73
Views
53
CrossRef citations to date
0
Altmetric
Original Article

Syndecan-1 Expression on Malignant Cells from the Blood and Marrow of Patients with Plasma Cell Proliferative Disorders and B-Cell Chronic Lymphocytic Leukemia

, , &
Pages 167-175 | Received 09 Dec 1997, Published online: 01 Jul 2009

References

  • Berenson J., Wong R., Kim K., Brown N., Liechtenstein A. Evidence for peripheral blood B lymphocyte but not T-lymphocyte involvement in multiple myeloma. Blood 1987; 70: 1550–1553
  • Billadeau D., Quam L., Thomas W., Kay N., Greipp P., Kyle R., Oken M., Van Ness B. Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 1992; 80: 1818–1824
  • Billadeau D., Van Ness B., Kimlinger T., Kyle R., Therneau T., Greipp P., Witzig T. Clonal circulating cells are common in plasma cell proliferative disorders: a comparison of monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and active myeloma. Blood 1996; 88: 289–296
  • Witzig T., Gertz M., Lust J., Kyle R., O'Fallon W., Greipp P. Peripheral blood monoclonal plasma cells as a predictor of survival in patients with multiple myeloma. Blood 1996; 88: 1780–1787
  • Bemfield M., Kokenyesi R., Kato M., Hinkes M., Spring J., Gallo R., Lose E. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annual Review of Cell Biology 1992; 8: 365–393
  • Sanderson R., Lalor P., Bernfield M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regulation 1989; 1: 27–35
  • Wijdenes L., Vooijs W., Clément C., Post J., Morad F., Vita N., Laurent P., Sun R.-X., Klein B., Dore J.-M. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. British Journal of Haematology 1996; 94: 318–323
  • Ridley R., Xiao H., Hata H., Woodliff J., Epstein J., Sanderson R. Expression of syndecan regulates human myeloma plasma cell adhesion to type 1 collagen. Blood 1993; 81: 767–774
  • Pellat-Deceunynck C., Bataille R., Robillard N., Harousseau J.-L., Rapp M.-J., Juge-Morineau N., Wijdenes J., Amiot M. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 1994; 84: 2597–2603
  • Pellat-Deceunynck C., Barille S., Puthier D., Rapp M.-J., Harousseau J-L., Bataille R., Amiot M. Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Research 1995; 55: 3647–3653
  • Rawstron A., Owen R., Davies F., Johnson R., Jones R., Richards S., Evans P., Child J., Smith G., Jack A., Morgan G. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. British Journal of Haematology 1997; 97: 46–55
  • Carbone A., Gloghini A., Gattei V., Degan M., Improta S., Aldinucci D., Canzonieri V., Perin T., Volpe R., Gaidano G., Zagonel V., Pinto A. Reed-Sternberg cells of classical Hodgkin's disease react with the plasma cell-specific monoclonal antibody B-B4 and express human syndecan-1. Blood 1997; 89: 3787–3794
  • Baird A. Potential mechanisms regulating the extracellular activities of basic fibroblast growth factor (FGF-2). Molecular Reproduction and Development 1994; 39: 43–48
  • Yayon A., Klagsbrun M., Esko J., Leder P., Ornitz D. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848
  • Basilico C., Moscatelli D. The FGF family of growth factors and oncogenes. Advances in Cancer Research 1992; 59: 115–165
  • Steinfeld R., Van Den Berghe H., David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypi-can. Journal of Cell Biology 1996; 133: 405–416
  • Menzel T., Rahman Z., Calleja E., White K., Wilson E., Wieder R., Gabrilove J. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine. Blood 1996; 87: 1056–1063
  • Hata H., Xiao H., Petrucci M., Woodliff J., Chang R., Epstein J. Interleukin-6 gene expression in multiple myeloma: a characteristic of immature tumor cells. Blood 1993; 81: 3357–3364
  • Kawano M., Huang N., Harada H., Harada Y., Sakai A., Tanaka H., Iwato K., Kuramoto A. Identification of immature and mature myeloma cells in the bone marrow of human myelomas. Blood 1993; 82: 564–570
  • Westendorf J., Ahmannn G., Armitage R., Spriggs M., Lust J., Greipp P., Katzmann J., Jelinek D. CD40 expression in malignant plasma cells: role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. Journal of Immunology 1994; 152: 117–128
  • Witzig T., Kimlinger T., Ahmann G., Katzmann J., Greipp P. Detection of myeloma cells in the peripheral blood by flow cytometry. Cytometry 1996; 26: 113–120
  • Kyle R. “Benign” monoclonal gammopathy after 20-35 years of follow-up. Mayo Clinic Proceedings 1993; 68: 26–36
  • Gertz M., Witzig T., Pineda A., Greipp P., Kyle R., Litzow M. Monoclonal plasma cells in the blood stem cell harvest from patients with multiple myeloma are associated with shortened relapse-free survival after transplantation. Bone Marrow Transplantation 1997; 19: 337–342
  • Schneider U., Van Lessen A., Huhn D., Serke S. Two subsets of peripheral blood plasma cells defined by differential expression of CD45 antigen. British Journal of Haematology 1997; 97: 56–64
  • Myoken Y., Myoken Y., Okamoto T., Sato J., Kan M., McKeehan W., Nakahara M., Takada K. Immunohistochemical study of overexpression of fibroblast growth factor-1 (FGF-1), FGF-2, and FGF receptor-1 inhuman malignant salivary gland tumours. Journal of Pathology 1996; 178: 429–436
  • Allouche M., Bayard F., Clamens S., Fillola G., Sié P., Amalric F. Expression of basic fibroblast growth factor (bFGF) and FGF-receptors in human leukemic cells. Leukemia 1995; 9: 77–86
  • Fuks Z., Persaud R., Alfieri A., McLoughlin M., Ehleiter D., Schwartz J., Seddon A., Cordon-Cardo C., Haimovitz-Friedman A. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Research 1994; 54: 2582–2590

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.