92
Views
24
CrossRef citations to date
0
Altmetric
Original Article

BCL-X and the Apoptotic Machinery of Lymphoma Cells

, , , &
Pages 451-458 | Received 12 Mar 1997, Published online: 01 Jul 2009

References

  • Oltvai Z. N., Korsmeyer S. J. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192
  • William G. T., Smith C. A. Molecular regulation of apoptosis: genetic controls on cell death. Cell 1993; 74: 777–779
  • Korsmeyer S. J. Bcl‐2 initiates a new category of oncogenes: regulators of cell death. Blood 1992; 80: 879–886
  • Yang E., Korsmeyer S. J. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401
  • Oltvai Z. N., Millman C. L., Korsmeyer S. J. Bcl‐2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programed cell death. Cell 1993; 74: 609–619
  • Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for bcl‐S and bcl‐2, displaces bax and promotes cell death. Cell 1995; 80: 285–291
  • Kiefer M. C., Brauer M. J., Powers V. C., Wu J. J., Umansky S. R., Tomei L. D., Barr P. J. Modulation of apoptosis by the widely distributed Bcl‐2 homologue Bak. Nature 1995; 374: 736–739
  • Chittenden T., Harrington E. A., O'Connor R., Flemington C., Luttz R. J., Evan G. I., Guild B. C. Induction of apoptosis by the Bcl‐2 homologue Bak. Nature 1995; 374: 733–736
  • Farrow S. N., White J. H. M., Martinou I., Raven T., Pun K. T., Grinham C. J., Martinou J. C., Brown R. Cloning of a bcl‐2 homologue by interaction with adenovirus E1B 19K. Nature 1995; 374: 731–733
  • Kozopas K. M., Yang T., Buchan H. L., Zhou P., Craig R. W. MCL‐1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl‐2. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 3516–3520
  • Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J. A., Reed J. C. Cloning and functional analysis of BAG‐1: a novel Bcl‐2 binding protein with anti‐cell death activity. Cell 1995; 80: 279–284
  • Sato T., Hanada M., Bodrug S., Irie S., Iwama N., Boise L. H., Thompson C. B., Golemis E., Fong L., Wang H. G., Reed J. C. Interactions among members of the Bcl‐2 protein family analysed with a yeast two‐hybrid system. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 9238–9246
  • Boise L. H., Gonzales‐Garcia M., Postema C. E., Ding L., Lindten T., Turka L. A., Man X., Numez G., Thompson C. B. Bcl‐x, a bcl‐2‐related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608
  • Krajewski S., Krajewski M., Shabaik A., Wang H. C., Irie S., Fong L., Reed J. C. Immunohistochemical analysis of in vivo patterns of bcl‐x expression. Cancer Research 1994; 54: 5501–5507
  • Motoyama N., Wang F., Roth K. A., Sawa H., Nakayama K. I., Nakayama K., Neghishi I., Senju S., Zhang Q., Fujii S., Loh D. Y. Massive cell death of immature hemopoietic cells and neurons in bcl‐x deficient mice. Science 1995; 267: 1506–1509
  • Minn A. J., Boise L. H., Thompson C. B. Bcl‐x(S) antagonizes the protective effects of Bcl‐x(L). Journal of Biological Chemistry 1996; 271: 6306–6312
  • Cheng E. H., Levine B., Boise L. H., Thompson C. B., Hardwick J. M. Bax‐independent inhibition of apoptosis by Bcl‐XL. Nature 1996; 379: 554–556
  • Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L., Ng S. L., Fesik S. W. X‐ray and NMR structure of human Bcl‐xL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341
  • Park J. R., Bernstein I. D., Hockenberry D. M. Primitive human hematopoietic precursors express bclx but not bcl2. Blood 1995; 86: 868–876
  • Tuscano J. M., Druey K. M., Riva A., Pena J., Thompson C. B., Kehrl J. H. Bcl‐x rather than Bcl‐2 mediates CD40‐dependent centrocyte survival in the germinal center. Blood 1996; 88: 1359–1364
  • Choi M. S., Holmann M., Atkins C. J., Klaus G. G. Expression of bcl‐x during mouse B‐cell differentiation and following activation by various stimuli. European Journal of Immunology 1996; 26: 676–82
  • Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) in human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906
