58
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Analogues of Pyridoxal Isonicotinoyl Hydrazone (PIH) as Potential Iron Chelators for the Treatment of Neoplasia

Pages 47-60 | Received 30 Oct 1997, Published online: 01 Jul 2009

References

  • Richardson D.R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1997; 1331: 1–40
  • Ponka P., Beaumont C., Richardson D.R. Function and regulation of transferrin and ferritin. Semin. Hematol. 1998; 35(1)35–54
  • Klausner R.D., Ashwell G., van Renswoude J., Harford J.B., Bridges K.R. Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle. Proc. Natl. Acad. Sci. USA 1983; 80: 2263–2266
  • Page M., Baker E., Morgan E.H. Transferrin and iron uptake by rat hepatocytes in culture. Am. J. Physiol 1984; 246: G26–G33
  • Trinder D., Morgan E.H., Baker E. The mechanism of iron uptake by fetal hepatocytes in culture. Hepatology 1986; 6: 852–858
  • Richardson D.R., Baker E. The uptake of iron and transferrin by the human melanoma cell. Biochim. Biophys. Acta 1990; 1053: 1–12
  • Richardson D.R., Baker E. Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: The effect of transferrin concentration, chelators and metabolic probes on transferrin and iron uptake. J. Cell. Physiol. 1994; 161: 160–168
  • Trinder D., Zak O., Aisen P. Transferrin receptor-independent uptake of diferric transferrin by human hepatoma cells with antisensea inhibition of receptor expression. Hepatology 1996; 23: 1512–1520
  • Fleming M.D., Trenor C.C., Su M.A., Foernzler S., Beier D.R., Dietrich W.F., Andrews N.C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genetics 1997; 16: 383–386
  • Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L., Hediger M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–488
  • Jacobs A. Low molecular weight intracellular iron transport compounds. Blood 1977; 50: 433–439
  • Romslo I. Intracellular transport of iron. Iron in Biochemistry and Medicine, A. Jacobs, M. Worwood. Academic, LondonUK 1980; Vol. 2: 325
  • St. Pierre T., Richardson D.R., Baker E., Webb J. A low-spin iron complex in human melanoma and rat hepatoma cells and a high spin iron(H) complex in rat hepatoma cells. Biochim. Biophys. Acta 1992; 1135: 154–158
  • Breuer W., Epsztejn S., Cabantchik Z.I. Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J. Biol. Chem. 1995; 270: 24207–24215
  • Breuer W., Epsztejn S., Millgram P., Cabantchik Z.I. Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am. J. Physiol. 1995; 268: C1354–C1361
  • Richardson D.R., Ponka P., Vyoral D. Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: Examination of the intermediates of iron metabolism. Blood 1996; 87: 3477–3488
  • Harrison P.M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1996; 1275: 161–203
  • Thelander L., Gräslund A., Thelander M. Continual presence of oxygen and iron is required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem. Biophys. Res. Commun. 1983; 110: 859–865
  • Lederman H.M., Cohen A., Lee J.W.W., Freedman M.H., Gelfand E.W. Deferoxamine: A reversible S phase inhibitor of human lymphocyte proliferation. Blood 1984; 64: 748–753
  • Fernandez-Pol J.A. Iron: Possible cause of the G1 arrest induced in NRK cells by picolinic acid. Biochem. Biophys. Res. Commun. 1977; 78: 136–143
  • Brodie C., Siriwardana G., Lucas J., Schleicher R., Terada N., Szepesi A., Gelfand E., Seligman P. Neuroblastoma sensitivity to growth inhibition by deferoxamine: Evidence for a block in the G1 phase of the cell cycle. Cancer Res. 1993; 53: 3968–3975
  • Hileti D., Panayiotidis P., Hoffbrand A.V. Iron chelators induce apoptosis in proliferating cells. Br. J. Haematol 1995; 89: 181–187
  • Ul-Haq R., Wereley J.P., Chitambar C.R. Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Exp. Hematol 1995; 23: 428–432
  • Richardson D.R., Milnes K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents II: The mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood 1997; 89: 3025–3038
  • Trowbridge I.S., Omary M.B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc. Natl. Acad. Sci. USA 1981; 78: 3039–3043
  • Sutherland R., Delia D., Schneider C., Newman R., Kemshead J., Greaves M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc. Natl. Acad. Sci. USA 1981; 78: 4515–4519
