., Klagsbrun M. Endothelial cells synthesize basic fibroblasts growth factor and transforming growth factors beta. Growth Factors 1988; 1: 7
  • Maciejewski J. P., Selleri C., Sato T., Cho J. H., Keefer K. L., Nathan C. F. Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of inter‐feron‐gamma and tumor necrosis factor‐alpha. The Journal of Clinical Investigation 1995; 96: 1085
  • Tavassoli M., Hardy C. Molecular basis of homing of intravenously transplanted cells to the marrow. Blood 1990; 76: 1059
  • Kataoka M., Tavassoli M. Identification of lectin‐like substances recognizing galactosyl residues of glycoconjugates on the plasma membrane of sinus endothelium. Blood 1985; 65: 1163
  • Tavassoli M., Minguell J. J. Homing of hemopoietic progenitor cells to the marrow. Proc. Soc. Exp. Biol. Med. 1991; 196: 367
  • Hardy C. L., Omoto E., Tavassoli M. Characterization of FDCP‐2, a cloned hemopoietic progenitor cell deficient in homing protein. Exp. Hematol. 1991; 19: 978
  • Hardy C. L., Matsuoka T., Tavassoli M. Distribution of homing protein on hemopoietic stromal and progenitor cells. Exp. Hematol 1991; 19: 968
  • Zanjani E. D., Ascensao J. L., Tavassoli M. Homing of liver‐derived hemopoietic stem cells to fetal bone marrow. Trans. Assoc. Am. Physicians. 1992; 105: 7
  • Shirota T., Minguell J. J., Tavassoli M. Expression of chondroitin sulfate as a unique type of proteoglycan on the cell membrane of multipotential and committed hemopoietic progenitor cells. Biochim. Biophys. Acta 1992; 1136: 17
  • Zanjani E. D., Ascensao L., Harrison M. R., Tavassoli M. Ex vivo incubation with growth factors enhances the engraftment of fetal hematopoietic cells transplanted in sheep fetuses. Blood 1992; 79: 3045
  • Tavassoli M. The watchmaker's dilemma: building a tower of microenvironments in vitro [editorial; comment]. Exp. Hematol 1992; 20: 286
  • Zanjani E. D., Ascensao J. L., Tavassoli M. Liver‐derived fetal hematopoietic stem cells selectively and preferentially home to the fetal bone marrow. Blood 1993; 81: 399
  • Leavesley D. I., Oliver J. M., Swart B. W., Berndt M. C., Haylock D. N., Simmons P. J. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen‐4 integrin of human CD34+ hematopietic progenitor cells. Journal Of Immunology 1994; 153: 4673
  • Möhle R., Murea S., Kirsch M., Haas R. Differential expression of L‐selectin, VLA‐4, and LFA‐1 on CD34+ progenitor cells from bone marrow and peripheral blood during G‐CSF enhanced recovery. Experimental Hematology 1995; 23: 1535
  • Papayannopoulou T., Nakamoto B. Peripheralization of hematopoietic progenitors in primates treated with anti‐VLA4 integrin. Proc Natl Acad Sci 1993; 90: 9374
  • Springer T. A. Adhesion receptors of the immune system. Nature 1990; 346: 425
  • Stoolman L. M. Adhesion molecules controlling lymphocyte migration. Cell 1989; 56: 907
  • Jacobsen K., Kravitz J., Kincade P. W., Osmond D. G. Adhesion receptors on bone marrow stromal cells: In vivo expression of vascular cell adhesion molecule‐1 by reticular cells and sinosoidal endothelium in normal and gamma‐irradiated mice. Blood 1996; 87: 73
  • Ryan D. H., Nuccie B. L., Abboud C. M., Winslow J. M. Vascular cell adhesion molecule‐1 and the integrin VLA‐4 mediate adhesion of human B‐cell precursors to cultured bone marrow adherent cells. Journal of Clinical Investigation 1991; 88: 995
  • Teixido J., Hemler M. E., Greenberger J. S., Anklesaria P. Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to the bone marrow stroma. Journal of Clinical Investigation 1992; 90: 358
  • Rosenblatt M., Vuillet‐Gaugler M. H., Leroy C., Coulombel L. Coexpression of two fibronectin receptors, VLA‐4 and VLA‐5, by immature human erythroblastic precursor cells. Journal of Clinical Investigation 1991; 87: 6
  • Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 1991; 65: 859
  • Ley K., Gaehtgens P., Fennie C., Singer M. S., Lasky L. A., Rosen S. D. Lectin‐like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 1991; 77: 2553
  • Zannettino A. C. W., Berndt M. C., Butcher C., Butcher E. C., Vadas M. A., Simmons P. J. Primitive human hematopoietic progenitors adhere to P‐selectin (CD62P). Blood 1995; 85: 3466
  • Mayadas T. N., Johnson R. C., Rayburn H., Hynes R. O., Wagner D. D. Leukocyte rolling and extravasation are severely compromised in P selectin‐deficient mice. Cell 1993; 74: 541
  • Wolitzky B., Kwee L., Terry R., Kontgen F., Stewart C., Rumberger J., Burns D., Labow M. Targeted disruption of the murine E‐selectin and VCAM‐1 genes. J Cell Biochem 1994; 18A: 523
  • Arbones M., Ord D., Ley K., Ratech H., Maynard‐Curry C., Otten G., Capon D., Tedder T. Lymphocyte homing and leukocyte rolling and migration are impaired in L‐selectin (CD62L) deficient mice. Immunity 1994; 1: 247
  • Tavassoli M., Aoki M. Migration of entire megakaryocytes through the marrow‐blood barrier. Br. J. Haematol. 1981; 48: 25
  • Tavassoli M., Aoki M. Localization of megakaryocytes in the bone marrow. Blood Cells 1989; 15: 3
  • Tavassoli M. Modulation of megakaryocyte emperipolesis by phlebotomy: megakaryocytes as a component of marrow‐blood barrier. Blood Cells 1986; 12: 205
  • Caine Y. G., Vlodavsky I., Hersh M., Polliack A., Gurfel D., Or R., Levine R. F., Eldor A. Adhesion, spreading and fragmentation of human megakaryocytes exposed to subendothelial extracellular matrix: a scanning electron microscopy study. Scan. Electron. Microsc. 1986; 1087
  • Martin J. F., Gladwin A. M. In vitro production of human platelets [letter]. Lancet 1988; 2: 400
  • Mazur E. M. Megakaryocytopoiesis and platelet production: a review. Exp. Hematoi 1987; 15: 340
  • White J. G. Mechanisms of platelet production. Blood Cells 1989; 15: 48
  • McDonald T. P. The regulation of megakaryocyte and platelet production. Int. J. Cell Cloning 1989; 7: 139
  • Levine R. F., Eldor A., Hy Am E., Gamliel H., Fuks Z., Vlodavsky I. Megakaryocyte interaction with subendothelial extracellular matrix is associated with adhesion, platelet‐like shape change, and thromboxane A2 production. Blood 1985; 66: 570
  • Radley J. M. Ultrastructural aspects of platelet production. Prog. Clin. Biol. Res. 1986; 215: 387
  • Avraham H., Scadden D. T., Chi S., Broudy V. C., Krisztina M. Z., Groopman J. E. Interaction of human bone marrow fibroblasts with megakaryocytes: Role of the c‐kit ligand. Blood 1992; 80: 1679

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.