  • Cleary M. L., Smith S. D., Sklar J. Cloning and structural analysis of cDNAs for bcl‐2 and hybrid bcl‐2 immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47: 19–28
  • Branet F., Brousset P., Krajewski S., Schlaifer D., Selves J., Reed J. C., Caron P. Expression of the cell death‐inducing gene bax in carcinomas developed from the follicular cells of the thyroid gland. Journal of Clinical Endocrinology and Metabolism 1996; 81: 2726–2730
  • Krajewska M., Moss S. F., Krajewski S., Song K., Holt P. R., Reed J. C. Elevated expression of Bcl‐X and reduced Bak in primary colorectal adenocarcinomas. Cancer Research 1996; 56: 2422–2427
  • Naik P., Karrim J., Hanahan D. The rise and fall of apoptosis during multi‐stage tumorogenesis: down regulation contributes to tumor progresion from angiogenic progenitors. Genes and Development 1996; 10: 2105–2116
  • Michaud G. Y., Kamesaki H., Cossman J. Expression of bclx in T‐cells. leukemia Research 1996; 20: 683–691
  • Gauthier E. R., Piche L., Lemieux G., Lemieux R. Role of bcl‐X(L) in the control of apoptosis in murine myeloma cells. Cancer Research 1996; 56: 1451–1456
  • Han Z., Chatterjee D., Early J., Pantazis P., Hendrickson E. A., Wyche J. H. Isolation and characterization of an apoptosis‐resistant variant of human leukemia HL‐60 cells that has switched expression from Bcl‐2 to Bcl‐xL. Cancer Research 1996; 56: 1621–1628
  • Schlaifer D., Krajewski S., Galoin G., Rigal‐Huguet F., Laurent G., Massip P., Pris J., Delsol G., Reed J. C., Brousset P. Immunodetection of apoptosis‐regulating proteins in lymphomas from patients with and without human deficiency virus infection. American Journal of Pathology 1995; 149: 177–185
  • Schlaifer D., March M., Krajewski S., Laurent G., Pris J., Delsol G., Reed J. C., Brousset P. High expression of the Bcl‐x gene in Reed Sternberg cells of Hodgkin's disease. Blood 1995; 85: 2671–2674
  • Xerri L., Pare P., Brousset P., Schlaifer D., Hassoun J., Reed J. C., Krajewski S., Birnbaum D. Predominant expression of the long isoform of BCL‐X (BCL‐XL) in human lymphomas. British Journal of Haematology 1996; 92: 900–906
  • Foreman K. E., Wrone‐Smith T., Boise L. H., Thompson C. G., Polvrerini P. J., Simonian P. L., Nunez G., Nickoloff B. J. Kaposi's sarcoma tumor cells preferentially express Bcl‐xL. American Journal of Pathology 1996; 149: 795–803
  • Krajewski S., Bodrug S., Gascoyne R., Berean K., Krajewska M., Reed J. C. Immunohistochemical analysis of mcl‐1 and bcl‐2 proteins in normal and neoplastic lymph nodes. American Journal of Pathology 1994; 145: 515–525
  • Armitage R. J. Tumor necrosis factor receptor super‐family members and their ligands. Current Biology 1994; 6: 407–413
  • Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–243
  • Oehm A., Behrmann I., Falk W., Pawlita M., Maier G., Klas C., Li‐Weber M., Richards S., Dhein J., Trauth B. C., Ponsting H., Krammer P. Purification and molecular cloning of the APO‐1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor super‐family. Journal of Biological Chemistry 1992; 267: 10709–10715
  • Nagata S., Golstein P. The Fas death factor. Science 1995; 267: 1449–1456
  • Schulze‐Osthoff K. The Fas/APO‐1 receptor and its deadly ligand. Trends in Cell Biology 1994; 4: 421–425
  • Debatin K. M., Goldman C. K., Bamford R., Waldmann T. A., Krammer P. H. Monoclonal antibody‐mediated apoptosis in adult T‐cell leukemia. Lancet 1990; 335: 497–500
  • Debatin K. M., Goldman C. K., Waldmann T. A., Krammer P. H. APO‐1 induced apoptosis of leukemia cells from patients with adult T‐cell leukemia. Blood 1993; 81: 2972–2977
  • Suda T., Nagata S. Purification and characterization of the Fas ligand that induces apoptosis. Journal of Experimental Medicine 1994; 179: 873–878
  • Suda T., Takahashi T., Goldstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–1178
  • Takahashi T., Tanaka M., Inazawa J., Abe T., Suda T., Nagata S. Human FAS ligand: gene structure, chromosomal localization and species specificity. International Immunology 1994; 6: 1567–1574