  • Weinberg E.D. Iron withholding a defense against infection and neoplasia. Physiol. Rev. 1984; 64: 65–102
  • Trowbridge I.S., Lopez F. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits tumor cell growth in vitro. Proc. Natl. Acad. Sci. USA 1982; 79: 1175–1179
  • Hoffbrand A.V., Ganeshaguru K., Hooton J.W.L., Tattersall M.H.N. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br. J. Haematol 1976; 33: 517–526
  • Blatt J., Stitely S. Antineuroblastoma activity of desferrioxamine in human cell lines. Cancer Res. 1987; 47: 1749–1750
  • Bergeron R.J., Ingeno M.J. Microbial iron chela-tor-induced cell cycle synchronisation in L1210 cells: potential in combination chemotherapy. Cancer Res. 1987; 47: 6010–6016
  • Estrov Z., Tawa A., Wang X.-H., Dube I.D., Sulh H., Cohen A., Gelfand E.W., Freedman M.H. In vivo and in vitro effects of desferrioxamine in neonatal acute leukemia. Blood 1987; 69: 757–761
  • Estrov Z., Cohen A., Gelfand E.W., Freedman M.H. Synergistic antiproliferative effects on HL-60 cells: Deferoxamine enhances cytosine arabinoside, methotrexate, and daunorubicin cytotoxicity. Am. J. Pediatr. Hematol. Oncol 1988; 10: 288–291
  • Becton D.L., Bryles P. Deferoxamine inhibition of human neuroblastoma viability and proliferation. Cancer Res. 1988; 48: 7189–7192
  • Becton D.L., Roberts B. Antileukemic effects of desferoxamine on human myeloid leukemia cell lines. Cancer Res. 1989; 49: 4809–1812
  • Dezza L., Cazzola M., Danova M., Carlo-Stella C., Bergamaschi G., Brugnatelli S., Invernizzi R., Mazzini G., Riccardi A., Ascari E. Effects of desferrioxamine on normal and leukemic human hematopoietic cell growth: in vitro and in vivo studies. Leukemia 1989; 3: 104–107
  • Donfrancesco A., Deb G., Dominici C., Pileggi D., Castello M.A., Helson L. Effects of a single course of deferoxamine in neuroblastoma patients. Cancer Res. 1990; 50: 4929–4930
  • Donfrancesco A., Deb G., Dominici C., Angioni A., Caniglia M., De Sio L., Fidani P., Amici A., Helson L. Deferoxamine, cyclophosphamide, etoposide, carbo-platin, and thiotepa (D-CECat): A new cytoreductive chelation-chemotherapy regimen in patients with advanced neuroblastoma. Am. J. Clin. Oncol. 1992; 15: 319–322
  • Donfrancesco A., De Bernardi B., Carli M., Mancini A., Nigro M., De Sio L., Casale F., Bagnulo S., Helson L., Deb G. Deferoxamine (D) followed by Cytoxan (C), etoposide (E), carboplatin (Ca), thio-TEPA (T), induction regimen in advanced neuroblastoma. Eur. J. Cancer 1995; 31A: 612–615
  • Donfrancesco A., Deb G., De Sio L., Cozza R., Castellano A. Role of desferrioxamine in tumor therapy. Acta Haematol. 1996; 95: 66–69
  • Ponka P., Borova J., Neuwirt J., Fuchs O. Mobilization of iron from reticulocytes. Identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent. FEBS Lett. 1979; 97: 317–321
  • Ponka P., Borova J., Neuwirt J., Fuchs O., Necas E. A study of intracellular iron metabolism using pyridoxal isonicotinoyl hydrazone and other synthetic chelating agents. Biochim. Biophys. Acta 1979; 586: 278–297
  • Hoy T., Humphreys J., Jacobs A., Williams A., Ponka P. Effective iron chelation following oral administration of an isoniazid-pyridoxal hydrazone. Br. J. Haematol 1979; 43: 443–449
  • Cikrt M., Ponka P., Necas E., Neuwirt J. Biliary iron excretion in rats following pyridoxal isonicotinoyl hydrazone. Br. J. Haematol 1980; 45: 275–283
  • Hershko C., Avramovici-Grisaru S., Link G., Gelfand L., Sarel S. Mechanisms of in vivo chelation by pyridoxal isonicotinoyl hydrazone and other imino derivatives of pyridoxal. J. Lab. Clin. Med. 1981; 98: 99–108
  • Williams A., Hoy T., Pugh A., Jacobs A. Pyridoxal complexes as potential chelating agents for oral therapy in transfusional iron overload. J. Pharm. Pharmacol 1982; 34: 730–732
  • Avramovici-Grisaru S., Sarel S., Link G., Hershko C. Synthesis of iron bis(pyridoxal isonicotinoyl hydrazone) and the in vivo iron-removal properties of some pyridoxal derivatives. J. Med. Chem. 1983; 26: 298–302
  • Kim B.K., Huebers H.A., Finch C.A. Effectiveness of oral iron chelators assayed in the rat. Am. J. Hematol 1987; 24: 277–284
  • Richardson D.R., Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogues: Potential orally effective iron chelating agents for the treatment of iron overload disease. J. Lab. Clin. Med. 1998, in press
