97
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The Cytotoxic Effect of the Vitamin B12 Inhibitor Cyanocobalamin [c-lactam], and a Review of Other Vitamin B12 Antagonists

Pages 21-37 | Published online: 01 Jul 2009

References

  • Smith E.L., Parker L.F.J., Gant D.E. Antimetabolites from Vitamin B12. Biochemical Journal 1956; 52: 14P
  • Chanarin I. The Megaloblastic Anaemias, 3rd edn. Blackwell, Oxford 1990
  • Herbert V., Zalusky R. Interrelations of Vitamin B12 and folic acid metabolism: folic acid clearance studies. Journal of Clinical Investigation 1962; 41: 1263–1276
  • Chanarin I., Deacon R., Lumb M., Muir M., Perry J. Cobalamin-folate interrelations: a critical review. Blood 1985; 66: 479–489
  • D'Angelo A., Selhub J. Homocysteine and thrombotic disease. Blood 1997; 90: 1–11
  • Stabler S.P., Brass E.P., Marcell P.D., Allen R.H. Inhibition of cobalamin-dependent enzymes by cobalamin analogues in rats. Journal of Clinical Investigation 1991; 87: 1422–1430
  • Matthews J.H. Cyanocobalamin [c-lactam] inhibits vitamin B12 and causes cytotoxicity in HL60 cells: methionine protects cells completely. Blood 1997; 89: 4600–4607
  • Judde J.G., Frost P. Patterns of methionine auxotrophy in normal and neoplastic cells: the methionine independence of lymphocyte mitogenesis and low frequency of the methionine-dependent phenotype in human tumors. Cancer Research 1988; 48: 6775–6779
  • Halpern B.C., Clark B.R., Hardy D.N., Halpem R.M., Smith R.A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proceedings of the National Academy of Sciences of the USA 1974; 71: 1133–1136
  • Liteplo R.G., Hipwell S.E., Rosenblatt D.S., Sillaots S., Lue-Shing H. Changes in cobalamin metabolism are associated with the altered methionine auxotrophy of highly growth autonomous human melanoma cells. Journal of Cellular Physiology 1991; 149: 332–338
  • Djurhuus R., Svardal A.M., Ueland P.M., Male R., Lillehaug J.R. Growth support and toxicity of homocysteine and its effects on methionine metabolism in nontransformed and chemically transformed C3H/10T1/2 cells. Carcinogenesis 1988; 9: 9–16
  • McCully K.S. Homocysteine thiolactone metabolism in malignant cells. Cancer Research 1976; 36: 3198–3202
  • Mellman I., Willard H.F., Youngdahl-Turner P., Rosenberg L.E. Cobalamin coenzyme synthesis in normal and mutant human fibroblasts. Evidence for a processing enzyme activity deficient in cblC cells. Journal of Biological Chemistry 1979; 254: 11847–11853
  • Kamely D., Littlefield J.W., Erbe R.W. Regulation of 5-methyltetrahydrofolate: homocysteine methyltransferase activity by methionine, vitamin B12, and folate in cultured baby hamster kidney cells. Proceedings of the National Academy of Sciences of the USA 1973; 70: 2585–2589
  • Bonnett R., Cannon J.R., Clark V.M., et al. Chemistry of the vitamin B 12 group. V. The structure of the chromophoric grouping. Journal of the Chemistry Society 1957; 1158–1168
  • Binder M., Kolhouse J.F., Van Home K.C., Allen R.H. High-pressure liquid chromatography of cobalamins and cobalamin analogs. Analytical Biochemistry 1982; 125: 253–258
  • Nixon P.F., Bertino J.F. Enzymatic preparations of radiolabeled (+)-L-5-methyltetrahydrofolate and (+)-L-5-formyltetrahydrofolate. Analytical Biochemistry 1971; 43: 162–172
  • Matthews J.H., Wickramasinghe S.N. A method for performing deoxyuridine suppression tests on microtitre plates. Clinical & Laboratory Haematology 1986; 8: 61