  • Watanabe‐Fukunaga R., Brannan C. I., Copeland N. G., Jenkins N. A., Nagata S. Lymphoproliferation disorder in mice explained by defects in FAS antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Takahashi T., Tanaka M., Brannan C. I., Jenkins N. A., Copeland N. G., Suda T., Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the FAS Ligand. Cell 1994; 76: 969–976
  • Lynch D. H., Watson M. L., Alderson M. R., Baum P. R., Miller R. E., Tough T., Gibson M., Davis‐Smith T., Smith C. A., Hunter K., Bhat D., Din W., Goodwin R. G., Seldin M. F. The mouse FAS‐ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1994; 1: 131–136
  • Ramsdell F., Seaman M. S., Miller E., Tough T. W., Alderson M. R., Lynch D. H. gld/gld mice are unable to express a functional ligand for FAS. European Journal of Immunology 1994; 24: 928–933
  • Fisher G. H., Rosenberg F. J., Straus S. E., Dale J. K., Middelton L. A., Lin A. Y., Strober W., Lenardo M. J., Puck J. M. Dominant interfering FAS gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–946
  • Rieux‐Laucat F., Le Deist F., Hivroz C., Roberts I. A. G., Debatin K. M., Fischer A., de Villartay J. P. Mutations in FAS associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–1349
  • Xerri L., Carbuccia N., Pare P., Hassoun J., Birg F. Frequent expression of FAS/APO‐1 in Hodgkin's disease and anaplastic large cell lymphomas. Histopathology 1995; 27: 235–241
  • Xerri L., Carbuccia N., Pare P., Birg F. Search for rearrangements and/or allelic loss of the FAS‐APOI gene in 101 human lymphomas. American Journal of Clinical Pathology 1995; 104: 424–430
  • Möller P., Henne C., Leithäuser F., Eichelman A., Schmidt A., Briiderlein S., Dhein J., Krammer P. H. Coregulation of the APO‐I antigen with intercellular adhesion molecule‐1 (CD54) in tonsillar B‐cells and coordinate expression in follicular center B‐cells and in follicle center and mediastinal B‐cell lymphomas. Blood 1993; 81: 2067–2075
  • Peng S. L., Robert M. A., Hayday A. C., Craft J. A tumor suppressor function for FAS (CD95) revealed in T‐cell deficient mice. Journal of Experimental Medicine 1996; 184: 1149–1154
  • Westendorf J. J., Lammert J. M., Jelinek D. F. Expression and function of FAS (APO‐1/CD95) in patient myeloma cells and myeloma cell lines. Blood 1995; 85: 3566–3576
  • Erhardt P., Cooper G. M. Activation of the CPP32 apoptotic protease by distinct signaling pathways with differential sensitivity to Bcl‐xL. Journal of Biological Chemistry 1996; 271: 17601–17604
  • Martin S. J., Green D. R. Protease activation during apoptosis: death by a thousand cuts?. Cell 1995; 82: 349–352
  • Whyte M. ICE/CED‐3 proteases in apoptosis. Trends in Cell Biology 1996; 6: 245–247
  • Henkart P. A. ICE family proteases: mediators of all apoptotic cell death?. Immunity 1996; 4: 195–201
  • Elis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematod Caenorhabditis elegans. Cell 1986; 44: 817–829
  • Yuan J., Horvitz H. R. Genetic mosaic analysis of ced‐3 and ced‐4, two genes that control programmed cell death in the nematode C. elegans. Developmental Biology 1990; 138: 33–41
  • Yuan J., Shaham S., Ledoux S., Ellis H. M., Horvitz H. R. The C. elegans cell death gene ced‐3 encodes a protein similar to mammalian interleukin‐1β‐converting enzyme. Cell 1993; 75: 641–652
  • Cerretti D. P., Koslosky C. J., Mosley B., Nelson N., Ness K. V., Greenstreet T. A., March C. J., Kronheim S. R., Druck T., Cannizaro L. A., Huebner K., Back R. A. Molecular cloning of the interleukin‐1β‐converting enzyme. Science 1995; 256: 97–100
  • Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Hownard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J., Elliston K. O., Ayala J. M., Casano F. J., Chin J., Ding G. J. F., Egger L. A., Gaffney E. P., Limjuco G., Palyha O. C., Raju S. M., Ralando A. M., Salley J. P., Yamin T. T., Lee T. D., Shivley J. E., MacCross M., Mumford R. A., Schnidt J. A., Tocci M. J. A novel heterodimeric cysteine protease is required for interleukin‐1β processing in monocytes. Nature 1992; 356: 768–774