  • Brittenham G.M. Pyridoxal isonicotinoyl hydrazone: an effective iron chelator after oral administration. Semin. Hematol 1990; 27: 112–116
  • Richardson D.R., Hefter G.T., May P.M., Webb J., Baker E. Iron chelators of the pyridoxal isonicotinoyl hydrazone class III. Formation constants with calcium(II), magnesium(II), and zinc(II). Biol. Metals 1989; 2: 161–167
  • Vitolo L.M.W., Hefter G.T., Clare B.W., Webb J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part 2. Formation constants with iron(III) and iron(II). Inorg. Chim. Acta 1990; 170: 171–176
  • Richardson D.R., Wis Vitolo L.M., Hefter G.T., May P.M., Clare B.W., Webb J., Wilairat P. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part I. Ionization characteristics of the ligands and their relevance to biological properties. Inorg. Chim. Acta 1990; 170: 165–170
  • Edward J.T., Gauthier M., Chubb F.L., Ponka P. Synthesis of new acylhydrazones as iron-chelating compounds. J. Chem. Engin. Data 1988; 33: 538–540
  • Baker E., Vitolo M.L., Webb J.M. Iron chelation by pyridoxal isonicotinoyl hydrazone and analogues in hepa-tocytes in culture. Biochem. Pharmacol 1985; 34: 3011–3017
  • Ponka P., Richardson D., Baker E., Schulman H.M., Edward J.T. Effect of pyridoxal isonicotinoyl hydrazone and other hydrazones on iron release from macrophages, reticulocytes and hepatocytes. Biochim. Biophys. Acta 1988; 967: 122–129
  • Richardson D., Baker E., Ponka P., Wilairat P., Vitolo M.L., Webb J. Effects of pyridoxal isonicotinoyl hydrazone and analogs on iron metabolism in hepatocytes and macrophages in culture. Birth Defects 1988; 23(5B)81–88
  • Baker E., Richardson D.R., Gross S., Ponka P. Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture. Hepatology 1992; 15: 492–501
  • Richardson D.R., Ponka P. The iron metabolism of the human neuroblastoma cell. Lack of relationship between the efficacy of iron chelation and the inhibition of DNA synthesis. J. Lab. Clin. Med. 1994; 124: 660–671
  • Richardson D.R., Tran E., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood 1995; 86: 4295–4306
  • Huang A.R., Ponka P. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme 59Fe. Biochim. Biophys. Acta 1983; 757: 306–315
  • Richardson D.R. Mobilization of iron from neoplastic cells by some iron chelators is an energy-dependent process. Biochim. Biophys. Acta 1997; 1320: 45–67
  • Endicott J.A., Ling V. The biochemistry of p-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 1989; 58: 137–171
  • Gottesman M.M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 1993; 62: 385–427
  • Böhme M., Büchler M., Müller M., Keppler D. Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS Lett 1993; 333: 193–196
  • Ponka P., Schulman H.M., Wilczynska A. Ferric pyridoxal isonicotinoyl hydrazone can provide iron for heme synthesis in reticulocytes. Biochim. Biophys. Acta 1982; 718: 151–158
  • Chitambar C.R., Narasimhan J., Guy J., Sem D.S., O'Brein W.J. Inhibition of ribonucleotide reductase by gallium in murine leukemic L1210 cells. Cancer Res. 1991; 51: 6199–6201
  • Seligman P.A., Crawford E.D. Treatment of advanced transitional cell carcinoma of the bladder with continuous infusion gallium nitrate. J. Natl. Cancer Inst. 1991; 83: 1582–1584
  • Seligman P.A., Moran P.L., Schleicher R.B., Crawford E.D. Treatment with gallium nitrate. Evidence for interference with iron metabolism in vivo. Am. J. Hematol 1992; 41: 232–240
  • Johnson D.K., Murphy T.B., Rose N.J., Goodwin W.H., Pickart L. Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by aroylhydrazones and by a copper(II) complex of salicylaldehyde benzoyl hydrazone. Inorg. Chim. Acta 1982; 67: 159–165
  • Kontoghiorghes G.J., Piga A., Hoffbrand A.V. Cytotoxic effects of the lipophilic iron chelator omadine. FEBS Lett. 1986; 204: 208–212
  • Richardson D.R. Cytotoxic analogues of the iron(III) chelator pyridoxal isonicotinoyl hydrazone: Effect of com-plexation with copper(II), gallium(III), and iron(III) on their anti-proliferative activity. Antimicrob. Agents Chemother. 1997; 41(9)2061–2063
  • Singh S., Hider R.C. Colorimetric detection of the hydroxyl radical: comparison of the hydroxyl radical generating ability of various iron complexes. Anal. Biochem. 1988; 171: 47–54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.