  • Willard H.F., Ambani L.M., Hart A.C., Mahoney M.J., Rosenberg L.E. Rapid prenatal and postnatal detection of inborn errors of propionate, methylmalonate, and cobalamin metabolism: a sensitive assay using cultured cells. Human Genetics 1976; 34: 277–283
  • Matthews J.H., Armitage J., Wickramasinghe S.N. Thymidylate synthesis and utilization via the de novo pathway in normal and megaloblastic human bone marrow cells. European Journal of Haematology 1989; 42: 396–404
  • Drennan C.L., Huang S., Drummond J.T., Matthews R.G., Lidwig M.L. How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 1994; 266: 1669–1674
  • Stubbe J. Binding site revealed of nature's most beautiful cofactor. Science 1994; 266: 1663–1664
  • Metz J. Cobalamin deficiency and the pathogenesis of nervous system disease. Annual Review of Nutrition 1992; 12: 59–79
  • Weir D.G., Keating S., Molloy A., et al. Methylation deficiency causes vitamin B12-associated neuropathy in the pig. Journal of Neurochemistry 1988; 51: 1949–1952
  • Young P.B., Kennedy S., Molloy A.M., Scott J.M., Weir D.G., Kennedy D.G. Effect of N20 treatment/ vitamin B12 deficiency in pigs on tissue concentrations of odd-numbered, branched-chain fatty acids. International Journal for Vitamin & Nutrition Research 1995; 65: 255–260
  • McLean G.R., Quadros E.V., Rothenberg S.P., Morgan A.C., Schrader J.W., Ziltener H.J. Antibodies to transcobalamin II block in vitro proliferation of leukemic cells. Blood 1997; 89: 235–242
  • Koppenhagen V.B., Wagner F., Pfiffner J.J. alpha-(5,6-dimethylbenzimidazolyl)rhodibamide and rhodibinamide, the rhodium analogues of vitamin B12 and cobinamide. Journal of Biological Chemistry 1973; 248: 7999–8002
  • Carmel R., Koppenhagen V.B. The effect of rhodium and copper analogs of cobalamin on human cells in vitro. Archives of Biochemistry & Biophysics 1977; 184: 135–140
  • Bieganowski R., Friedrich W. Preparation and some properties of ferribalamin, the Fe(III) analogue of vitamin B12. FEBS Letters 1979; 97: 325–326
  • Koppenhagen V.B., Elsenhans B., Wagner F. Methylrhodibalamin and 5′-deoxyadenosylrhodibalamin, the rhodium analogues of methylcobalamin and cobalamin coenzyme. Journal of Biological Chemistry 1974; 249: 6532–6540
  • McLean G.R., Pathare P.M., Wilbur D.S., et al. Cobalamin analogues modulate the growth of leukemia cells in vitro. Cancer Research 1997; 57: 4015–4022
  • Myasishcheva N.V., Quadros E.V., Matthews D.M., Linnell J.C. Interference by methylcobalamin analogues with synthesis of cobalamin coenzymes in human lymphocytes in vitro. Biochimica et Biophysica Acta 1979; 588: 81–88
  • Siddons R.C., Spence J.A., Dayan A.D. Experimental vitamin B12 deficiency in the baboon. Advances in Neurology 1975; 10: 239–252
  • Siddons R.C. Changes in folate metabolism in baboons Papio cynocephalus treated with 2-methyl-2-amino-propanol-B 12. British Journal of Haematology 1975; 29: 263–271
  • Siddons R.C. Vitamin B12 antagonism by monocarboxylic acids and anilides of cyanocobalamin. Nature 1974; 247: 308–309
  • Kondo H., Osborne M.L., Kolhouse J.F., et al. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. Journal of Clinical Investigation 1981; 67: 1270–1283
  • Schilling R.F. Is nitrous oxide a dangerous anesthetic for vitamin B12- deficient subjects?. JAMA 1986; 255: 1605–1606
  • Chanarin I. The effects of nitrous oxide on cobalamins, folates, and on related events. Critical Reviews in Toxicology 1982; 10: 179–213