  • Wang L., Miura M., Bergeron L., Zhu H., Yuan J. Ich‐1, an Ice/ced‐3‐related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739–750
  • Fernandes‐Alnemri T., Litwach G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced‐3 and mammalian interleukin‐1β‐converting enzyme. Journal of Biological Chemistry 1994; 269: 30761–30764
  • Kamens J., Paskind M., Hugunin M., Talanian R. V., Allen H., Banach D., Bump N., Hackett M., Johnston C. G., Li P., Mankovich J. A., Terranova M., Ghayur T. Identification and characterization of ICH‐2, a novel member of the interleukin‐1 beta‐converting enzyme family of cysteine proteases. Journal of Biological Chemistry 1995; 270: 15250–15256
  • Fernandes‐Alnemri T., Litwack G., Alnemri E. S. Mch2, a new member of the apoptotic Ced‐3/Ice cysteine protease gene family. Cancer Research 1995; 55: 2737–2742
  • Faucheu C., Diu A., Chan A. W., Blanchet A. M., Miossec C., Hervé F., Collard‐Dutilleul V., Gu Y., Aldape R. A., Lippke J. A., Rocher C., Su M. S. S., Livingston D. J., Hercend T., Lalanne J. L. A novel human protease similar to the interleukin‐1 beta converting enzyme induces apoptosis in transfected cells. EMBO Journal 1995; 14: 1914–1922
  • Miura M., Zhu H., Rotello R., Hartwieg E. A., Yuan J. Induction of apoptosis in fibroblasts by IL‐1β‐converting enzyme, a mammalian homolog of the C. elegans cell death gene ced‐3. Cell 1993; 75: 653–660
  • Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP‐ribose) polymerase: an early marker of chemotherapy‐induced apoptosis. Cancer Research 1993; 53: 3976–3985
  • Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. C. Cleavage of poly(ADP‐ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346–347
  • Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32b, a mammalian homolog of CED‐3, is a CrmA‐inhibitable protease that cleaves the death substrate poly(ADP‐ribose) polymerase. Cell 1995; 81: 801–809
  • Gu Y., Sarnecki C., Aldape R. A., Livingston D. J., Su M. S. Cleavage of poly(ADP‐ribose) polymerase by interleukin‐1 beta converting enzyme and its homologs TX and Nedd‐2. Journal of Biological Chemistry 1995; 270: 18715–18718
  • Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A., Munday N. A., Raju S. M., Smulson M. E., Yamin T. T., Yu V. L., Miller D. K. Identification and inhibition of the ICE/CED‐3 protease necessary for mammalian apoptosis. Nature 1195; 376: 37–43
  • Enari M., Talanian R. V., Wong W. W., Nagata S. Sequential activation of ICE‐like and CPP32‐like proteases during FAS‐mediated apoptosis. Nature 1996; 380: 723–726
  • Casciola‐Rosen L., Nicholson D. W., Cong T., Rowan K. R., Thornberry N. A., Miller D. K., Rosen A. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. Journal of Experimental Medicine 1996; 183: 1957–1964
  • Xerri L., Devilard E., Ayello C., Brousset P., Reed J. C., Emile J. F., Hassoun J., Parmentier S., Birg F. Cysteine protease CPP32, but not Ichl‐L. Is expressed in germinal center B‐cells and their neoplastic counterparts. Human Pathology 1997, In press
  • Sumantran V. N., Ealovega M. W., Nunez G., Clarke M. F., Wicha M. S. Overexpression of bclx‐S sensitizes MCF7 cells to chemotherapy‐induced apoptosis. Cancer Research 1995; 55: 2507–2510
  • Minn A. J., Rudin C. M., Boise L. W., Thompson C. B. Expression of bcl‐xL can confer a multidrug resistance phenotype. Blood 1995; 86: 1903–1910
  • Ealovega M. W., McGinnis P. K., Sumantran V. N., Clarke M. F., Wicha M. S. Bcl‐xS gene therapy induces apoptosis of human mammary tumors in nude mice. Cancer Research 1996; 56: 1965–1969
  • Clarke M. F., Apel I. J., Benedict M. A., Eipers P. G., Sumantran V., Gonzalez‐Garcia M., Doedens M., Fukanaga M., Davidson B., Dick J. E., Minn A. J., Boise L. H., Thompson C. G., Wicha M., Nunez G. A recombinant bcl‐xS adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 11024–11028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.