  • Skacel P.O., Hewlett A.M., Lewis J.D., Lumb M., Nunn J.F., Chanarin I. Studies on the haemopoietic toxicity of nitrous oxide in man. British Journal of Haematology 1983; 53: 189–200
  • Kano Y., Sakamoto S., Sakuraya K., et al. Effects of nitrous oxide on human cell lines. Cancer Research 1983; 43: 1493–1496
  • Kroes A.C., Lindemans J., Hagenbeek A., Abels J. Nitrous oxide reduces growth of experimental rat leukemia. Leukemia Research 1984; 8: 441–448
  • Abels J., Kroes A.C., Ermens A.A., et al. Antileukemic potential of methyl-cobalamin inactivation by nitrous oxide. American Journal of Hematology 1990; 34: 128–131
  • Kroes A.C., Lindemans J., Schoester M., Abels J. Enhanced therapeutic effect of methotrexate in experimental rat leukemia after inactivation of cobalamin (vitamin B12) by nitrous oxide. Cancer Chemotherapy & Pharmacology 1986; 17: 114–120
  • Kroes A.C., Ermens A.A., Lindemans J., Abels J. Effects of 5-fluorouracil treatment of rat leukemia with concomitant inactivation of cobalamin. Anticancer Research 1986; 6: 737–742
  • Kroes A.C., Lindemans J., Abels J. Synergistic growth inhibiting effect of nitrous oxide and cycloleucine in experimental rat leukaemia. British Journal of Cancer 1984; 50: 793–800
  • Abels J., Kroes A.C.M., Ermens A.A.M., et al. Anti-leukemic potential of methyl-cobalamin inactivation by nitrous oxide. American Journal of Hematology 1990; 34: 128–131
  • Ermens A.A., Schoester M., Spijkers L.J., Lindemans J., Abels J. Toxicity of methotrexate in rats preexposed to nitrous oxide. Cancer Research 1989; 49: 6337–6341
  • Ermens A.A., Vink N., Schoester M., van Lorn K., Lindemans J., Abels J. Nitrous oxide selectively reduces the proliferation of the malignant cells in experimental rat leukemia. Cancer Letters 1989; 45: 123–128
  • Ikeda K., Aosaki T., Furukawa Y., et al. Antileukemic effect of nitrous oxide in a patient with chronic myelogenous leukemia. American Journal of Hematology 1989; 30: 114
  • Ermens A.A., Kroes A.C., Schoester M., van Lorn K., Lindemans J., Abels J. Effect of cobalamin inactivation on folate metabolism of leukemic cells. Leukemia Research 1988; 12: 905–910
  • Ermens A.A., Schoester M., Lindemans J., Abels J. Effect of nitrous oxide and methotrexate on folate coenzyme pools of blast cells from leukemia patients. Leukemia Research 1991; 15: 165–171
  • Lumb M., Deacon R., Perry J., et al. The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate. Implications for the methylfolate-trap hypothesis. Biochemical Journal 1980; 186: 933–936
  • Lumb M., Chanarin L., Perry J., Deacon R. Turnover of the methyl moiety of 5-methyltetrahydropteroyl-glutamic acid in the cobalamin-inactivated rat. Blood 1985; 66: 1171–1175
  • Lumb M., Deacon R., Perry J., Chanarin I. Oxidation of 5-methyltetrahydrofolate in cobalamin-inactivated rats. Biochemical Journal 1989; 258: 907–910
  • Christensen B., Guttormsen A.B., Schneede J., et al. Preoperative methionine loading enhances restoration of the cobalamin-dependent enzyme methionine synthase after nitrous oxide anesthesia. Anesthesiology 1994; 80: 1046–1056
  • Christensen B., Refsum H., Garras A., Ueland P.M. Homocysteine remethylation during nitrous oxide exposure of cells cultured in media containing various concentrations of folates. Journal of Pharmacology & Experimental Therapeutics 1992; 261: 1096–1105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.